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Abstract— This paper introduces a sparse signal representation
algorithm in redundant dictionaries, called the M-Term Pursuit
(MTP), with an application to image representation and scalable
coding. The MTP algorithm belongs to the framework of the
matching pursuit (MP) [1]; it expands the image into a linear
combination of atoms, selected from a large collection of spatial
atoms. The MTP relies on the concept of dictionary partitioning,
i.e., as splitting the dictionary into � disjoint sub-dictionaries,
each carrying some specific information. Then, it iteratively finds
a � -term approximation, by selecting � atoms at a time, where����� , followed by an orthogonal projection. The approximation
performances of the MTP algorithm have been shown to yield
comparable results with those of the matching pursuit. However,
it presents the advantage of a reduced computational complexity.
For progressive image compression, an embedded quantization
and coding step is applied on the series of obtained atoms based
on the subset approach [2]; to generate a flexible bitstream.
The performances of the MTP image coder are finally shown
to compare favorably against those of the state-of-the-art JPEG-
2000 scheme, in terms of rate-distortion characteristics.

I. INTRODUCTION

Signal representations providing progressive and scalable
image coding schemes have gained more interest recently from
the research community. They provide interesting solutions
to an increasing number of multimedia applications that re-
quire adaptive signal representations, like image manipulation
and transmission over heterogeneous environments such as
Internet. Most of the known scalable image coding schemes
are generally based on the 2-D wavelet transform, employing
a separable 2-D discrete wavelet transform (DWT) [3]–[5].
However, it was demonstrated that the separable wavelet
transform in higher dimensional spaces is not ideally suited
for representing higher dimensional singularities. For instance,
the 2-D DWT fails to capture regular geometric features
(e.g. edges or contours) [6], mainly because it lacks direc-
tionality and anisotropic scaling. Two-dimensional adaptive
image representation has been proposed recently in [7], as an
alternative to wavelet-based methods. This scheme generates
sparse signal expansions in spatial dictionaries, well adapted to
represent natural image features and components. It employs
the Matching Pursuit algorithm [1], to obtain a compact
signal decomposition using a small number of atoms, and thus
allowing for efficient coding at low and medium bit rate. For
instance, it was shown that for low bit rates (e.g. up to 0.4 bpp

for 256x256 image), the compression results are comparable
to the state-of-the-art JPEG-2000 coder, in terms of rate dis-
tortion performance and visual quality. However, the matching
pursuit algorithm is characterized by a higher computational
complexity, because at each iteration, it calculates all the
inner products between the residual image and the atoms.
Motivated by this issue, we proposed a greedy algorithm
for sparsity-constrained optimization problems, called the M-
Term Pursuit (MTP) [8]. The MTP algorithm is a recursive
approach for compact signal representation that provides an
approximation to the residual signal in � atoms selected from
a large dictionary 	 , at each iteration. The proposed image
representation scheme based on the MTP is characterized
by a reduced complexity, while maintaining the compression
performances of MP.

This paper is organized as follows: Section II discusses
the image representation scheme using the MTP algorithm
and dictionary partitioning. The computational complexity
of the algorithm is described in Section III. Approximation
performances are shown in Section IV and compared to those
of MP. Section V presents the scalable image coder and its
compression performances when compared against state-of-
the-art JPEG-2000. Finally, discussions and conclusions are
given in Section VI

II. IMAGE REPRESENTATION

A. Image Dictionary

The spatial dictionary 	 is built following the same metho-
dology as proposed in [7]. 	 is generated by applying affine
transformations on two mother atoms, which are a 2-D Gaus-
sian 
������������� �� �������! #"%$�&'"%( � and its )+*+, partial derivative (a

ridge-like function) 
�-�.�/�%�0�1� -� 2 � .3�� -54 )+� �����! " $�& " ( . The
2-D Gaussian is used in order to extract the low frequency
components. Its )�*+, partial derivative is used to capture image
singularities like edges and contours. The affine operator is a
composition of translation, scaling and rotation of the mother
atoms, as follows:6 �! #798 &:7'8 ;=<>8 ; " 8 ?>( 
@� AB C � C - 
D.E �F?  � 4 �HGC � � � 4 �+GC - �%�F� (1)

where E �F? is a rotation matrix of angle I . The coherence [9]J � �KL� of the dictionary 	 , which is related to its redundancy,
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is defined as:J � �KL� ,9MON�QP@RTSU V�U W�X P@R�SY�Z[ V]\^ [ V`_!a 
 Y �O
 ^�b _dc (2)

B. Dictionary Partitioning

The dictionary 	 is partitioned into e disjoint sub-
dictionaries 	gf . Each sub-dictionary 	hf consists of all func-
tions 
+i , jD� A �:) , whose center, .� G ��� G � defined in equation 1,
belongs to a region klf . In our method, an image of size�m'no��mqpr� is divided into non-overlapping rectangular blocks
of size sm'nutu��mqpqtF� , where each block is associated to a regionkvf and thus to a sub-dictionary 	hf . This class of partitioning,
also called space-partitioning and denoted by wyx�z	{� , insures
that the coherence between atoms in different regions shall be
small, except for atoms lying near the border of the regionsk f ’s or those having a large support. The atoms centered near
the border of a given region k f generally have a support
extending to other regions, though they are regarded to belong
to kvf .
C. The MTP Decomposition

In a dictionary partition w x .	o� composed of e ( e|�~}T3 )
sub-dictionaries according to the previous description, the
MTP algorithm decomposes the image into a finite number of
spatial atoms, iteratively as described by Algorithm 1. At each
iteration � , the algorithm performs two steps: (i) the selection
step, and (ii) the projection step. During the selection step, all
the inner products between each atom in 	 and the residual
image mT��.�/�%�0� are calculated. Then K � atoms are selected, at
most one is selected from each sub-dictionary 	�f , (i) according
to the threshold parameter � , (ii) and by imposing that the
coherence in the collection of the selected atoms � V does
not exceed J/� (or simply  J � �KL�>��K���� J�� ) following the
non-decreasing order for their inner product magnitudes, i.e._das� � m��O
 Y b _ in Algorithm 1. The second step consists in an
orthogonal projection ��� � �=m of m����������� onto the span of the
atoms indexed in � .

A formal description of the algorithm is given in Algo-
rithm 1. The error �=m 4 C�� �'- for the obtained approximation

CH�
is upper-bounded. This bound is derived by following the steps
of the proof in [8], Theorem 1, and by knowing that at iteration� all the K � atoms in � V have inner product �0� satisfying_ �0� _�� ���9���q� , where the vector � is  a�� �qm��O
 Y b ����� [T� . Now,
by letting � V ��.�0����� [ V , we have �9� V � -- � �K � � - �q�9��� -� .

So the upper-bound after � iterations is given by Theorem 1:
Theorem 1: Let w�z	o� be a partition of 	 and m be any

signal. Fix a threshold � s.t,

����A�   Ar¡ J � .K � 4 A �K � � for �o� A �=¢=¢q¢D�'� (3)

Suppose that � V exists with K � � _ � V _ , and that the MTP
returns an approximation

C �
. Then the approximation error is

bounded by:

�'m 4 C � � -- �£�'mF� -- �¤� W �¦¥ A 4
� - .K � � - �Ar¡ J � .K � 4 A ��§ � (4)

Algorithm 1 The MTP Image Decomposition Algorithm.
INPUT:

The image m , the number of iterations � , the threshold� and J/� .
OUTPUT:

The approximation
C0�

and residual � � m .PROCEDURE
1. Initialize the residual signal � G m]�¨m and the approxi-
mation

C G �£© , the set of atoms � V �«ª , and the iteration
number ��� A .2. For ¬u� A to e

Find 
 Y� �®RT¯>°�±%²H³ Y [ x  _!a�� � � � mH�%
 Y b _If _das� � � � mH�%
 Y� b _0� �´±%²0³ Y [ x _!a�� � � � m��O
 Y b _Then � VLµ � V{¶]· 
 Y��¸
3. Discard 
 Y from � V if its coherence  J � �KL�>��K��´¹ J��
in � V , following the non-decreasing order of as� � � � mH�%
 Y b _ .4. Determine the orthogonal projection � � � � � � m onto the
span of � V , compute the approximation and the residual:C � µ C � � � ¡ � � � � � � m� � m µ � � � � m 4 � � � � � � m
5. Increment � , empty � V ( � V �ºª ), and go to step 2 if�@�»� .

where
�

is related to the dictionary.

III. COMPUTATIONAL COMPLEXITY

The computational complexity of the MTP during an it-
eration � in any dictionary 	 is ¼{�½@¾ ¡ K �q¿ � . The first
term comes from performing ½ inner products between
each atom in 	 and the residual � �=m , each requiring ¾
operations. Whereas the second term is due to the projec-
tion operation � � � � m . The orthogonal projection, which is�À� � �=m��ÂÁ XÄÃ* W �DÅ * 
 Y�Æ , is achieved by solving a linear
system of equations. Since ��� � �qm minimizes the error � � �=m 4Á XÄÃ* W �FÅ * 
 Y�Æ � -- over all ( Å * ) for ÇÈ� A ¢q¢=¢OK � , the calculation
of the coefficients ( Å * ) requires to solve the following linear
system. For any 
 YÊÉgË � V ,

as� � mH�%
 Y É b � X Ã\* W � Å * a 
 Y�Æ �%
 Y É b c (5)

Denote the vectors Ì �  Å * � �9Í * Í XÄÃ and � V � as� �qmH�%
 Y É b � �:ÍDÎ#Í XÄÃ , and the Gram matrix Ï � a 
 Y Æ �%
 Y É b � �:ÍDÎ#Í XÄÃ 8 �9Í * Í XÄÃ . A Conjugate Gradient
method [10] is implemented to solve the linear in Eq. 5, orÏgÌ��Ð� V , since Ï is Hermitian if the atoms are linearly
independent, thus requiring ¼{ ¿ K � � operations where ¿
is a constant. The complexity of the matching pursuit is¼{�½ÈK � ¾F� for the same number of terms.

Figure 1 shows the computational complexity as a function
of the residual error measured in PSNR, of both algorithms
MTP and MP when applied to the Lena image (256x256).
One can see clearly that the gain becomes very significant at
higher PSNR values. This is due to the fact that at this stage of



the approximation, in a single iteration the number of selected
atoms by the MTP tends to the maximum e whereas MP keeps
selecting only one atom per iteration. For instance, at a PSNR
of 28.6, the MP requires almost 400 units in contrast to the
41 units required for the MTP, thus accounting for a speed-
up of 9.68. It is noteworthy that only the complexity of the
approximation is compared since the time required for entropy
encoding is a small fraction of the total coding time.
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Fig. 1. Complexity comparison between MTP and MP algorithms: Time unit
vs PSNR for Lena

IV. MTP APPROXIMATION PERFORMANCE

The MTP algorithm has been applied to the dictionary	 with the partition wlx�z	{� as described in the previous
section. The threshold � is varied over · © c Ñ ��© c Ò ��© cÔÓ ¸ and the
coherence threshold J�Õ is assigned also values from the set· © c © A ��© c © Ò ��© c!A ¸ . In all our experiments the dictionary 	 is
divided into eÖ�×}T3 sub-dictionaries 	 f . Figure 2 shows the
behavior of the error of MTP, measured in terms of the PSNR,
versus the number of atoms compared, against the matching
pursuit algorithm, for different � ’s and J � ’s. It is clear that
the gap between the two algorithms decreases with smaller J �
and larger � because in this case the selected atoms are almost
uncorrelated and have a large energy contribution (defined by� ) during a single iteration. With ���|© cÔÓ and J/� �|© c © A the
MTP performs almost as well as the MP.

An interesting relationship between the cardinality of � V at
each iteration and the values of the � and J � for the Lena
image (256x256) is displayed in Figure 3. The number of
selected atoms increases along the pursuit; this is due to the
fact that during the first iterations, most of the selected atoms
correspond to the smooth regions present in the image, or the
low-frequency part of the signal, which tend to have a support
expanding over different regions k¦f . Hence, these atoms with
overlapping supports are characterized by somehow a large
coherence. And by imposing a small coherence threshold Ju�
on the atoms of � V tends to reduce its cardinality. On the other
hand, when iterations run on, the number of selected atoms
per iteration stabilizes mainly because these atoms are chosen
to represent edges, which are localized, and thus these atoms
are almost decorrelated. So their selection restriction comes
principally from the fixed threshold � . A direct consequence
of this observation is that the complexity gain of the MTP
over MP, which is defined mainly by the cardinality of � V ,
becomes significant after few iterations.
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Fig. 2. Approximation performance comparison between MP and MTP for
Lena image (256x256)
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Fig. 3. The effect of ß on the number of atoms selected per iteration for
Lena image ( Ø Ù ÚâÜ#Ý Ü#Þ )

V. PROGRESSIVE IMAGE COMPRESSION

An interesting application for compact image representation
is compression and especially progressive compression, which
consists in embedded quantization and coding operations.

A. Embedded Coding

The embedded quantization and coding is performed by
using the subset approach introduced in [2], where the selected
atoms (indexes and coefficients) are initially divided into ã
disjoint subsets Õ f . Each subset contains j f elements. Their
number is dictated by scalability requirements (i.e., the number
of target decoding rates), and represents a trade-off between



stream flexibility, and coding efficiency, that respectively in-
creases and decreases with ã . In each subset, atoms are sorted
according to their spatial positions, that are further run-length
encoded. Other index parameters and quantized coefficients
are encoded with an adaptive arithmetic encoder [11].

B. Rate-Distortion Results

We evaluate the rate-distortion performances of the MTP
based image compression scheme and compare it against
the state-of-the-art image compression standard JPEG-2000.
The standard Lena and Cameraman images are used for
comparison in our experiments. It can be seen on Figure 4 that
the PSNR of MTP image codec is higher than that of JPEG-
2000 by about 0.6 db over the range of low and medium bit
rates for both images, i.e. up to 0.4 bpp.
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Fig. 4. Rate distortion comparison between MTP ( ß1ÚLÜ#Ý áqä�Ø Ù ÚâÜ#Ý Ü#Þ ),and
JPEG-2000

Figure 5 show the visual quality of the MTP-based codec
when applied upon the Lena image. When decoded at a target
bit rate of 0.41 bpp, its PSNR is 32.73. And one can see that
all the edges, contours and prominent features present in the
image have been captured, which gives some smoothness to
the reconstructed image.

VI. DISCUSSIONS AND CONCLUSIONS

We proposed an image representation and coding scheme
that uses the novel MTP algorithm as a decomposition strategy
over redundant visual dictionaries, or a rich collection of visual

(a) Original Lena (b) MTP encoding
Fig. 5. The Lena image (256x256) decoded using the MTP-based codec at
0.41bpp, the PSNR = 32.73

primitives tuned for image features. The main strength of
the MTP algorithm is its reduced complexity by an order of
magnitude when compared to the matching pursuit approach.
Once the image representation is obtained in terms of a finite
sum of visual atoms, image processing and compression tasks
can be applied directly on the individual atoms. For instance,
to achieve scalable image compression these atoms are further
quantized and coded in a progressive fashion based on a subset
approach. The performances of this scheme are favorably
compared to the state-of-the-art image coders such as JPEG-
2000 in terms of rate-distortion characteristics. Moreover, the
flexible bit-stream allows for non-octave spatial scaling, due
to the structure of the dictionary, without resorting to complex
transcoding operations [2]. Future works will be to investigate
other types of dictionary partitioning, such as scale-based or
phase-based partitioning and to compare the algorithm against
other fast matching pursuit-based techniques.
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