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Abstract— Gradient boosting is a machine learning
method, that builds one strong classifier from many
weak classifiers. In this work, an algorithm based on gra-
dient boosting is presented, that detects event-related
potentials in single electroencephalogram (EEG) trials.
The algorithm is used to detect the P300 in the human
EEG and to build a brain-computer interface (BCI),
specifically a spelling device. Important features of
the method described here are its high classification
accuracy and its conceptual simplicity.

The algorithm was tested with datasets recorded
in our lab and one benchmark dataset from the BCI
Competition 2003. The number of correctly inferred
symbols with the P300 speller paradigm varied between
90% and 100%. In particular, all of the inferred symbols
were correct for the BCI competition dataset.

Keywords— Boosting, Brain-Computer Interface,
EEG, P300, Ordinary Least Squares

I. Introduction

The P300 is a characteristic waveform in the human
EEG, occurring as a response to rare task-relevant stimuli
in a series of task-irrelevant stimuli. The classical oddball
paradigm is usually used to evoke the P300: two categories
of stimuli are presented to a subject in random order,
one of the categories occurs only rarely and subjects
are instructed to determine to which category a stimulus
belongs.

L. A. Farwell and E. Donchin were the first to use the
oddball paradigm to build a BCI [1]. In their approach, a
6x6 matrix of symbols is presented to the user and rows
and columns of the matrix are flashed in random order.
Subjects can select a symbol from the matrix, by counting
the number of times it flashes. Each time the desired
character flashes, a P300 is elicited and can be detected
by an appropriate algorithm.

In this paper, we describe a simple, yet powerful method
to detect the P300 from single EEG trials and use it to
build a P300 based spelling device. We employ gradient
boosting in conjunction with ordinary least squares regres-
sion (OLS), to build a P300 detector.

Gradient boosting with OLS is an interesting alternative
to state of the art algorithms for P300 detection (for exam-
ple [5], [6], [7]) because it has the following characteristics:

• The algorithm builds linear classification rules in a
parsimonious way. Thus only a small number of op-

erations is necessary to apply the classifier to new
data and realtime classification of single EEG trials
is feasible. In addition the classification rules can be
easily interpreted, i.e. it is very easy to derive from the
classification rule which samples and which channels
are important for detection of a P300.

• In terms of classification accuracy, the method pre-
sented here compares favorably to the state of the
art. On the P300 dataset from the BCI Competition
2003, gradient boosting has a slight advantage over
the results of the competition winners (see Sec. V).

• Sophisticated optimization algorithms, like those used
for support vector machines or for independent com-
ponent analysis are not necessary for the implemen-
tation of the method presented here. This makes the
algorithm simple to implement, to use, and to extend.

The layout of the rest of the paper is as follows: In Sec. II
we describe the experimental paradigm used for this work,
the subjects and the preprocessing of the data. In Sec. III
the boosting algorithm is described in detail. In Sec. IV,
it is explained how the output of the classifier is used to
infer the symbol a subject selected. Results are presented
in Sec. V. Sec. VI draws the conclusion of this work.

II. Subjects and Methods

A. Subjects.
One male subject who had a complete cervical spinal

cord injury (C3) 19 years before the recordings (subject
S1) and one healthy male subject (subject S2) participated
in the experiments. Subjects had previous experience with
BCIs and were of age 36, and 28 years, respectively.

B. Experimental Paradigm.
A setup similar to that described in [1] was used to

record and to label the data. A 6 × 6 matrix containing
the letters of the alphabet and the numbers 1-9 was
presented to the subjects on a laptop screen. Rows and
columns of the matrix were flashed randomly for 100ms
with a 100ms pause between flashes. Flashes were block-
randomized, i.e. after 12 flashes each row and column was
flashed exactly one time.

In each trial, subjects were instructed, to count how
often a given symbol was flashed in the matrix. The
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symbols subjects had to count were prescribed by the
operator and displayed on the bottom of the screen. The
number of flashes per trial was randomly chosen to be
either 9× 12, 10× 12, or 11× 12. To monitor performance
of the subjects, there was a short break after each trial and
subjects were asked to report their counting-result to the
operator.

Two datasets were recorded from each of the subjects
on different days. In the first session subjects were asked
to spell the french words ”lac,” ”nuage,” ”montagne,”
and ”soleil.” In the second session subjects had to spell
the words ”fromage,” ”chocolat,” ”pain,” and ”vin.”

C. Data acquisition and preprocessing.

Data was recorded from channels Fp1, Fp2, AF3, AF4,
F7, F3, Fz, F4, F8, FC1, FC5, FC6, FC2, T7, C3, Cz, C4,
T8, CP1, CP5, CP6, CP2, P7, P3, Pz, P4, P8, PO3, PO4,
O1, Oz, O2 with a Biosemi Active 2 system at 2048Hz.
Epochs starting from the onset of a flash and lasting for
1s were extracted from the data. Slow drifts in the data
were removed by least squares fitting of a linear function
to each channel and subtracting it from the data. The
data was then re-referenced to the average of channels
O1, Oz, O2, lowpass filtered between 0 and 9 Hz with
a 7th order Butterworth filter, and downsampled to 128
Hz. The channels used for re-referencing and channels T7,
T8 were not used for further computations, since in the
datasets recorded for this work, they did not carry relevant
information for the detection of P300s.

D. Artifact rejection

To eliminate artifacts, first the absolute values of the
samples of each epoch were computed. Then, from each
epoch the maximum absolute value was chosen to represent
the epoch. These values were then sorted in descending
order. Epochs represented by the first 5% of the values,
i.e. epochs with abnormally large maximal values were
rejected.

III. Boosting Ordinary Least Squares

Boosting was employed, to compute from training data a
function that detects P300s from single EEG trials. In par-
ticular, gradient boosting was used to stepwise maximize
the Bernoulli log-likelihood of a logistic regression model.
Stepwise maximization of the Bernoulli log-likelihood was
originally described in [3], [4] with regression trees [2] as
weak learning algorithm. Here ordinary least squares re-
gression was used as weak learner. This choice is motivated
by the following facts:

• Using OLS we obtain a discriminating function F that
is easy to understand and to analyze: it is simply a
linear combination of EEG samples.

• Building regression trees is computationally expen-
sive, compared to OLS. The time required for training
a classifier is thus drastically reduced, using OLS.

• Preliminary tests indicated, that on very noisy
datasets regression trees might have a slight advantage
over OLS in terms of generalization error. For typical
EEG signal-to-noise ratios however, OLS performs
better than regression trees.

Let us now describe gradient boosting with OLS in
detail. We denote the ensemble of classifiers after step
m by Fm, training data by X = {xi ∈ R

K , i = 1 . . .N},
and corresponding class labels by Y = {yi ∈ {0, 1}, i =
1 . . .N}. Furthermore K = C×S is the number of features,
with C the number of EEG channels and S the number of
samples in one epoch. The logistic regression model then
reads:

pm(yi = 1|xi) =
eFm(xi)

eFm(xi) + e−Fm(xi)
. (1)

The Bernoulli log-likelihood of Fm, given the training data,
can be expressed as:

L(Fm; X, Y ) =

log

(
N∏

i=1

pm(yi = 1|xi)yipm(yi = 0|xi)1−yi

)
. (2)

The likelihood is maximized by setting F0 := 0 and
successively adding weak classifiers fm to F0:

Fm = Fm−1 + fm. (3)

To obtain a weak classifier at step m, gradient descent
is used. At each xi, the first derivative of the likelihood-
function with respect to F is computed:

ỹi =
[
∂L(F (xi))

∂F (xi)

]
F=Fm−1

(4)

= 2(yi − pm(yi = 1|xi)). (5)

After computation of the gradient, the f that best fits the
gradient in a least squares sense is selected:

fm = arg min
f

N∑
i=1

(ỹi − f(xi))2. (6)

We use weak classifiers that have a C-dimensional vector
of regression coefficients w and a time index t as parame-
ters. The output of a weak classifier is the projection of the
vector xi(t) of EEG samples at time t onto the regression
coefficients:

f(xi;w, t) = w�xi(t). (7)

For each t ∈ 1 . . . S a w(t) is computed by least squares
fitting the xi(t) to ỹi. Then the pair (wm(tm), tm) that
minimizes the error in Eq. 6 is chosen as parameters for
the weak learner:

fm(xi) = f(xi;wm(tm), tm). (8)

Now the importance γm of the weak classifier in the
ensemble (or equivalently the size of the step in direction



1. p0(yi = 1|xi) = 0.5, ∀i

2. F0(xi) = 0, ∀i

3. For m = 1 to M do
a) ỹi = 2(yi − pm−1(yi = 1|xi)), ∀i

b)fm = arg minf

∑N
i=1(ỹi − f(xi))2

c) γ = argmaxγ L(Fm−1 + γfm)
d) Fm = Fm−1 + εγfm

e) pm(yi = 1|xi) = eFm(xi)

eFm(xi)+e−Fm(xi)
, ∀i

Endfor
Fig. 1. Pseudocode for the gradient boosting algorithm.

fm) is determined such that 1:

γm = arg max
γ

L(Fm−1 + γfm; X, Y ). (9)

To improve the generalization performance of the boosting
algorithm, γm is shrinked to a small value through multi-
plication with a small ε at each step (as in [4]):

Fm = Fm−1 + εγmfm (10)

The shrinkage strategy makes the gradient boosting proce-
dure less greedy and the danger of taking large steps that
can lead to a F with large �2 norm is reduced.

After updating F , a new gradient is computed and a
new f is added to F . This procedure is repeated until
a certain number of iterations M is reached. Since the
learning algorithm will overfit if we choose M too large
or underfit if we choose M too small, we need to find
an optimal M . To this end, we run the algorithm in a
cross-validation loop with M ∈ 1 . . .Mmax and afterwards
choose the M that gives the smallest average error. The
pseudocode for setting up a classifier with M iterations
can be found in Fig. 1.

IV. Processing the classifier output

Once a classifier is trained with data from one session, it
can be used, to infer the symbols a user was concentrating
on in a new session. To do this, the outputs from the
classifier are simply added up for each symbol. More
specifically, after 12 flashes there are 2 EEG epochs for
each symbol in the matrix (one row epoch and one column
epoch). The results from the classifier for these epochs are
added up.

Since the output of the classifier is an estimate of
the probability that an epoch contains a P300, this cor-
responds to computing the expected number of P300s
for each symbol. The symbol with the largest expected
number of P300s is then chosen to be the symbol the user
concentrated on.

1This is easy to solve computationally, since L is a concave func-
tion.

V. Results

We tested the algorithm with the datasets from Sec.
II and with the P300 dataset from the BCI Competition
2003. In all experiments the maximal number of iterations
of the boosting algorithm Mmax was set to 200, the optimal
M was determined in a 30×10 cross-validation loop, and
ε was set to 0.05.

A. Datasets recorded for this work

To measure how good the algorithm described in this
work generalizes, we trained it on data from the first (the
second) session and applied the resulting classifier to the
data of the second (the first) session. Artifact rejection was
only applied to training sets, but not to test sets. From the
data remaining after artifact rejection all P300 epochs and
an equal number of randomly chosen epochs not containing
a P300 were used to set up classifiers.

Out of 128 × 27 = 3456 features the algorithm selected
540 features for subject S1, session 1, and 351 features
for session 2. For subject S2, 891 features were selected for
session 1 and 1215 features for session 2. On average about
22% of all features were selected.

Fig. 2 shows the accuracy obtained during the cross-
validation loop with data from session 1 for all subjects
(graphs for session 2 look similar and are omitted here).
As can be seen, the gradient boosting algorithm converges
to an optimal solution and then slowly starts to overfit.

In Fig. 3 we plotted the percentage of wrongly pre-
dicted symbols vs. the number of repetitions in the P300
paradigm (one repetition is a block of 12 consecutive
flashes). Both subjects reach an error-rate of 10% or less,
after 9 repetitions.

B. BCI Competition 2003 dataset

To compare our work with the state of the art in P300
detection the P300 dataset from the BCI competition 2003
was used. This dataset consists of three sessions, the first
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Fig. 2. Percentage of correctly classified trials for different values of
M .



two sessions were available in the competition together
with class labels indicating when a P300 occurred in the
data. Class labels for the third session were not available
during the competition and the goal was to predict as
accurately as possible the words the subject spelled during
the third session.

We trained a classifier using data from the first two
sessions and used the classifier to infer the symbols of the
third session. Preprocessing was similar to the approach
described in Sec. II: the data were lowpass filtered with
a 7th order Butterworth filter between 0 and 9Hz, the
temporal mean was removed, and the data were down-
sampled to 120Hz. Only channels Fz, Cz, Pz, Oz, C3,
C4, P3, P4, PO7, and PO8 were used (as in [6]). The
symbols computed by our algorithm and the corresponding
error rate are shown in Tab. I. As one can see the results
are much better than those obtained with the datasets
recorded for this work. This might be explained with the
size of the training sets: about 880 epochs were used to set
up classifiers from the datasets recorded for this work, 2520
epochs were used to set up a classifier from the competition
training set.

The winners of the BCI competition 2003 [5], [6], [7]
needed between 5 and 11 repetitions to infer all symbols
correctly. The algorithm presented here needs only 4 repe-
titions. On the BCI competition dataset gradient boosting
with OLS thus has a slight advantage compared to state
of the art algorithms. However, extensive tests on more
datasets would be necessary, to decide which algorithm
really performs best.

VI. Conclusion and Future Work

The previous section showed, that the simple linear
approach approach to P300 detection presented in this
work, is suited for use in a BCI and gives results that
compare favorably to the state of the art. The algorithm
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of repetitions.

TABLE I

Number of repetitions, inferred symbols, and error rate for

the BCI Competition 2003 dataset.

Rep. Inferred Symbols Err.

1. fond moot bam jie cahe nunc zmbot x567 29%
2. food goot bam pie cahe tuna zmaot x567 19%
3. food moot ham pie cake tcna zsgon 4567 10%
4. food moot ham pie cake tuna zygot 4567 0%

automatically selects samples, that are important for the
detection of event-related potentials. It should thus be
relatively easy to apply the method not only to P300 de-
tection but also to other types of event-related potentials,
for example readiness potentials.

To further improve the classification performance, it
can be interesting to have a closer look at the errors the
algorithm is making. One can see in Tab. I, that wrongly
chosen symbols often are neighbors of the correct symbol in
the matrix. Possible reasons for this problem are described
in [8], however a solution still has to be found.

Another possibility for improvement, is to use more
features of the P300. Whereas at the moment only the most
salient features are used, namely the time-locked responses
in the delta and theta-band, there are also features in other
bands, for example event-related desynchronization in the
alpha-band.
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