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ABSTRACT

In this paper, we present a video encoding scheme that uses

object-based adaptation to deliver surveillance video to mo-

bile devices. The method relies on a set of complemen-

tary video adaptation strategies and generates content that

matches various appliance and network resources. Prior to

encoding, some of the adaptation strategies exploit video

object segmentation and selective filtering in order to im-

prove the perceived quality. Moreover, object segmentation

enables the generation of automatic summaries and of sim-

plified versions of the monitored scene. The performance

of individual adaptation strategies is assessed using an ob-

jective video quality metric, which is also used to select the

strategy that provides maximum value for the user under a

given set of constraints. We demonstrate the effectiveness

of the scheme on standard surveillance test sequences and

realistic mobile client resource profiles.

1. INTRODUCTION

The problem of remote visual surveillance of unattended en-

vironments has received growing attention in recent years.

But whereas event monitoring is still mostly performed by

human operators located in a fixed surveillance room, there

is an increasing demand for the delivery of surveillance video

to mobile devices as well. The latter notably enables sur-

veillance personnel to monitor a critical situation without

interruption even while shifting to the intervention place.

Moreover, it permits the surveillance of private ground and

vacant homes using cellular phones and PDAs. However,

reliable remote surveillance requires the quality of the de-

livered video to be optimal despite the limitations resulting

from small display sizes and restricted processing capabil-

ities of mobile devices. In addition to this, one must cope

with the limited bandwidth and time-varying conditions of

wireless transmission channels.

Traditionally, scalable video coding [1] and content-blind

transcoding [2] have been used to adapt video to the re-

stricted capabilities of mobile terminals and networks. How-

ever, scalable video coding requires specific decoding ca-

pabilities to access individual quality or resolution layers.

Moreover, scalable video streams are not optimal in terms of

the required bandwidth. The above problems are solved by

using transcoding, where the video is adapted to the capa-

bilities of the receiver at the encoder’s side. However, tradi-

tional transcoding techniques (content-blind techniques) are

generally not optimal in terms of perceptual quality. Thus,

recent transcoding methods (content-based techniques) make

use of content characteristics in order to minimize the degra-

dation of important image regions. In particular, object-

based transcoding considers the usage of video objects as

transcoding entities. That is, foreground objects are en-

coded at a higher quality level or resolution than less im-

portant regions [3, 4]. While the works in [3, 4] resort

to object-based encoders (e.g., MPEG–4) to code differ-

ent image regions individually, we present in this paper a

method that exploits an object-based representation in a tra-

ditional frame-based encoding framework (e.g., MPEG–1).

The rationale behind this choice is to enable the use of ad-

vanced functionalities with standard decoders available for

consumer devices. Also, the additional knowledge provided

by object-based analysis can further be exploited to meet the

restricted capabilities of mobile devices.

The remainder of this paper is organized as follows. In

Section 2, we discuss the generation and delivery of video

that matches the resources of mobile devices in an optimal

way. In Section 3, results obtained with real surveillance

sequences are presented and discussed. Finally, the conclu-

sions of our work are drawn in Section 4.

2. DELIVERY OF SURVEILLANCE VIDEO

Adaptive delivery ensures that the delivered video matches

the limited capabilities of mobile appliances in an optimal

way. This is achieved by transforming the video using a

number of complementary adaptation strategies, and by se-

lecting the strategy that provides most perceptual quality for

the end user.



(a) (b) (c) (d) (e)

Fig. 1. Background simplification for compression improvement and objects enhancement. (a) The original background from

the Highway sequence is replaced by a static background shot. (b) The original background is lowpass-filtered. (c) Each

background macroblock is replaced by its DC value. (d) An edge image is used instead of the original background. (e)

Background areas are set to a constant value.

2.1. Video adaptation strategies

The uncompressed input video is first transformed using

one out of the following adaptation strategies: coded origi-
nal; spatial resolution reduction; semantic prefiltering. The

coded original is simply obtained by encoding the input

video using a frame-based encoder, such as MPEG–1. Spa-
tial resolution reduction can further be applied prior to the

coding in order to reduce the transmission bandwidth. Se-
mantic prefiltering aims at mimicking the way humans treat

visual information in order to improve the compression ra-

tio of image and video coders, and to enhance relevant ob-

jects [5]. To enable semantic prefiltering, image areas that

observers are looking at (foreground) need to be separated

from areas that are not expected to attract the attention of

a viewer (background) by means of video object segmen-

tation [6]. The overall image quality is then improved by

simplifying the background in order to improve the quality

(i.e. the associated bit allocation) of the foreground. This

is achieved by replacing the original background by a static

background shot, by lowpass-filtering the background, or

by replacing each background macroblocks by its DC value

(Fig. 1(a)-(c)). Alternatively, superfluous visual details may

be removed from the background to enhance relevant ob-

jects (Fig. 1(d)-(e)).

(a) (b)

Fig. 2. Use of object segmentation to meet restricted device

capabilities. (a) Relevant objects are put in a conspicuous

situation on small displays. (b) Surveillance video is sum-

marized in a single image.

The additional knowledge provided by object segmenta-

tion can further be exploited to meet the restricted capabil-

ities of mobile devices. In Fig. 2(a), relevant video objects

have been put in a conspicuous situation by means of col-

ored blobs. This is particularly useful on small displays. In

Fig. 2(b), the surveillance video has been summarized in a

single frame by plotting the trajectories of semantic video

objects on top of a static background shot. This can be used

to convey the meaning of the filmed scene when video ca-

pabilities are not available.

The perceptual quality resulting from the individual adap-

tation strategies is then evaluated by means of objective eval-

uation. An objective video distortion measure that emulates

human judgement needs to account for different image areas

and for their relevance to the observer. This aspect can be

considered with the traditional Mean Squared Error (MSE)

by weighting different image areas according to their se-

mantics. This leads to the semantic mean squared error,

SMSE, defined as [5]:

SMSE =
N∑

k=1

wk

|Ck|
∑

(i,j)∈Ck

d2(i, j), (1)

where N is the number of classes and wk the weight of class

k. Class weights are chosen depending on the semantics,

with wk ≥ 0,∀k = 1, . . . , N and
∑N

i=1 wk = 1. Ck is

the set of pixels belonging to the object class k, and |Ck| is

its cardinality. The error d(i, j) between the original image

IO and the distorted image ID in Eq. (1) is the pixel-wise

color distance. The color distance is computed in the 1976

CIE Lab color space in order to consider perceptually uni-

form color distances with the Euclidean norm. The final

quality evaluation metric, the semantic peak signal-to-noise
ratio SPSNR, uses SMSE instead of MSE as compared to

PSNR. When the classes are foreground and background,

then N = 2 in Eq. (1), and wf is the foreground weight.

The background weight is thus (1 − wf ).



2.2. Strategy selection

Strategy selection is at last needed to work out the adapta-

tion strategy that provides most perceptual quality for the

end user, considering the individual resources of the con-

nected client (i.e., appliance, network).

Specifically, let Ai be some original item, e.g., a video.

The adapted version Mijk is computed by transcoding Ai

using the adaptation operator Oj at resources k. Each adap-

tation operator Oj implements an adaptation strategy in Sec-

tion 2.1. The perceptual quality of Mijk resulting from the

adaptation is denoted by Q(Mijk). Let us furthermore de-

fine the item resource vector for the item Mijk as R(Mijk) =(
R(Mijk)1, R(Mijk)2, . . . , R(Mijk)r

)T
, where r is the num-

ber of different resources that have to be considered (e.g.,

bitrate, resolution, coding format, etc.). Similarly, the client

resource vector is denoted by

Rclient =
(
R1

client, R
2
client, . . . , R

r
client

)T
.

The selection of the optimal adaptation strategy can then

be formalized by the following resource allocation problem:

Problem 1 For item Ai, find the adapted version Mijk that
has maximum quality Q(Mijk) such that item resources R(Mijk)
do not exceed client resources Rclient:

max
j,k

{
Q(Mijk)

}
such that (2)

Rn(Mijk) � Rn
client for all 1 � n � r

In order to solve Problem 1, we define a number of an-
chor nodes

(
Oj ,R(Mijk), V (Mijk)

)
. An anchor node ex-

presses the quality Q(Mijk) resulting from applying adap-

tation operator Oj at resources R(Mijk). We further fit a

polynomial quality function (QF) to the anchor nodes of

each adaptation operator. The quality function matrix for

Ai is denoted as

FQF
i =

(
fQF
i1 , fQF

i2 , . . . , fQF
iJ

)T
=

⎛
⎜⎜⎜⎝

ai1,1 ai1,2 . . . ai1,p

ai2,1 ai2,2 . . . ai2,p

.

.

.
.
.
.

. . .
.
.
.

aiJ,1 aiJ,2 . . . aiJ,p

⎞
⎟⎟⎟⎠ ,

(3)

where aij,k are the coefficients of the order p − 1 polyno-

mial quality function, fQF
ij . J is the number of adaptation

operators.

The solution to Problem 1 is then given by the QF that

has maximum quality maxj,R

{
fQF
ij (R)

}
such that R �

Rclient. In the particular case where all QFs are monotoni-

cally increasing, the solution is located at R = Rclient.

3. RESULTS

In this section, the proposed adaptive delivery framework

is tested with surveillance sequences and realistic client re-

source profiles. In particular, the mechanism discussed in
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Fig. 3. Rate-distortion diagrams for strategy selection. An-

chor nodes are represented along with the corresponding cu-

bic polynomial value functions. The client resources under

analysis are highlighted using vertical lines. (a) Hall moni-
tor. (b) Highway.

Section 2.2 is used to select the adaptation strategy that pro-

vides most quality for the end user. The results are verified

by visual inspection and by objective quality evaluation us-

ing SPSNR.

The test sequences are Hall Monitor from the MPEG–

4 test sequences, and Highway from the MPEG–7 test se-

quences. Both sequences are in CIF format at 25 Hz; the

length is 300 frames. In our experiments, the following

frame-based adaptation strategies are compared: (a) coded

original sequence; (b) spatial resolution reduction; (c) se-

mantic prefiltering with lowpass-filtering; (d) semantic pre-

filtering with static background. A single resource, i.e. bi-

trate, is considered. In order to assess the performance of

the selection mechanism both for low-quality and for high-

quality video, the bitrate of the client has been set to RUMTS
client =

176 Kbit/s and to RADSL
client = 1000 Kbit/s. The former corre-

sponds to the bandwidth supported by the UMTS multime-

dia protocol. The latter is sometimes used for video stream-

ing over asymmetric digital subscriber lines (ADSL).

The anchor nodes have been calculated for the following

bitrates: 150, 200, 250, 300, 500 and 1000 Kbit/s. In the

rate-distortion diagrams in Fig. 3, each data point represents

one anchor node. A cubic function is further fit to the anchor

nodes of each adaptation strategy.

For Hall monitor, evaluating the value function at Rclient �
176 Kbit/s leads to the following maximal SPSNR: 27.4 dB

for coded original (a); 22.6 dB for spatial resolution reduc-

tion (b); 25.3 dB for semantic prefiltering with lowpass-

filtering (c); 29.4 dB for semantic prefiltering with static

background (d). Thus, according to Eq. (2), the adapta-

tion strategy that provides most perceived quality for the

end user is semantic prefiltering with static background (d).

At Rclient � 1000 Kbit/s, the maximal SPSNR is: 35 dB

for the coded original; 22.8 dB for spatial resolution re-

duction; 27.2 dB for semantic prefiltering with lowpass-

filtering; 35.6 dB for semantic prefiltering with static back-



ground. Thus, the selected adaptation strategy is semantic

prefiltering with static background (d) as well.

For Highway, the resource allocation problem is solved

in a similar way. The adaptation strategies that provide

most quality are found to be semantic prefiltering with sta-

tic background (d) at 176 Kbit/s, and the coded original

sequence (a) at 1000 Kbit/s. These results are next veri-

fied by visual inspection and by objective quality evalua-

tion. The former is done by inspecting sample frames from

sequences coded using different strategies. The latter is

achieved by measuring SPSNR at 176 Kbit/s and at 1000

Kbit/s for each strategy. In Fig. 4, sample frames are shown

for the sequence Hall monitor. At 176 Kbit/s (left column),

the person’s face and the monitor have slightly more de-

tails with the semantic strategies (c) and (d) than with the

non-semantic strategies (a) and (b). Also, the background

is severely corrupted by coding artifacts in the coded orig-

inal (a). This is particularly visible on background edges.

At 1000 Kbit/s (right column), spatial resolution reduction

(b) and lowpass-filtered background (c) have substantially

lower quality than the coded original (a) and static back-

ground (d). On the other hand, it is difficult to perceive

differences between the coded original (a) and static back-

ground (d). In Fig. 5, sample frames are shown for the se-

quence Highway. At 176 Kbit/s, the background of seman-

tic prefiltering with static background (d) has higher quality

than the background of the coded original (a). In partic-

ular, the white painted lines on the road are sharper with

static background (d). At 1000 Kbit/s however, the shadow

cast by the truck stops in an unnatural way in static back-

ground (d). These artificial boundaries result from the ob-

ject segmentation process used by the semantic prefiltering

step. These boundaries are visually annoying and lead to a

lower perceptual quality for static background (d) than for

the coded original (a).

The SPSNR for the two test sequences coded at 176

Kbit/s and at 1000 Kbit/s using different adaptation strate-

gies is given in Table 1. As expected, the highest objective

quality for Hall monitor is achieved by using semantic pre-

filtering with static background at both 176 Kbit/s and 1000

Kbit/s. For Highway, the highest SPSNR obtained by using

semantic prefiltering with static background at 176 Kbit/s,

and by the coded original at 1000 Kbit/s.

4. CONCLUSIONS

We presented a video encoding scheme that uses object seg-

mentation based on motion to increase the perceived qual-

ity of surveillance video as well as to meet the restricted

capabilities of mobile devices. The scheme is used to select

among different adaptation strategies in realistic content de-

livery situations and has been demonstrated on surveillance

test sequences. Both visual inspection and objective quality

BITRATE 176 Kbit/s 1000 Kbit/s

Hall monitor
Coded original 27.5 dB 35.0 dB

Spatial resolution reduction 22.7 dB 22.8 dB

Lowpass-filtered background 25.3 dB 27.2 dB

Static background 29.4 dB 35.6 dB

Highway
Coded original 29.0 dB 35.8 dB

Spatial resolution reduction 23.4 dB 23.5 dB

Lowpass-filtered background 27.7 dB 30.1 dB

Static background 29.8 dB 35.1 dB

Table 1. SPSNR for the sequences Hall monitor and High-
way coded at 176 Kbit/s and at 1000 Kbit/s using different

adaptation strategies.

evaluation results confirm that the adaptive delivery frame-

work described in this paper is capable to determine the

adaptation strategy that leads to the best perceptual video

quality. In fact, the strategies that have been selected for

delivery have also the highest SPSNR in all tested cases.

As part of our future work, we would like to point out that

the discussed method requires quality to be computed ex-

plicitly for each candidate strategy. Such calculations are

time-consuming and need at the moment to be performed

offline. A solution to this problem is quality function predic-
tion, where the quality is estimated for each strategy based

on content features instead of being actually computed.
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Fig. 4. Frame 190 from Hall monitor for different adaptation strategies. The coding bitrates are: (left column) 176 Kbit/s;

(right column) 1000 Kbit/s. The strategies under analysis are: (a) Coded original. (b) Spatial resolution reduction. (c)

Lowpass-filtered background. (d) Static background.
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Fig. 5. Frame 20 from Highway for different adaptation strategies. The coding bitrates are: (left column) 176 Kbit/s; (right

column) 1000 Kbit/s. The strategies under analysis are: (a) Coded original. (b) Spatial resolution reduction. (c) Lowpass-

filtered background. (d) Static background.


