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Abstract — We consider the problem of a sensor net-

work tracking a moving target that exhibits a Markov

model of mobility. The sensor nodes have adjustable

power levels and the precision of the measurement of

the target location depends on both the relative dis-

tance from the target to the measuring sensor, and

on the sensing power level used by that sensor. An

important issue in sensor networks is the power effi-

ciency, thus we consider the optimization of a family

of cost functions that include both the accuracy of a

measurement and the power used to do that measure-

ment. We define our problem as a control policy op-

timization for a partially observed Markov chain. For

such scenarios, we derive optimal power control poli-

cies based only on partial observations of the target

location, and propose hand-off techniques based on

this policies.

I. Introduction

Target tracking and power control

Consider a sensor network that tracks a moving target. We
assume that each sensor1 has an adjustable power level for
sensing, and the accuracy of the target position measurement,
performed by the measuring sensor, is determined by both the
relative distance from the target to the sensor, and by the
power used by the respective node for sensing.

As battery power is the scarce resource in sensor networks,
an important goal is to minimize the sensor power consump-
tion, while maintaining a good measurement accuracy. This
task can be done by an adequate power adjustment mecha-
nism implemented by the sensor, and dependent on the target
mobility model. The power control policy should accommo-
date several concurrent effects, namely, in most scenarios (a)
for a fixed power level, the accuracy of a measurement de-
creases with the increase of the distance, and (b) for a fixed
desired accuracy, the necessary power level increases with the
increase of the distance. Thus, for the design of power con-
trol policies, we will consider optimizations of cost functions
that include both these effects, in terms of measurement ac-
curacy and power consumption. Also, in practical scenarios,
the power control policy has to rely only on limited informa-
tion available locally at the sensor node about the state of
the target, as a result of previous measurements. Moreover,
in order to minimize the battery consumption, sensors should
limit communication with the neighboring sensors.

An important task in this scenario is the hand-off opera-
tion. In a typical sensor network, sensor nodes can commu-
nicate with other nodes in their transmission range. We con-
sider a proximity relevance scenario, where the importance of

1We use sensor, node, sensor node interchangeably along this
paper.

having an accurate localization of the target increases when
the target is closer to the sensor. For instance, this scenario
has practical importance when sensors represent guarded sites,
and targets represent unwanted intruders. Hand-off is defined
as the decision taken by a sensor tracking the target to del-
egate the tracking task to another sensor. This decision is
usually taken if the target becomes closer to another sensor
than to the sensor that currently does the measurement. Then
the tracking is handed-off from the former sensor to the lat-
ter. Note that this is not a trivial task, since (a) the sensor
currently doing the measurement has only partial information
about the target position, and (b) the other sensors are in an
idle, low-power state, when they are not assigned the sensing
task.

The goal of this work is to derive a power control policy
based only on partial observations locally available at the
measuring sensors about the state of the target, by consid-
ering jointly the power consumption and accuracy of mea-
surement. We also propose a decentralized hand-off technique
based on this optimization. To the best of our knowledge, the
novelty of our work stands in jointly addressing control and
sensing in tracking targets by sensor networks, under uncer-
tainty conditions.

Related work

Target tracking in sensor networks is addressed in [2], [4],
[5]. Our model for the target tracking system is inspired by the
elegant framework provided in [6]. In that work, the authors
use the notion of belief state as a means of quantifying the use-
fulness of communication among sensors for tracking a mobile
target under location incertitudes. In our model, we also use
this belief state (also called information state) to derive an op-
timal control power policy for a sensor tracking a Markovian
moving source; this control policy influences in turn the infor-
mation state. On the lines of [6], we also provide criteria for
soft hand-off in a sensor network implementing our proposed
power control.

Main contributions and organization of the paper

We define a system model for tracking a Markov target by
relying only on partial observations. We consider the optimiza-
tion of a family of cost functions that include both the accu-
racy of the observations and the power level used. For various
relevant costs, we derive optimal policies for the power ad-
justment control, based on the theory of Markov chains under
partial observations. Finally, we propose hand-off techniques
based on such control policies.

In Section II we present a one-dimensional system model
of tracking a target under partial observations. We introduce
a family of cost functions that consider both the accuracy of
measurement and the power consumption, and derive an opti-
mal control policy to optimize these cost functions. In particu-
lar, we consider the case of a normally distributed probability
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Fig. 1: One-dimensional moving target with a Markov behavior.

to model the accuracy of the location observation, and we
present a fast approximated algorithm for the optimal con-
trol policy. In Section III we use our insights from the one-
dimensional case to derive an approximated policy for target
tracking on a two-dimensional grid. Further, in Section IV, we
propose hand-off techniques based on these control policies,
and we analyze these algorithms by numerical simulations in
Section V. We conclude with Section VI.

II. System Model

Consider that the target moves following a discrete-time
Markov chain behavior. This means that the position xk of
the target (the state) at time k depends only on its position
xk−1 at time k − 1, the successive positions of the target thus
forming a Markov chain. We will begin by considering the sim-
plified case of a single sensor tracking a target that moves in a
one-dimensional space (on a line). In Section III we generalize
this setting to a two-dimensional state space.

Without loss of generality, we consider that the positions
of the target are constrained to the uniform grid on the line,
that is the set of positions L = {l0 = 0, l1 = ∆, . . . , li =
i∆, . . . , lN = N∆}, with ∆ a positive real number. The mea-
suring sensor is placed in position l0 = 0 (see Figure 1). Note
that this setting can be generalized in a straightforward man-
ner to the case when the sensor is placed at an arbitrary po-
sition li on the line, or to the case of a non-uniform grid.

One-dimensional model

System dynamics
Consider the decisions taken by a sensor on the power level

used at a certain time moment k. The sensor takes a decision
uk, which is modelled as the power level used by the sensor at
time k. By using the power level uk for the measurement, the
sensor observes a position dk of the target. In practical situa-
tions, the observed distance dk is not the actual state xk ∈ L
of the target, but rather a random variable with probability
distribution centered on the state xk, that models the uncer-
tainty of estimation: the closer dk is to xk and the larger the
sensing power uk, the better the estimation. In other words,
when observing the state xk, the sensor can only get a partial
observation dk about the state. Using this partial observation
dk, as well as all the previous observations2 dk−1 and all the
previous controls uk−1, the sensor can make an estimation on
where the target will most probably be at time k+1. Note that
the evolution of the actual state of the target is independent
of the control applied at the sensor (see Figure 2).

The goal is to find an optimal policy of control decisions uk

that the sensor has to take, in order to estimate (on average)
the state as precisely as possible, given a constraint on the
consumed energy.

Without loss of generality, assume the power level takes
values in [0, umax]. To summarize, our system is described at
time k by the following parameters:

2For any sequence zk, we will denote zk−1 = {z0, z1, . . . , zk−1}.

Markov Chain 

Controller

u d π

u

x observation

k k

k

k+1

k+1

Estimator

Fig. 2: The one-dimensional control system.

• xk ∈ L – actual position (but unknown) of the target
at time k: the hidden chain state.

• uk ∈ [0, umax] – controllable power level of the sensor:
the control applied to the chain at moment k.

• dk ∈ L – random variable with probability distribution
p(dk|uk, xk): the partial observation about the actual
state of the chain.

Also, the following information is assumed a-priori known:

• The transition probability matrix P of the hidden
Markov chain xk: Pi,j = p(xk = i|xk−1 = j) (these
transitions are assumed independent of the sensor in-
stantaneous power uk, as in most applications the mere
act of sensing does not influence the sensed data). For
instance, in a practical setting, P contains information
about the terrain in which the target evolves: an up-hill
slope in a given direction can be modelled as a lower
transition probability in that direction.

• The initial probability density vector over the states
[p(x0 = li)]

N
i=1 (in practice, this can be initialized as

the uniform probability distribution over the states).

• The probability of occurrence of an observation d (prob-
ability vector), when the target is in state x and the
sensor control is u: p(d|x, u), which is a distribution
with mass centered on the real state of the target. As
the power level u increases and the distance between the
sensor and the real (but unknown) state decreases, this
distribution has typically its mass more concentrated
around the real state x (see Figure 3).

Based on these assumptions, we can express the dynamics
of the system as:

xk+1 = f(xk)

dk = g(xk, uk),

for k ≥ 0. Here, f and g are the state transition and respec-
tively observation functions of the hidden Markov chain, as
defined above in this section (see Figure 2).

We will define later in this section meaningful cost func-
tions c(x, u) of the control and state. For a given cost func-
tion, the optimal control for such systems can be fully char-
acterized by a quantity called the information state [3]. A
good choice for this quantity is the conditional probabil-
ity πk of the state given all past controls and observations,
[πk(i)]Ni=0 = [p(xk = li|uk−1, dk−1)]Ni=0. This information state
defines the probability of the target being in state li at time
k, given the sequence of controls uk−1 and observations dk−1.

Moreover, we derive a recursion formula, implemented by
the estimator box in Figure 2, that allows updating the infor-
mation state πk+1 by using only πk and the newly acquired
uk, dk:

πk+1 =
1

C
πkD(uk, dk)P (1)
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is small.

where C is a normalization factor which ensures that the re-
sult is a probability vector, and D(uk, dk) = diag({p(dk|xk =
li, uk)}N

i=0) is a diagonal matrix. For the sake of space we omit
the derivation of this update formula.

We describe now a family of cost functions which include
the meaningful constraints of our model: the information
about the state of the target and the level of power consumed
by the sensor.

Cost function

The choice of the cost function is application dependent. In
this section we will particularize our model to a set of specific
practically motivated parameters, however the same method-
ology for finding optimal control policies remains valid if var-
ious cost functions are considered.

In our model, we assume the observations a sensor gets
about the target position are random, and given by normal
probability densities, centered on the actual state xk, and with
variance dependent on the power used by the sensor and on
the distance between the target and the sensor. Namely, the
variance of the probability density function of dk decreases
with the increase of uk and when the target is close to the
sensor (see Figure 3). We thus consider a tradeoff3: our goal
is to reduce the uncertainty of the observation, and thus the
entropy p(dk|xk, uk), while using a small power level uk:

ϕ(u, x) = C1F1(H (p(d|x, u))) + C2F2(u) (2)

The first term of this sum, F1(·), is a function of the en-
tropy of the observation, and the second term F2(·) is a func-
tion of the power used to make this observation, where both
F1(·), F2(·) are monotonically increasing functions, and C1, C2

are weighting constants. Note that the cost function (2) is sim-
ilar in form to that used in [3], however in our cost function
we consider the dependence of both optimization terms on
the sensor power level, which in our model is a controllable
quantity.

The cost function definition (2) is valid for any probabil-
ity distribution of the observation; for the sake of simplicity,
we will limit our further discussion to normally distributed
random variables. For a discrete normal random variable, the

3Note that minimization of only the entropy implies continu-
ously using high power levels, which might be highly inefficient in
a practical scenario.
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Markov chain.

entropy term in (2) can be written as [1]:

H (p(d|x, u)) ≈ 1

2
log(2πe · σ2(x, u)) − log ∆, (3)

where the approximation tends to be exact as the quantization
step ∆ of the state space tends to zero; we make the realistic
assumption that the variance σ2(x, u) of the distribution is
directly proportional to the distance between the sensor and
the estimated state, and inversely proportional to the used
power:

σ2(x, u) = α
h1(x)

h2(u)
(4)

where h1(·), h2(·) are also monotonically increasing functions,
and α a weighting constant.

Optimal control

The goal is to find a policy uk that minimizes∑∞
k=1 ϕ(uk, xk). The optimal control (implemented by the

controller box in Figure 2) depends only on the information
state [3], however the optimization is rather complicated in
practice, since the information state space is defined over the
space of all probability vectors. Instead, we will use the infor-
mation state to compute an estimate x̄k+1 of the target state
at time k+1, and use this estimated state (instead of the infor-
mation state) to determine an approximate controller. Given
the instantaneous πk, an estimation of the current state can
be efficiently computed:

x̄k =
N∑

i=0

liπk(i) (5)

Using x̄k as estimated state, we approximate the optimal
controller by minimizing the instantaneous cost (2):

uk = arg min
u

ϕ(u, x̄k). (6)

Note that this approximation is sub-optimal, however it
provides a simple and fast means for the computation of an
intuitively good approximation of the optimal controller.

III. Two-Dimensional Model

We consider now a Markovian target moving in a two-
dimensional state space (x, y), namely the position (xk, yk) of
the target at time k depends only on its position (xk−1, yk−1)
at time k − 1. Thus, the development in the previous section
can be generalized in a straightforward manner to the two-
dimensional case. Analogously to the previous section, we can
compute an estimated distance from the estimated position
vector and use it to compute an optimal control for the two-
dimensional Markov chain (see Figure 4).

However, a practical implementation of this system is com-
putationally difficult. The states now form an N × N two-
dimensional array, which in the one-dimensional formulation
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is equivalent to a vector of length N2. Moreover, expressing
the transition matrix P is no longer trivial since certain states
can be close neighbors in the two-dimensional state space, but
no longer in the expanded one-dimensional version. Instead,
we consider yet another approximation, namely our approach
is separate the two dimensions of the problem into disjoint
Markov chains. As we will see later by numerical simulations,
for loosely coupled Markov transitions on the two dimensions,
this approximation yields to good results, while being compu-
tationally simple.

Thus, we consider the target movement of being composed
of two independent Markov chains, each governing the move-
ment of the target along one dimension. Each coordinate is
estimated at time k + 1 from the decisions uk, the observa-
tions dxk and dyk on the axes x and y respectively, and the
estimated one-dimensional states at time k. We then use these
coordinates to compute an estimated state distance, which in
turn is used to compute the next control (see Figure 5). Fi-
nally, the resulting control is applied to both Markov chains. It
is clear that in most cases this control will not be optimal for
any of the two chains. Figure 6 (left) shows the nature of the
error made in the state space. The distance on which the power
decision are based is always larger than any of the coordinates,
which means that the sensor will always use more power than
the optimum. In other words, the entropy term in the cost
function is favored, on the expense of the used power. One
intuitively better alternative is shown in Figure 6 (right): the
estimation error can be reduced by rather computing the con-
trol as a function of max(x, y), instead of both estimated co-
ordinates. This procedure ensures that at least one of the two
chains has a well fit controller. In any case, this optimization
only refers to the separated model: in reality the target moves
in a two-dimensional space and at a distance from the sensor
that is best approximated by the two-dimensional euclidean
distance, not by max(x, y).

To summarize, our algorithm for tracking a two-
dimensional moving target is as follows:

1. Get an observation dxk and an observation dyk.

2. Estimate the coordinates xk+1 and yk+1 using the newly
acquired observations and all the previous information
(contained in the information state vector πk). Until
this point the two coordinates are estimated in parallel
and independently.

3. Based on these two new coordinate estimates, compute
the distance of the estimated state or compute the max-
imum coordinate.

4. Feed the resulting value in the controller, which yields
the control uk+1 that minimizes the cost function for
the given input.

(1,2)

Err1(x)

Err1(y) (1,2)

Err2(x)
(0,0)

sensor
(0,0)

sensor

Fig. 6: (left:) Err1(x) and Err1(y) are the errors made when we

use the distance between the sensor (0,0) and the estimated state

(1,2). (right:) Err2(x) is the error made when we use max(x, y):

at least one of the two Markov Chains has a well fit controller.

5. Apply this control uk to observe both Markov chains,
and repeat.

IV. Hand-Off Algorithms

We suppose that there is always just one sensor tracking the
target using the model we described earlier. At each time k
there is thus one active tracking sensor. The other sensors in
the network are idle sensors. The aim of the hand-off algo-
rithm is to determine the tracking sensor so that the power
consumption is minimized and the precision is maximized,
i.e. the hand-off algorithm needs to find the sensor for which
the cost function is minimized, among all sensors in the net-
work.

Based on the model we used for the two-dimensional case,
we propose a simple (partly randomized) algorithm for hand-
off in a network of target-tracking sensors. The algorithm we
present is sub-optimal and involves several approximations,
but our numerical simulations in Section V show that it yields
good results.

Partly randomized hand-off algorithm

• At every time interval T each idle sensor performs a
sensing operation using a small fixed amount of the
available power.

• Each sensor gets a rough estimate of the two coordinates
which are drawn from Gaussian distributions, with vari-
ance depending on the roughly observed state, and on
the used low power level.

• The roughly observed state distances at every idle sen-
sor are compared to the distance of the current state
estimate at the tracking sensor (which, as opposed to
all the idle sensors, used the Markovianity of the sys-
tem to refine the observation).

• If one of the idle sensors reports a smaller roughly ob-
served distance than the one the tracking sensor has
currently estimated, and if this rough observation was
made using less power than the optimal power level de-
termined at the tracking sensor, then this sensor is prob-
ably closer to the estimated state and thus it can get an
observation using less power.

• The sensor selected by this criterion will be the track-
ing sensor for the next period T when the hand-off al-
gorithm is run anew.



Fig. 7: One-dimensional system: tracking result with p = 0.33.

Soft hand-off criterion

The above outlined algorithm demands that all of the sen-
sors in the network have some means to communicate among
themselves, as a hand-off between any two sensors is possi-
ble. A more realistic assumption would be that any sensor
can at least communicate with some of its neighboring nodes,
and thus only hand-offs between neighboring nodes can be
achieved in the network (soft hand-offs).

We expect that the above algorithm can achieve soft hand-
offs if the scheduling interval (wake-up rate of the idle sensors)
is appropriately chosen. We also expect that this interval T
should depend on the structure of the Markov chain’s transi-
tion probability matrix P , which in turn depends on the speed
and direction of the target, and on the sensor density. The in-
vestigation of such a soft hand-off criterion is a subject of our
current research.

V. Numerical Simulations

One-dimensional model

This subsection presents the results using the system out-
lined in Section II. Figure 7 shows the estimated target evolu-
tion, as compared to the actual evolution to which the sensor
has no access, for a target moving in a N = 4-state space. The
target can thus take 4 equidistant discrete positions on a
line. The movement is governed by a birth-and-death Markov
process with p = 0.33 and there is a single tracking sensor at
the origin of the state space.

The cost function we chose for the simulations in this sec-
tion is given by:

ϕsim(uk, x̄k) =
1

2
log2

( x̄k

u

)2

+
u5

x̄3
k

(7)

This cost function was set empirically. It is derived from

(2), (3) and (4) by setting σ = x̄k
u

and F2(·) = u5

x̄3
k
. These

settings are to be considered as representatives of a family of
valid choices, which depend largely on the characteristics of
the modelled sensor network.
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Fig. 8: One-dimensional system: MSE for different birth-and-death

probabilities.

The range of the sensor is modeled to be equal to 3-state
space units: if the estimated distance is equal or greater than
3, the sensor will use maximum power, and can not improve
the precision of the observation any further.

Under these settings, Figure 8 shows the MSE, in state
space units, between the estimated position and the actual
target position. We show the results for different probabilities
of birth-and-death probability p. Note that, in practice, the
higher p can be interpreted as higher target speed. For each
p, the values shown are averages over 100 realizations of the
4-state Markov Chain, each realization being over 100 state
transitions. The tracking sensor is always located at the origin
of the state space.

It can be seen that the tracking results are rather robust,
with a slight decrease in precision as the target changes states
faster.

Two-dimensional model with handoff

This subsection presents the results for a two-dimensional
tracking system, as outlined in Section III. The settings for
these simulations are similar to those outlined in the above
subsection with the following differences and additions:

• The movement along each coordinate is governed by a
Markov chain with N = 16 equidistant states.

• For each realization, the probability of birth-and-death
p is the same for both of the independent Markov chains.

• 10 sensors are uniformly distributed in the 16x16 state
space. The tracking sensor is determined using the
handoff algorithm presented in Section V. The algo-
rithm is run every T = 10 time units.

Under these settings, Figure 9 shows the MSE, in state
space units, between the estimated position in the two-
dimensional space and the actual (hidden) target position. For
each p, the values shown are averages over 100 realizations of
the two 16-state Markov chains, each realization being over
100 state transitions.

Finally, Figure 10 shows the controls taken during one of
the realizations used to get the above averages (p = 0.33). The
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probabilities.

values shown are the normalized power levels as decided by the
controller. At each time, only the tracking sensor contributes
to the power consumption attributed to the sensing task. Note
that the average power consumption in the network is equal
to a single sensor using 70 to 75% of its power continuously.

VI. Conclusions and Future Work

In this paper we have addressed the problem of tracking a
moving target using a sensor network, both in a one and two
dimensional state space. We have set up our model under re-
alistic assumptions, from which we derived an optimal control
policy, in terms of power usage and tracking reliability, that
can be implemented efficiently at the sensor level. The model
is robustly validated using our numerical simulations.

Our current research efforts are focused on the analysis
of stability and robustness of the control policies correspond-
ing to the family of cost functions we proposed. An impor-
tant subject of further investigation is the study of the inter-
dependence among system parameters such as sensor density,
target speed and hand-off interval, and their influence on the
optimal control policies.
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Fig. 10: Two-dimensional model: power usage in the network. The

deep decreases in consumption at times 10 and 90 for example are

attributed to the hand-off algorithm: a sensor that uses a high

amount of power passes the sensing task to a sensor that is expected

to be closer to the target and which in turn makes higher precision

observations using less power.
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