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Abstract

We propose an information theoretic model that unifies a wide range of existing information theoretic signal

processing algorithms in a compact mathematical framework. It is mainly based on stochastic processes, Markov chains

and error probabilities. The proposed framework will allow us to discuss revealing analogies and differences between

several well-known algorithms and to propose interesting extensions resulting directly from our formalism. We will then

describe how the theory can be applied to the rapidly emerging field of multi-modal signal processing: we will show how

our framework can be efficiently used for multi-modal medical image processing and for joint analysis of multi-media

sequences (audio and video).

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The signal processing community has proved to
be increasingly reliant upon information theoretic
concepts to develop algorithms for a wide variety
of important problems ranging e.g. from audio-
visual signal processing to medical imaging [1–10].
When comparing the proposed algorithms, two
e front matter r 2005 Elsevier B.V. All rights reserve
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facts are particularly surprising. First, the range of
practical problems which are solved with the
fundamentally very compact mathematical con-
cepts of information theory seems to be very broad
and unrelated. For example, mutual information
has been very successful in multi-modal medical
image registration, but has also been successfully
used for information theoretic classification and
feature extraction. The second striking fact is that
the mathematical expressions governing the final
algorithms seem not to be very related, even
though the employed fundamental concepts were
identical. For instance in [1], feature extraction by
d.
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maximization of mutual information has been
derived from the general concept of error prob-
abilities for Markov chains. On the other hand,
information theoretic image registration algo-
rithms with all their different optimization objec-
tives [6–9] never made reference to error
probabilities or Markov chains.
With this paper, we pursue two main goals. On

the one hand, we propose a common mathematical
framework for a large class of information
theoretic signal processing algorithms. Concretely,
we will show that stochastic processes and their
error probabilities are very fundamental concepts
underlying a large class of very distinct algorithms,
such as physiological quantization or overlap-
invariant multi modal medical image registration.
Their mathematical exploitation allows deep in-
sight into information theoretic signal processing
and widely opens the door towards very interesting
generalizations of existing algorithms.
The second main aim of this paper consists of

using the developed framework to construct
promising algorithms for the emerging field of
multi-modal signal processing. It will lead to a
multi-modal framework closely related to infor-
mation theoretic feature extraction/selection. This
important relationship will indicate how we can
unify to a large extent multi-modal medical
image processing, e.g. multi-channel segmentation
and image registration, and extend information
theoretic registration to features other than
image intensities. The framework is not at all
restricted to medical images though and we will
illustrate this by applying it to multi-media
sequences as well.
The paper is structured as follows: first, we

recall some information theoretic concepts which
build our mathematical framework (Section 2). In
order to familiarize the reader with the mathe-
matics and indicate the important role of error
probability in information theoretic signal proces-
sing, we will hereafter re-derive known algorithms
of quantization (Section 3.1) and classification
(Section 3.2). In Section 4 we transpose our
framework to multi-modal signal processing which
allows to derive optimization objective functions
used in multi-modal medical image processing and
to study their mathematical relationships. A short
section on genetic optimization (Section 5) will
build the bridge to the final section where we
show some interesting results in medical imaging
(Section 6.1) and multi-media signal processing
(Section 6.2). The discussion section (Section 7)
will wrap up the results, before the conclusion in
Section 8.
2. Some information theoretic concepts

We want to start by recalling some important
information theoretic concepts which will be used
extensively hereafter. All the presented notions are
well known and widely used in several fields of
information technology and computer science. We
would also like to emphasize that the random
variables throughout this work refer to discrete
random variables, except when they are concretely
specified to be continuous.

2.1. Stochastic process and error probability

A stochastic process is an indexed sequence of
random variables (RV) with, in general, arbitrary
mutual dependencies [11]. For the specific case of
information theoretic signal processing, we con-
struct the following stochastic process.
Let us define the discrete random variables X

and X est on the same set of possible outcomes OX :
Let us also define N discrete random variables Y i

on OY i
for i ¼ f1; . . . ;Ng resp. We consider the

following stochastic process:

X ! Y 1 ! � � � ! Y N ! X est ! E, (1)

where, in general, the transition probabilities are
conditioned on all the previous states. E is a binary
RV defined on OE ¼ f0; 1g and is 1 if the
estimation X est of X from Y is considered as an
error. This stochastic process will be the funda-
mental model of our following developments and
examples.
An important characteristic of Eq. (1) is the

probability of error Pe ¼ PðE ¼ 1Þ; which equals
the expectation mE of E:

Pe ¼ mE ¼ 1 � PðE ¼ 1Þ þ 0 � PðE ¼ 0Þ. (2)
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We can use the conditional probabilities defin-
ing the transitions of Eq. (1) to write

Pe ¼
X

x2OX

X
y12OY1

� � �
X

yN2OYN

X
xest2OX

PðE ¼ 1jxest; yN ; . . . ; y1;xÞ

� PðxestjyN ; . . . ; y1; xÞ � . . . � Pðy1jxÞ � PðxÞ. ð3Þ

If any of the random variables is defined over a
continuous interval and is therefore given by a
continuous probability density function, the cor-
responding sum in Eq. (3) has to be replaced by an
integral.
The error probability Pe has a close connection

to the well-known concept of signal distortion [11].
While signal distortion is defined in a deterministic
way, error probability however, is, a probabilistic
quantity. In Section 3.1 we will show with two
examples that the probabilistic concept of Eq. (3)
incorporates to a large extent the deterministic
theory of distortion.
It is important to note that so far no hypothesis

about the specific transition probabilities has been
set. This is in particular the case for the error
variable E: the fact that for example xestax does not
necessarily imply that E ¼ 1 with probability one.
This generality might look quite artificial and
impractical, but we want to show that specific
hypotheses about the different steps in the stochastic
process of Eq. (1), including the last one, will result
in well-known mathematical formulas of quantiza-
tion, classification and multi-modal signal proces-
sing. Nevertheless, a complete study of Eq. (1) would
go beyond the scope of this paper. Therefore, we
want to restrict ourselves to the case where all the
transition probabilities of Eq. (1) besides the last one
are Markovian [11]:

PðxestjyN ; . . . ; y1;xÞ ¼ PðxestjyNÞ,

PðyN jyN�1; . . . ; y1;xÞ ¼ PðyN jyN�1Þ,

..

.

Pðy1jxÞ ¼ Pðy1jxÞ. (4)

This implies that the stochastic process X !

Y 1 ! �� � ! Y N ! X est forms a Markov chain.
The Markovian condition is obviously not fulfilled
for the last transition probability, as the error
probability has at least to depend on the input to
the chain x and on its final output xest: In what
follows, we suppose that the Markovian conditions
of Eq. (4) are fulfilled, so that the error probability
Pe becomes

Pe ¼
X

x2OX

X
y12OY1

� � �
X

yN2OYN

X
xest2OX

PðE ¼ 1jxest; yN ; . . . ; y1;xÞ � PðxestjyNÞ

� PðxestjyN�1Þ � . . . � Pðy1jxÞ � PðxÞ. ð5Þ

Furthermore, we will consider the special case that
PðE ¼ 1jxest; yN ; . . . ; y1;xÞ of Eq. (5) equals just
PðE ¼ 1jxest;xÞ; i.e. the error probability of the
chain only depends on the relationship between the
input value and its estimated value after having gone
through the chain.

2.2. Fano’s inequality and the data processing

inequality

The model proposed in the previous section and,
in particular, the exact evaluation of the error
probability (Eq. (5)) requires knowledge of all the
transition probabilities. Sometimes though we
might not have access to the data to such a deep
extent. We still want to at least approximately
estimate the error probability Pe ¼ PðE ¼ 1Þ:
When the process X ! Y 1 ! � � � ! Y N ! X est

fulfills the Markovian conditions of Eq. (4) and
when the probability of error is given by Pe ¼

PrðX estaX Þ; we can use an expression known as
Fano’s inequality [12] to compute a lower bound
of Pe as a function of the input RV X and the last
transmission RV Y N only.
Let us state Fano’s inequality, as will be used

extensively later in this paper. Let A ! B ! Aest

be a Markov chain. A (and therefore Aest) has to
be finitely (or countably infinitely) valued. Then
we have a lower bound on the error probability
Pe ¼ PrðAestaAÞ such that the output of the chain,
Aest; is not the input A:

PeX
HðAjBÞ � HðPeÞ

log jOA � 1j
X

HðAjBÞ � 1

log jOAj

¼
HðAÞ � IðA;BÞ � 1

log jOAj
, ð6Þ



ARTICLE IN PRESS

T. Butz, J.-P. Thiran / Signal Processing 85 (2005) 875–902878
where jOAj is the number of elements in the range
of A, and Hð:Þ stands for the Shannon entropy of
one RV and I(.,.) for the Shannon mutual
information between a pair of RVs. Therefore,
for the case of the Markov chain X ! Y 1 !

� � � ! Y N ! X est as introduced in Section 2.1 and
under the assumption that Pe ¼ PrðX estaX Þ; this
lower bound is written as

PeX
HðX jY N Þ � 1

log jOX j
¼

HðX Þ � IðX ;Y N Þ � 1

log jOX j
. (7)

There is another very useful inequality which is
applicable within the previously mentioned as-
sumptions: the data-processing inequality [11]
which states that if A ! B ! C is a Markov
chain, we have

IðA;BÞXIðA;CÞ,

IðB;CÞXIðA;CÞ. (8)

The combination of these expressions allows to
build a large number of resulting inequalities, such
as

PeX
HðX Þ � IðX ;Y NÞ � 1

log jOX j

X
HðX Þ � IðX ;Y N�1Þ � 1

log jOX j

X
HðX Þ � IðX ;Y N�2Þ � 1

log jOX j
X � � � ,

PeX
HðX Þ � IðX ;Y NÞ � 1

log jOX j

X
HðX Þ � IðY 1;Y N Þ � 1

log jOX j

X
HðX Þ � IðY 2;Y N Þ � 1

log jOX j
X � � � ,

..

.
ð9Þ

Under the specified assumptions, these expres-
sions allow one to focus on a specific transition
within the Markov chain X ! Y 1 ! � � � !

Y N ! X est: This is of great interest if we have
particular knowledge about one of the transitions
in the chain or if some other transition is not
sufficiently understood.
The concept of bounding the error probability

Pe is by far not exploited with the presented
inequalities. There are other entropies, especially
Renyi entropy [13], that can be more appropriate
for specific applications [14]. Furthermore, the
estimation of an upper bound could be very
interesting [14], or specific assumptions on the
RVs can result in very interesting specialized
expressions. All this is almost a research domain
on its own closely related to rate-distortion theory.
In this paper we restrict ourselves to the theory
described so far in this section.
3. From error probability to optimization objective

This section will clarify how the general concepts
of Section 2 can be tailored for specific problems in
the field of signal/information processing. Ob-
viously, it is not possible in this paper to study all
existing algorithms of information processing with-
in the context of stochastic processes. Furthermore,
we do not pretend that all existing algorithms in
this field necessarily fit this model. Nevertheless, we
want to show that quite a large class of existing
solutions can be derived and interpreted within the
mathematical concept of error probability. This
allows a deep insight into several algorithms and
outlines quite revealing analogies.
Another aim is to familiarize the reader with the

presented formalism, so that the derived theory of
Section 4 for multi-modal signals will be easily
understood. Therefore, we first study several
algorithms of distortion theory (Section 3.1) and
classification (Section 3.2), before transposing the
mathematics into the field of multi-modal signals
(Section 4).
3.1. From error probability to distortion

We will first outline some important analogies
between the error probability of Eq. (5) and the
classical distortion [11,15] defined as follows:
Let us have two signal sequences S and Sest of

equal length n. The distortion DðS;SestÞ between
these two sequences is defined by

DðS;SestÞ ¼
1

n

Xn

i¼1

dðsi; s
est
i Þ, (10)
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where d(.,.) is called the distortion measure
between the samples si and sesti :
Let us show that the error probability of Eq. (5)

is in fact a probabilistic extension of the classical
distortion of Eq. (10). To do this we show under
which conditions the error probability of Eq. (5)
becomes identical to the distortion defined above.
Let us write down the most basic stochastic
process of Eq. (1) and its resulting error prob-
ability Pe:

X ! X est ! E,

Pe ¼
X

x2OX

X
xest2OX

PðE ¼ 1jxest; xÞ � Pðx;xestÞ, (11)

where X, resp. X est; is an RV on the set OX

modeling probabilistically the initial sequence S,
resp. Sest; and can be estimated from the sequence
by density estimation (e.g. histogramming [16,17]).
Therefore the set OX has to span the whole range
of possible values of S and Sest: Furthermore,
ðX ;X estÞ is a bi-variate RV on O2

X that models the
co-occurrences of the samples s and sest in the bi-
variate sequence ðS;SestÞ: Its probabilities can also
be estimated by density estimation. In the case of
joint histogramming, we have

Pðx; xestÞ ¼
1

n

Xn

i¼1

dsi ;x � dsest
i
;xest ,

8ðx;xestÞ 2 O2
X , ð12Þ

where da;b is the Kronecker delta defined by

da;b ¼
1 if a ¼ b;

0 otherwise:

�
By analogy to Eq. (10), we can identify PðE ¼

1jxest;xÞ with a distortion measure dðx;xestÞ; so
that PðE ¼ 1jxest;xÞ ¼ a � dðx;xestÞ: a is a constant
to ensure that 0pPðE ¼ 1jxest; xÞp1;8ðx; xestÞ 2

O2
X : Thereafter, we can rewrite the error prob-

ability of Eq. (11) as follows:

Pe ¼
X

x2OX

X
xest2OX

PðE ¼ 1jxest;xÞ � Pðx;xestÞ

¼
1

n

X
x2OX

X
xest2OX

Xn

i¼1

PðE ¼ 1jxest;xÞ � dsi ;x

� dsest
i
;xest
¼
1

n

X
x2OX

X
xest2OX

Xn

i¼1

PðE ¼ 1jsesti ; siÞ

¼
a � jOX j

2

n

Xn

i¼1

dðsi; s
est
i Þ ð13Þ

which is up to the constant a � jOX j
2; identical to

the classical definition of distortion (Eq. (10)).

3.1.1. Hamming distortion

Let us look at two well-known distortion
measures, starting with the Hamming distortion.
Let us assume that whenever xestax; we observe
an error with probability 1. Then we can re-write
the conditional error probability as

PðE ¼ 1jxest;xÞ ¼ a � dðx;xestÞ ¼ 1� dxest ;x. (14)

In this case the condition that 0pPðE ¼

1jxest;xÞp1 is naturally fulfilled for all ðx;xestÞ 2

O2
X ; and a can arbitrarily be set to 1. In this specific

case the error probability Pe is the probability that
xestax (Pe ¼ PrðxestaxÞ).

3.1.2. Squared error distortion

Let us now assume that the probability that the
estimate xest is considered different from x

increases quadratically with the distance jxest �

xj: Then we can write

PðE ¼ 1jxest;xÞ ¼ a � dðx;xestÞ ¼ a � jx � xestj2,

(15)

which leads to the squared error distortion [18]. In
this case, a cannot just be set to 1 to fulfill the
necessary probability conditions. But as we want
to minimize Eq. (13), where a is just a constant, its
specific value has no influence on the optimization
results and can therefore be chosen arbitrarily
positive.
There are mainly two very interesting and

practical advantages of identifying classical dis-
tortion as a probability of error:


 First of all, perceptual studies normally do not
come up with a deterministic model of apparent
distortion. This means that a given distortion
in a signal (e.g. image) might be perceived
differently by two different observers. So
quite naturally, subjective studies will result in
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differences within the test population. The
presented approach to distortion can incorpo-
rate such differences quite easily in a probabil-
istic way.


 The proposed approach can easily be extended
to multi-channel distortion models. We have
simply to identify S and Sest as vector sequences
which contain not only the scalars s and sest of
the sequences but also other information such as
e.g. local variation, contrast, etc. The proposed
probabilistic interpretation of distortion can
naturally combine different channels in a very
general probabilistic manner, and can also
consider channel interactions probabilistically
(independent channel assumption is not re-
quired).

For a nice summary about perceptual distortion
models, the reader is referred to [19].

3.2. From error probability to classification error

Information theoretic concepts are widely used
in classification. In this section, we want to study
two particularly interesting and complementary
approaches of classification which can both be
interpreted within the presented framework of
stochastic processes and error probabilities. First,
we will show that the information theoretic
clustering algorithm as presented in [10] is easily
interpreted as minimization of an error probabil-
ity. And second, we will recall information
theoretic feature extraction for classification [1]
as it will be closely related to the proposed
methodology for multi-modal signal processing.

3.2.1. Information theoretic clustering

Let us consider the data set S of n data samples,
each containing a feature vector or scalar yi 2

OY ¼ Rd ; where d is the dimension of the feature
vectors yi: Y is the corresponding continuous
random variable over OY ¼ Rd and can be
estimated by density estimation from the data S

[16]. A classification algorithm aims to classify the
n samples into nc classes, each being labeled by one
of the symbols of Oc ¼ f1; . . . ; nc; tg: The class label
t is associated to the feature subspace OS̄

Y � Rd ;
for which no feature vector of the samples S exist:
OS̄
Y ¼ fy 2 Rd : )si 2 S with feature vector yg:

Let us finally call c 2 C a class label map over
the data, S.
The random variable over Oc associated to the

resulting classes (clusters) is denoted C. Further-
more, we consider a random variable different
from C, called Cest; also over Oc; which models an
estimation of the initial random variable C. Very
naturally, we can build the following stochastic
process:

C ! Y ! Cest ! E, (16)

where E is an error random variable being 1
whenever the estimated value cest is considered a
wrong estimate of the initial class label c and 0
otherwise. We now consider the special case where
all the transition probabilities of Eq. (16), besides
the last one, are first order Markov transitions.
Furthermore, the final transition depends only on
the initial input to the process c and on its final
output cest: Therefore, the whole process is defined
by the following probability densities:

PðC ¼ cÞ,

PðY ¼ yjC ¼ cÞ,

PðCest ¼ cjY ¼ y;C ¼ cÞ ¼ PðCest ¼ cjY ¼ yÞ,

PðE ¼ 1jC ¼ c;Y ¼ y;Cest ¼ cestÞ

¼ PðE ¼ 1jC ¼ c;Cest ¼ cestÞ,

PðE ¼ 0jC ¼ c;Y ¼ y;Cest ¼ cestÞ

¼ PðE ¼ 0jC ¼ c;Cest ¼ cestÞ. ð17Þ

A key quantity of the stochastic process of Eq.
(16) is the probability of error Pe of the transmis-
sion from C to Cest: If all the transitions of Eq. (17)
are known, this quantity can be calculated
explicitly as follows:

Pe ¼
X

cest2Oc

Z
OY

X
c2Oc

PðE ¼ 1jcest; cÞ

� PðcestjyÞ � PðyjcÞ � PðcÞdy. ð18Þ

So far, we do not know the transition prob-
abilities of Eq. (17). But it is possible to estimate
them in a non-supervised manner and non-para-
metrically for any given classification label map c

on the data S. Using Gaussian kernel density
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estimation [20,21], we get

PðyjcÞ ¼
X

y12Sc

1

jScj
Gðy � y1;s

2
1Þ (19)

and

PðcestjyÞ ¼

k �
P

y22Scest

1

jy2j
Gðy � y2;s

2
2Þ

if cestat;R
OS̄

Y

Gðy � y2;s
2
2Þdy2 if cest ¼ t;

8>>>><>>>>:
(20)

where Gðx � a; bÞ denotes a Gaussian kernel with
expectation a and variance b. jyj is the number of
samples with feature vector y (thereforeP

y2OY
jyj ¼ n) and k is a normalization constant.

Sc is the subset of S that contains the samples
classified to class c and jScj is the cardinality of Sc:
We have therefore

P
c2Oc

jScj ¼ n and jStj ¼ 0:
Eq. (20) justifies the introduction of the class-label
t which simply ensures that we include the tails of
the Gaussian kernels in the probability estima-
tions, i.e. that

P
c2Oc

PðcjyÞ ¼ 1: In addition to
this, the probability PðcÞ is given by the fraction
jScj=n: Obviously, we could have used transition
probabilities other than the one of Eq. (19). For
example, we could have used kernels other
than the Gaussian kernels for the estimation,
or we could assume that the probability density
of the random variable Cest equals the density
of C. In this particular case, the transition
probabilities PðyjcÞ and PðcestjyÞ would have to
fulfill the Bayes theorem. In the general case of
Markov chains, this is not necessary though, and
as we will show, the transitions of Eqs. (19) and
(20) result in particularly nice mathematical
expressions.
Using the transitions of Eqs. (19) and (20), the

equation for the error probability Pe (Eq. (18)) can
be re-written for any given class label map c on the
data sequence S as follows:

Pejc ¼
X
c2Oc

Z
OY

X
cest2Oc

PðE ¼ 1jcest; cÞ

� PðcestjyÞ � PðyjcÞ � PðcÞdy
¼ k �
X

c2Ocnftg

X
cest2Ocnftg

jScj

n
� PðE ¼ 1jcest; cÞ

�

Z
OY

X
y12Sc

1

jScj
Gðy � y1;s

2
1Þ

 !

�
X

y22Scest

1

jy2j
Gðy � y2; s

2
2Þ

0@ 1Ady

þ
X

c2Ocnftg

jScj

n
� PðE ¼ 1jt; cÞ

�

Z
OY

X
y12Sc

1

jScj
Gðy � y1;s

2
1Þ

 !

�

Z
OS̄

Y

Gðy � y2;s
2
2Þdy2

 !
dy

¼ k �
X

c2Ocnftg

X
cest2Ocnftg

PðE ¼ 1jcest; cÞ

n

�
X

y12Sc

X
y22Scest

1

jy2j
� Gðy1 � y2;s

2
1 þ s22Þ

þ
X

c2Ocnftg

PðE ¼ 1jt; cÞ

n

�
X

y12Sc

Z
OS̄

Y

Gðy1 � y2;s
2
1 þ s22Þdy2. ð21Þ

For the general case, s21 and s22 can be chosen
independently. In what follows, we have chosen to
restrict ourselves to s21 ¼ s22 ¼ s2: The general-
ization for different variances is straightforward
though. Let us also assume that PðE ¼ 1jt; cÞ ¼
1;8c 2 Ocnftg: Then, by identification of the
different terms, we can re-write Eq. (21) as

Pejc ¼
X

c2Ocnftg

X
cest2Ocnftg

PðE ¼ 1jcest; cÞ � Pðcest; cÞ

þ PðtÞ, ð22Þ

where

Pðcest; cÞ

¼
k

n

X
y12Sc

X
y22Scest

1

jy2j
� Gðy1 � y2; 2s

2Þ ð23Þ

is the probability that a data sample of S with
initial class label c is transmitted to an output label
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cest and where

PðtÞ ¼
1

n

X
y12S

Z
OS̄

Y

Gðy1 � y2; 2s
2Þdy2 (24)

is the probability that any sample gets transmitted
into the out-layer OS̄

Y : It is important to note that
PðtÞ depends on the data to be classified but is
independent of the specific class label map c and
therefore stays constant during any classification
scheme that can be constructed with the derived
formalism.
The probabilities of Eq. (23) can nicely be

written in a matrix of size nc � nc; noted G; and
representing a theoretical, non-parametrically de-
termined transmission matrix. Its trace, TrðGÞ;
gives the probability that cest; the output from the
stochastic process of Eq. (16), equals its input c,
and the sum of the off-diagonal elements plus PðtÞ

gives the probability that the output is a different
class label than the input: PðcacestÞ ¼

P
iaj Gij þ

PðtÞ ¼ 1� TrðGÞ þ PðtÞ: Furthermore, we have
from the normalization condition of probability
densities that

P
i;j Gij þ PðtÞ ¼ 1:

From an implementation point of view, we can
simply compute the transmission matrix G using
Eq. (23) which can be done very efficiently.
Hereafter, we can calculate the value for PðtÞ by
PðtÞ ¼ 1�

P
i;j Gij in order to avoid the problem of

integrating over the infinite tails of the Gaussian
kernels. But it is important to note that for a given
set of samples S, PðtÞ is just a constant, and
therefore its estimation is, in general, not even
necessary.
There is one entity we have not specified yet. It is

the probability of the final transition of Eq. (16),
PðE ¼ 1jcest; cÞ: As we will show, it is a very
interesting quantity whose choice can depend on
the particular application and allows the incor-
poration of some prior information about the data
S to be classified.
A very important quantity of information

theory is called distortion. The distortion accounts
for the fact that not all errors in information
transmission, image compression, etc., are of equal
importance. For example in image compression, a
large error in the pixel values is much more
significant than small ones. This resulted in
squared error and other distortion measures which
are in comparison to Hamming distortion more
sensitive to ‘‘large’’ than to ‘‘small’’ errors.
In our case, we can associate very similar

properties to this term PðE ¼ 1jcest; cÞ of
Eq. (22), which can be interpreted as a discrete
distortion measure for misclassification. In ana-
logy to the transmission probabilities of Eq. (23),
we can re-write PðE ¼ 1jcest; cÞ as a matrix of size
nc � nc; noted L: Because of the close analogy to
information theoretic distortion, we call L the
‘‘distortion matrix’’ of classification. Furthermore,
we can define a matrix eL for the probabilities
PðE ¼ 0jcest; cÞ; whose elements are determined by
the condition that probabilities sum up to 1:
PðE ¼ 1jcest; cÞ þ PðE ¼ 0jcest; cÞ ¼ 1; implying
that eLij ¼ 1� Lij :
In the most general form, L has only to fulfill

the condition 0pLijp1;8ði; jÞ 2 ðOcnftgÞ
2: In prac-

tice though, a suitable choice allows to penalize
more significant classification errors and favor less
significant ones. In particular, it is generally worse
to misclassify elements of relatively small classes,
while the misclassification of one single element of
a large class is less significant. Furthermore, we
normally consider that we do not commit an error
when the output cest equals the input to the
stochastic process c. Therefore, the diagonal
elements of L are 0: Lii ¼ 0;8i 2 f1; . . . ; ncg: These
considerations resulted in the following definition
for L:

Lij ¼ g � ð1� dijÞ
X

c2Oc=ftg

1

jScj
, (25)

where g is a normalization constant.
The matrix definitions of the transmission

matrix G and of the distortion matrix L result in
a very compact notation for the transmission error
probability Pejc:

Pejc ¼
X

i;j

Lij � Gij þ PðtÞ, (26)

Pējc ¼
X

i;j

eLij � Gij , (27)

where the probability Pējc corresponds to the
probability of correct transmission (or the ‘‘hit
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probability’’) through the stochastic process of Eq.
(16), implying that Pejc þ Pējc ¼ 1:
The classification objective of finding the most

representative label map c of the data S with
respect to the error probability Pejc can therefore
be written compactly by

ĉ ¼ arg min
c2C

Pejc, (28)

which we call the minimum error probability
principle. Equivalently, we can also apply the
maximum hit probability principle

ĉ ¼ arg max
c2C

Pējc. (29)

It is interesting to look at a distortion matrix
other than the one of Eq. (25). Let us consider the
following distortion:

Lij ¼
1� dij

jS1j � jS2j � � � jSnc
j
. (30)

This distortion results in the following expres-
sion for the error probability Pejc:

Pejc ¼
X

c12Oc

X
c22Oc

1� dc1;c2

jS1j � jS2j � � � jSnc
j

�
k

n

X
y12Sc1

X
y22Sc2

1

jy2j
� Gðy1 � y2; 2s

2Þ þ PðtÞ

ð31Þ

¼
X

c12Oc

X
c22Oc

PðE ¼ 1jc1; c2Þ � Pðc1; c2Þ þ PðtÞ

¼
X

c12Oc

X
c22Oc

Lc1c2 � Gc1c2 þ PðtÞ

¼
k

n
�

1

jS1j � jS2j � � � jSnc
j

X
y12S

X
y22S

Mðy1; y2Þ

�
1

jy2j
� Gðy1 � y2; 2s

2Þ þ PðtÞ, ð32Þ

where Mðy1; y2Þ is defined to be 1 if y1 and y2 are
coming from samples with different class labels
and 0 if not. It is easily seen that when the number
of measurements for a given feature value y, jyj;
always equals one, then the expression of Eq. (32)
equals, up to the constants k=n and PðtÞ; exactly
the clustering evaluation function of [10] which
was shown to have a close relationship to
information potential [5] and second-order Renyi
entropy [22].
3.2.2. Information theoretic feature extraction

We now want to shortly recall the basic concept
of information theoretic feature extraction as
presented in [1]. Let us assume that we have a set
S of n class prototypes, each labeled by one of the
class symbols of OC ¼ f1; . . . ; ncg; where nc is again
the number of classes. Furthermore, we have a
multi-dimensional feature vector yi 2 OY asso-
ciated to every sample si within the set S. The
RV modeling probabilistically the classes of the
prototypes is called C and is defined over the set
OC : Its feature space representation, denoted Y, is
defined over OY : Feature extraction aims to
extract the subspace F Y of the initial feature space
Y that is most significant for the specific classifica-
tion task. Formally, we can represent this by the
following stochastic process:

C ! Y ! FY ! Cest ! E. (33)

The initial transition C ! Y can be interpreted
as a feature selection step. The transition Y ! FY

corresponds to feature extraction, where we select
a sub-space FY of Y. Hereafter, we estimate the
class Cest from the final feature representation FY

and evaluate whether the whole transmission
process from C to Cest can be considered as
erroneous.
One approach to select and extract the optimal

features Y and FY for a particular classification
task would be to minimize directly the error
probability Pe of the selected learning prototypes.
This would have the disadvantage, however, that
the optimization would get the most relevant
features with respect to the chosen classification
algorithm ðFY ! CestÞ: We wish to determine
those features for which any ‘‘suitable’’ classifica-
tion algorithm can obtain ‘‘good’’ results. There-
fore, we would need to neglect the classification
step FY ! Cest during the optimization. To do
this, we can profit from Fano’s inequality of
Section 2.2. In the context of the stochastic process
of Eq. (33), this inequality is re-written as

PeX
HðCjF Y Þ � 1

log nc

¼
HðCÞ � IðC;FY Þ � 1

log nc

. (34)

Note that HðCÞ; the entropy of the chosen
prototypes as well as ncð¼ jOC jÞ stays constant, as
the number of classes as well as the initial set of
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samples stay fixed during the optimization. There-
fore, we have to maximize the mutual information
IðC;FY Þ in order to minimize the lower bound on
the error probability Pe; which ensures that a
particular classification algorithm can perform
well.
It is important to note that we estimated a lower

bound of the error probability. Upper bounds
might appear more suited for the described
problem of classification and, in fact, can be
estimated in several cases for a fixed classifier. For
example, if it is known from the beginning that a
maximum likelihood classifier will be employed,
the error probability Pe is upper-bounded by the
conditional entropy HðFY jCÞ: PepHðF Y jCÞ: But
information theoretic feature extraction attempts
to extract those features which are most suited for
the given classification task independently of a
particular classifier.
Next, we would like to introduce information

theoretic multi-modal signal processing by multi-
modal feature extraction. Its close relationship
to feature extraction for classification will be
easily recognized, as we will also use lower error
bounds as optimization objectives. Furthermore,
the same arguments as for feature extraction will
justify the use of a lower bound instead of an
upper bound.
1Sometimes the sampling coordinates are not the same in

both signals. For example, two images of different modality

might have different dimensions and therefore different

numbers of samples. For such cases, we just want to make

reference to interpolators which can build the bridge between

the two respective sequences [23,24].
4. From error probability to multi-modal signal

processing

There are several possibilities to apply the
presented framework to multi-modal signals. We
want to explore one specific approach which we
used extensively in several applications of multi-
modal signal processing. It is based on one very
basic but intuitive hypothesis: a pair of multi-modal

signals originates from the same physical source,
even though the signals might have suffered from

distortions, delays, noise and other artifacts which

hide their common origin. As we will show, the
approach seems to be particularly suited to derive
and compare a large number of existing optimiza-
tion objectives particularly well known in the
multi-modal medical imaging community.
4.1. Multi-modal stochastic processes

First we will outline how we can build Markov
chains from multi-modal signals. The resulting
chains should fulfill the conditions required to
apply the theory of Section 2. In particular, the
conditional error probability PðE ¼ 1j . . .Þ has to
be 1, whenever the output from the chain differs
from the corresponding input (Hamming distor-
tion). We use the fact that multi-modal signals
originate from the same physical reality, even
though the concrete representations of this reality
may be quite different (Fig. 1). We can therefore
expect that there exist features in a couple of multi-
modal signals which reflect this physical corre-
spondence statistically.
Let us consider the example of an audio–video

sequence and assume we know a pair of features
which show a statistical dependence. If now we
take the feature value of one signal at a randomly
chosen time in the sequence and the feature
representation at an arbitrarily chosen second
time in the other signal of different modality, we
should be able to tell if the two measurements are
likely to originate from the same physical reality
i.e. were acquired at the same physical time or not.
In direct analogy, we also want to mention

multi-modal medical images, where the spatial
coordinates of the images represent the physical
correspondence and take over the role of the time
coordinate in audio–video sequences.
A couple of multi-modal signals are initially

given by two signal sequences SX and SY ; both of
length n, and taking on values in the sets OX and
OY ; respectively.1 For instance, a 3D image
contains n ¼ nx � ny � nz samples (or voxels)
showing different intensities or colors. Let us
define a uniform RV O on the set OO ¼ f1; . . . ; ng
labeling the samples in SX and SY ; this RV is
used to model the fact that we will consider a
random selection of pairs of samples in the
sequences SX and SY : Therefore, for 3D images
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Fig. 1. Markov chains can be built from a pair of multi-modal signals. The connecting block between a couple of multi-modal signals

(the transition probabilities for FX ! F est
Y and FY ! F est

X ) is obtained by joint probability estimation.
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we have Pðo ¼ ði; j; kÞÞ ¼ 1=n ¼ 1=ðnx � ny � nzÞ;
8o 2 OO (‘‘for all voxels in the image’’). Starting
from the RV O, we can build the following two
Markov chains (see Fig. 1):

O ! X ! F X ! F est
Y ! Y est ! Oest ! E, (35)

O ! Y ! F Y ! F est
X ! X est ! Oest ! E, (36)

where X (resp. Y) models the specific feature values
of the samples in the sequence SX (resp. SY ) as an
RV conditioned on the outcome of the sample
position o. Which sequence features are exactly
considered represents a feature selection step. For
example, in an image, for each sample position
generated from the RV O we can consider the
intensity at that position, but also the gradient,
Gabor response, etc. Obviously X and Y can also
model multi-dimensional feature spaces, which
might ask for an additional feature extraction step.
This means we project the measured features into
lower dimensional sub-spaces of X and Y. Such
sub-spaces are again RVs and we denoted them by
FX and F Y in Fig. 1. As the considered features of
both sequences SX and SY originate from the same
sampling label o, we can link the two sequences
through a joint probability estimation [16,17].
When on the average the chosen feature values
f X and f Y of FX and FY reflect maximally the fact
that they originate from the same sampling
position o, then we minimize the error probability
of the Markov chains. Therefore, we want to select
and extract those features FX and F Y from the
initial sequences SX and SY that show as much as
possible of this physical correspondence.
Until now we have constructed a couple of

related Markov chains for general multi-modal
signals. Let us now see what we can say about the
corresponding error probabilities Pe1 ¼

PrðOestaOÞ (Markov chain Eq. (35)) and Pe2 ¼

PrðOestaOÞ (Markov chain Eq. (36)) when we use
Fano’s inequality (Eq. (6)) and the data processing
inequality (Eq. (8)) [25]:

Pe1 ¼ PrðOestaOÞ

X
HðOjY estÞ � HðPe1Þ

logðn � 1Þ

X
HðOjY estÞ � 1

log n

¼
HðOÞ � IðO;Y estÞ � 1

log n
ð37Þ

¼
log n � IðO;Y estÞ � 1

log n
ð38Þ

¼ 1�
IðO;Y estÞ þ 1

log n
ð39Þ

X1�
IðFX ;F

est
Y Þ þ 1

log n
ð40Þ
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and

Pe2 ¼ PrðOestaOÞ

X
HðOjX estÞ � HðPe2Þ

logðn � 1Þ

X
HðOjX estÞ � 1

log n

¼
HðOÞ � IðO;X estÞ � 1

log n
ð41Þ

¼
log n � IðO;X estÞ � 1

log n
ð42Þ

¼ 1�
IðO;X estÞ þ 1

log n
ð43Þ

X1�
IðF Y ;F

est
X Þ þ 1

log n
. ð44Þ

To get Eq. (38) from Eq. (37) (resp. Eq. (42)
from Eq. (41)), we used the fact that O is a uniform
random variable over the set OO ¼ f1; . . . ; ng of n

possible sampling positions in the sequences SX

and SY ; and has therefore entropy of log n: The
last inequality follows directly from the data-
processing inequality for Markov chains [11].
The probability densities of F X and F est

X ; resp.
FY and F est

Y ; are both estimated from the same
data sequences SX ; resp. SY : Therefore, the
estimations of the mutual informations IðF Y ;F

est
X Þ

and IðFX ;F
est
Y Þ are equal, and we can write

IðFY ;F
est
X Þ � IðF X ;F

est
Y Þ � IðFX ;FY Þ: The value

of this mutual information IðFX ;FY Þ is deter-
mined from the joint probability density which is
estimated by non-parametric probability estima-
tion [16,17] from the sequences SX and SY (for
example joint histogramming). From the symme-
try of mutual information, it follows that both
lower bounds are equal, so that minimizing them
simultaneously equals maximizing the mutual
information between the feature representations
FX and F Y of the multi-modal signals.

4.2. Objective functions for multi-modal signal

processing

Using the example of multi-modal medical
image registration, we will show that it is possible
to derive a large class of objective functions of
image registration and to theoretically determine
their relationships and differences. In this respect,
we will show how to derive normalized entropy,
correlation ratio and likelihood directly from
Eqs. (40) and (44). We will also generalize
normalized entropy to the general concept of
feature efficiency for multi-modal signal processing
[26,27].
4.2.1. Feature efficiency

Taking a closer look at Eqs. (40) and (44)
reveals an important danger when simply max-
imizing the mutual information IðF X ;F Y Þ in order
to minimize the lower error bounds of Pe1 and Pe2 :
In order to visualize this danger, let us re-write the
lower bounds in a different way and use the fact
that for any pair of discrete random variables A

and B it can be shown [11] that HðA;BÞXIðA;BÞ
and ðHðAÞ þ HðBÞÞ=2XIðA;BÞ to weaken them:

Pfe1;e2gX1�
IðFX ;FY Þ þ 1

log n

X1�
HðF X ;F Y Þ þ 1

log n
ð45Þ

and

Pfe1;e2gX1�
IðFX ;FY Þ þ 1

log n

X1�
HðF X Þ þ HðF Y Þ þ 2

2 � log n
. ð46Þ

Eqs. (45) and (46) both indicate that the error
bounds can be decreased by increasing the margin-
al entropies HðFX Þ and HðF Y Þ without consider-
ing their mutual relationship (this is equivalent to
maximizing the joint entropy HðF X ;F Y Þ; as we
also have HðFX ;FY ÞXHðFX Þ and HðF X ;F Y ÞX

HðFY Þ). This would result in adding superfluous
information to the feature space RVs F X and FY :
What we really want though is adding selectively
the information that determines the mutual
relationship between the signals while discarding
superfluous information. Mathematically, we want
to find a suitable trade-off between maximizing the
bounds of Eqs. (45) and (46) and minimizing the
bounds of Eqs. (40) and (44). Feature pairs which
carry information that is present in both signals
(large mutual information), but only information
that is present in both signals (low joint entropy),
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are the most adapted features for several multi-
modal signal processing tasks such as for multi-
modal image registration. The described feature
efficiency coefficient is a functional that extracts
these features from multi-modal signal pairs.
For this let us define a feature efficiency

coefficient which measures if a specific pair of
features is efficient in the sense of explaining the
mutual relationship between the two multi-modal
signals while not carrying much superfluous
information. The problem of efficient features in
multi-modal signals is closely related to determin-
ing efficient features for classification. Our pro-
posed coefficient eðA;BÞ for any pair of RVs A and
B (in particular also for the feature space RVs F X

and FY ) is defined as follows:

eðA;BÞ ¼
IðA;BÞ

HðA;BÞ
2 ½0; 1�. (47)

Maximizing eðA;BÞ signifies a trade-off between
minimizing the lower bound of the error prob-
ability by maximizing the mutual information
IðA;BÞ; and also minimizing the joint entropy
HðA;BÞ (resulting in maximizing the weakened
bounds of Eqs. (45) and (46)). Looking for
features that maximize the efficiency coefficient
of Eq. (47) will therefore result in finding features
which are highly related (large mutual informa-
tion) but have not necessarily much information
(marginal entropy).2

Interestingly, there is a functional closely related
to eðA;BÞ that has already been widely used in
multi-modal medical image processing, even
though its derivation was completely different. It
was called normalized entropy NEðA;BÞ [29] and
was derived as an overlap invariant optimization
objective for rigid registration:

NEðA;BÞ ¼
HðAÞ þ HðBÞ

HðA;BÞ

¼ eðA;BÞ þ 1 2 ½1; 2�. ð48Þ

The derivation was specific for image registra-
tion and arose from the problem that mutual
information might increase when images are
moved away from optimal registration when the
2Because of the range ½0; 1� of eðA;BÞ; this functional is

sometimes called ‘‘normalized measure of dependence’’ [28].
marginal entropies increase more than the joint
entropy decreases. This is equivalent to
our mathematically derived problem above, but
for the special case of image registration. Ob-
viously, maximizing NEðA;BÞ of Eq. (48) is
equivalent to maximizing the efficiency coefficient
of Eq. (47).
It is very interesting to note that in the early

years of information theoretic multi-modal signal
processing, joint entropy HðA;BÞ was also an
optimization objective of choice. Interestingly, this
statistic had to be minimized in order to get, for
example, good registration. Looking at the de-
duced error bounds of Eqs. (40), (44) and
particularly (45), one realizes that minimizing joint
entropy does not minimize these error bounds. On
the contrary, it actually maximizes the weakened
bound of Eq. (45) and therefore contradicts error
bound minimization. The result showed very
‘‘efficient’’ features, but with relatively large
error bounds (e.g. mapping a black on a white
image). This results, for example, in disconnecting
the images during the registration process.
We employed the same property in the previous
section but only in combination with error
bound minimization to separate the superfluous
information in the signals from the predictive
information.
These arguments are very general. Nevertheless,

they could have resulted in other definitions for
feature efficiency than Eq. (47), such as

eðA;BÞ ¼
IðA;BÞ

HðAÞ þ HðBÞ
(49)

or

eðA;BÞ ¼
IðA;BÞ2=3

HðA;BÞ1=3
. (50)

While the first example is a variant equivalent to
Eq. (47), as it simply uses the weakened inequality
of Eq. (46) instead of Eq. (45), the second is an
extension of eðA;BÞ; that can be generalized as
follows:

ekðA;BÞ ¼
IðA;BÞk

HðA;BÞ1�k
; k 2 ½0; 1�. (51)
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We call an element of this class of functions
the feature efficiency coefficient of order k. The
three cases of k ¼ 0; 1 and 1

2
represent the

following:


 k ¼ 0: We put emphasis entirely on the feature
efficiency without caring about the resulting
lower bound of the error probabilities (minimiz-
ing joint entropy). The algorithm will always
converge toward signal sequence representations
where the same single feature value is assigned to
all the samples.



Fig. 2. The sketch puts the efficiency coefficients for different

orders k into a quantitative relationship. The contradictory

optimization objectives of minimizing the lower error bound,

but maximizing the feature efficiency, have to be combined in a

suitable way for a given problem. In the case of medical images,
k ¼ 1: We put emphasis on minimizing the
lower error bound without caring about the
efficiency of the features (maximizing mutual
information). The algorithm would con-
verge toward signal representations where
all samples get assigned a different feature
value.
k ¼ 1
2
has been shown to work well, as it results into an


optimization functional equivalent to normalized entropy.
k ¼ 1
2
: We put equal emphasis on minimizing the

lower error bound and on feature efficiency
(maximizing normalized entropy).

The two objectives of, on the one hand,
minimizing the lower error bounds and, on the
other hand, maximizing feature efficiency are
therefore contradictory. The user has to choose
an appropriate order k of Eq. (51) for a given
problem. For example, order 1

2
has shown to be

very interesting for medical image registration
[29,30]. In Fig. 2 we show a quantitative sketch
of feature efficiency for different orders of k. In
fact, this trade-off between feature efficiency
and error probability has an interesting analogy
in rate-distortion theory, where on the one
hand we want to transmit as little information
as possible, but, on the other hand, we want
to keep the transmission error as small as
possible.
Let us very add a synthetic example that

illustrates well how the feature efficiency of
Eq. (51) varies with different orders k. For this,
we take the initial magnetic resonance (MR)
images of Fig. 3a and b and plot the feature
efficiency coefficients of their image intensities for
different orders k versus the number of uniform
image quantization levels (Fig. 3c). Image content-
dependent optimal quantization can be looked at
as image segmentation. Our approach of quantiz-
ing both images with the same number of uniform
bins is very crude, but very illustrative in the
context of feature efficiencies. In Section 6.1, we
show results with a more practical quantization
scheme (Fig. 7).
In Fig. 3c we see that the maximum feature

efficiency varies significantly with its order k. For
k ¼ 0; the optimum suggests using one single
quantization bin (very efficient image representa-
tion) while for k ¼ 1 we would keep all the initial
data, including the un-related image noise. For
intermediate levels, in particular for k ¼ 1

2
; we get

an intermediate optimal number of bins (7 bins)
which conserves the anatomical information of the
initial scans, while discarding the un-related noise
of the images (Fig. 4). This is exactly the behavior
outlined in Fig. 2 in the special context of image
quantization.

4.2.2. Correlation ratio

We will show now that optimization objectives
other than mutual information and normalized
entropy can be derived from the proposed frame-
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Fig. 3. In (a) and (b), we show a corresponding T1 and T2 data set. In (c), we show the feature efficiency coefficients of Eq. (51) for

different orders k as a function of uniform quantization levels. We see that the maximum varies heavily with the order k. For k ¼ 0:2;
the optimum lies at 2 quantization intervals (Fig. 4a and b), while for k ¼ 0:5 we get 7 levels which conserve anatomical information

while discarding unrelated noise (Fig. 4c and d). All the different graphs cross where mutual information times joint entropy equals one

(see arrow).
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work, starting with correlation ratio [9]. Let us
start by recalling Fano’s inequality for the Markov
chain of Eq. (35) for multi-modal signals (Eq. (40))
and then lower the bound under the condition that
FY is characterized by a continuous Gaussian
probability density:
Pe1 ¼ PðOestaOÞ

X1�
IðFX ;FY Þ þ 1

log n

¼ 1�
HðF Y Þ � HðF Y jFX Þ þ 1

log n

ð52Þ
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Fig. 4. In the images (a) and (b), respectively (c) and (d), we show the uniform quantization results at optimal feature efficiency (Fig.

3c) for the feature efficiency coefficients of order k ¼ 0:2 and 0:5; respectively. The former conserves very limited but efficient

information, while the latter keeps most of the anatomically relevant structures.
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X1�
logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peVarðFY Þ

p
Þ � HðFY jFX Þ þ 1

log n
,

ð53Þ

where FX is a discrete random variable so that
Fano’s inequality still holds. It is important to
note that in contrast to Eqs. (40), (44), (47) and
(51), the last lower bound is not symmetric
anymore with respect to F X and FY :
Instead of minimizing the lower bound of

Eq. (52), we can minimize the weakened lower
bound of Eq. (53) by maximizing
logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peVarðF Y Þ

p
Þ � HðFY jF X Þ: Let us now as-

sume that the probability density function
Pðf Y jf X Þ of the transition F X ! FY is given by

FY ¼ EðFY jF X Þ þNð0;EðVarðF Y jF X ÞÞÞ, (54)

where Nðm;s2Þ is an additive Gaussian noise of
mean m and variance s2 and EðFY jF X Þ is the
conditional expectation of FY knowing F X : Then
the conditional probability PðF Y ¼ f Y jFX ¼ f X Þ

is given by

PðFY ¼ f Y jFX ¼ f X Þ ¼
1ffiffiffiffiffiffi
2p

p
s
e�ðf Y�EðFY jFX ÞÞ

2=2s2 ,

(55)

with s2 ¼ EðVarðFY jFX ÞÞ: Therefore we can easily
calculate the conditional entropy HðF Y jFX Þ:

HðFY jFX Þ

¼ �
X
f X

Z
f Y

Pðf X ; f Y Þ

� log
1ffiffiffiffiffiffi
2p

p
� s

� e�ðf Y�EðFY jFX ÞÞ
2=2s2

� �
df Y

¼ logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peEðVarðF Y jFX ÞÞ

p
Þ. ð56Þ
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This means that we can minimize the lower
bound of Eq. (53) by maximizing

logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peVarðF Y Þ

p
Þ � HðF Y jFX Þ

¼ logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peVarðF Y Þ

p
Þ

� logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peEðVarðF Y jFX ÞÞ

p
Þ, ð57Þ

which is equivalent to maximizing its squared
exponential

Z1ðF Y jF X Þ ¼
VarðF Y Þ

EðVarðFY jF X ÞÞ
, (58)

or maximizing

Z2ðF Y jF X Þ ¼ 1�
EðVarðFY jFX ÞÞ

VarðF Y Þ
. (59)

It is important to note that Z2ðFY jF X Þ is just the
correlation ratio as proposed in [9] for multi-
modal medical image registration, when the
employed features FX and FY are the image
intensities.

4.2.3. Maximum likelihood

In the previous paragraph on correlation ratio,
only assumptions about the underlying transition
probabilities were taken. On the other hand, we
did not use any prior on the specific feature
representations to be used. Let us now relax the
prior on the transitions, but assume that we can fix
the feature representation F X : In direct analogy to
Eq. (52), we have also

Pe1 ¼ PðOestaOÞ

X1�
IðF X ;F Y Þ þ 1

log n

¼ 1�
HðFX Þ � HðFX jFY Þ þ 1

log n
, ð60Þ

where HðF X Þ remains constant during the mini-
mization as FX is fixed. Therefore, we want to find
the feature representation FY so that the condi-
tional entropy

HðF X jF Y Þ ¼ �
X

f Y ;f X

Pðf Y ; f X Þ � log Pðf X jf Y Þ

(61)
is minimal. Let us now use histogramming to
estimate the joint probabilities Pðf Y ; f X Þ:

Pðf Y ; f X Þ ¼
jðf X ; f Y Þj

n
, (62)

where jðf X ; f Y Þj is the number of samples that have
feature value f X in one modality and feature value
f Y in the other modality. Therefore, we can rewrite
Eq. (61) as follows [31]:

HðFX jFY Þ

¼ �
X

f Y ;f X

jðf X ; f Y Þj

n
� log Pðf X jf Y Þ

¼ �
1

n

X
o2OO

log Pðf X ðoÞjf Y ðoÞÞ

¼ �
1

n
log

Y
o2OO

Pðf X ðoÞjf Y ðoÞÞ

 !
, ð63Þ

where OO indexes the n data samples (Section 4). Eq.
(63) is, up to the negative constant �1=n; exactly the
log-likelihood of obtaining a signal FX from a signal
feature representation FY for a given transition
probability distribution PðF X ¼ f X jFY ¼ f Y Þ and a
fixed feature space representation FX :

4.2.4. Image registration as feature selection

In the previous paragraphs, we derived several
optimization objectives within the framework of
error probability. This allows us to analyze their
mutual relationship on a theoretical basis and
facilitates the choice of the optimization objective
for a particular problem. For example, we derived
the differences between mutual information and
normalized entropy, also for applications outside
medical image registration. Even more generally,
these developments show a very general concept of
multi-modal signal processing based on feature
selection and extraction which determines those
feature space representations of the initial signal
sequences that confirm most of the basic and
natural hypothesis that multi-modal signals have
the same physical origin. On the other hand,
however, it might not seem very clear yet how the
presented framework is actually applied to a
particular problem, such as image registration.
Let us therefore have a closer look at multi-modal
medical image registration.
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So far, we have just been discussing feature
selection and extraction but not image transforma-
tions, such as rigid or affine deformations. The
step from the proposed framework of multi-modal
feature selection and extraction to image registra-
tion is straightforward though. In fact, it is
possible to identify image registration as a special
case of feature selection. We want to select the
image transformation that best reflects the fact
that the images are acquired from the same
physical scene. This transformation will minimize
the error probabilities Pfe1;e2g:
If SY is the sequence of the floating image and

SX of the reference image, the corresponding
Markov chains can be re-written:

O ! X ¼ SX ðoÞ ! F X ¼ X

¼ SX ðoÞ ! F est
Y ¼ SY ðTðoÞÞ

! Y est ¼ SY ðoÞ ! Oest ! E,

O ! Y ¼ SY ðoÞ ! FY

¼ SY ðTðoÞÞ ! F est
X ¼ SX ðoÞ

! X est ¼ F est
X ¼ SX ðoÞ ! Oest ! E.

ð64Þ

We see that most of the transitions are
deterministic and that several of them are para-
meterized by the transformation parameters T of
the floating image. In fact, T can be looked at as
the optimization parameters of a feature selection
step of the floating image (sequence) SY : The
optimal T should confirm the most of the basic
multi-modal hypothesis, that the two multi-modal
images (sequences) SX and SY have the same
physical origin. It is important to note that ‘‘the
same physical origin’’ is a flexible hypothesis. This
means that sometimes two brain images, even
though of different patients, are considered to
come from the same physical scene, which is not a
particular patient’s anatomy but the brain anat-
omy in general.
5. Optimization

The presented framework of feature selection
and extraction for multi-modal signal processing
leads quite frequently to very demanding optimi-
zation objectives (Section 6). The resulting objec-
tive functions can have very distinct shapes
depending on the chosen feature space representa-
tions from which the optimal representation
should be selected and extracted. As a result it is
mostly not clear that local optimization schemes
would be sufficient to lead to robust results. This is
why we use a globally convergent genetic optimi-
zation algorithm [32]: to study the global behavior
of the optimization functions and to ensure that
we avoid local optima to get ‘‘good’’ results for a
specific application, such as image registration.
Hereafter, we refine the results locally using the
steepest gradient algorithm.
The problem with this approach is that genetic

optimization is very time consuming. Therefore we
parallelized an existing genetic optimization li-
brary [33] for distributed memory architectures,
using the MPICH implementation of message
passing interface (MPI) [34,35].
6. Results

This paper is mainly dedicated to multi-modal
signal processing. Therefore, we only want to show
results in this field and discard examples of
quantization or classification. In particular, we
want to illustrate the field of multi-modal medical
image registration and show how the feature-based
framework enlarges the vision of image registra-
tion and results in a unifying framework for multi-
modal medical image processing in general.
The second example is based on speech-video

sequences, where we show the importance of
adequate features to interpret both signals of a
multi-modal sequences simultaneously.

6.1. Multi-modal medical images

We will show two examples for medical image
registration [36] which show the importance of the
feature-based framework for multi-modal signal
processing. First of all, we want to show that the
quality of registration results can depend heavily
on the employed features. For example, to use
rather edge instead of intensity information
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for the registration can be very beneficial for some
cases.
The second point will show that the proposed

framework enlarges the view of image registration
and leads to an integrated approach on multi-
modal medical image processing in general. We
will show examples where image registration,
segmentation and artifact correction of medical
images can be incorporated into one generalized
algorithm. In the paragraphs on registration with
quantization and registration with bias correction,
we used synthetic MR-scans from the BrainWeb

database [37,38].

6.1.1. Feature space image registration

Conventionally, multi-modal medical image
registration determined optimal transformation
parameters by maximizing image intensity-based
information theoretic quantities, particularly those
re-derived in Section 4.2 [8,9,39]. In the sense of
error probability, this seems to be the right thing
to do. Nevertheless, it is important to note that
maximizing mutual information minimizes the
error probability on the average. This means that
the statistical matching of large structures is much
more emphasized than other small but anatomi-
cally important regions of the patients anatomy.
Therefore, we propose to rather use the edgeness
information in the images [40], so that the
probability estimation does not use the volumetric
information anymore, but rather information on
the volume boundaries.
We considered affine registration to maximize

mutual information between the two feature space
representations of the initial images (their gradi-
ents) and compared the results to the conventional
intensity-based mutual information registration.
The results for CT-MR inter-subject registration
are shown in Fig. 5. As we can see, while the
rigid registration of the MR image with the CT
image is achieved correctly when considering the
voxel intensities (Fig. 5c and i) and the edgeness
(Fig. 5d and j) as feature space, the maximization
of the intensity-based mutual information yields
aberrant results in case of non-rigid (affine)
registration (Fig. 5e and k) while using edgeness
as a feature space for this optimization leads to
correct and stable results (Fig. 5f and l). The
interpretation of those results is presented in
Section 7.
Besides improving the robustness for MR-CT

registration, we will show that edgeness informa-
tion combined with globally convergent genetic
optimization makes mutual information-based
image registration applicable to the registration
of blood vessel images in the human retina. In
Fig. 6, we show how three partial views of the
retinal vascular system can be combined to
provide a virtually extended view. The different
intensity distributions in the images are caused by
an injected contrast agent which enables the study
of the retinal blood flow for diabetic retinopathy.
6.1.2. Image registration and quantization

Medical images are more or less noisy repre-
sentations of the patient’s anatomy. The noise has
a negative impact on statistical image registration.
Some approaches to minimize the influence of
noise are based on initial filtering of the data sets
(e.g. anisotropic filtering [41]) or even on anato-
mical segmentation to extract the information of
the images that is really relevant for registration.
In this example we therefore try a very naive way
of extracting the representative anatomical infor-
mation in the medical images while discarding the
dispensable noise. We use simple image intensity
quantization which varies the number of bins for
both axes of the joint probability distribution
independently. But decreasing the number of bins
obviously decreases the marginal entropies of the
image representations, therefore simply maximiz-
ing the mutual information of Eqs. (40) and (44) is
dangerous. We rather use the feature efficiency
coefficient of order 1

2
(Eq. (51)) of the quantized

images to find the optimal number of quantization
intervals as well as the geometrical registration
parameters. Let us recall again that the feature
efficiency of order 1

2
is equivalent to the widely used

normalized entropy. Mathematically, we can write
the optimization objective as follows:

½~t
opt

; qoptX ; qoptY �

¼ arg max
~t2Rd ;qX2Z

þ;qY2Z
þ

e1=2ðQqX
ðX Þ;T~tðQqY

ðY ÞÞÞ,

ð65Þ
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Fig. 5. (a) Is the CT-target image. In (b), the contours of the target image are superposed on the floating MR-scan. In (c) and (d), we

see the results after a rigid optimization, when using resp. the intensity-based mutual information and the edgeness mutual

information. In (e) and (f), we show the corresponding results for affine registration. Figures (g)–(l) show the results for a second MR-

scan. In (e) and (f) (resp. (k) and (l)), we recognize a significant improvement with the edgeness-based mutual information (resp. that

the global maximum of intensity-based mutual information does not correspond to good registration).
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where X and Y are the RVs associated to the image
intensities of the reference and floating image,
respectively. qX and qY are the number of bins
used for the density estimation of X and Y and ~t
are the parameters of the geometric transforma-
tion T of the floating image. d is the dimension of~t
and is determined by the particular transformation
model, e.g. for rigid body we have 6 and for affine
12 parameters. Results for rigid registration are
shown in Fig. 7.
In order to indicate more the benefits and

importance of combining segmentation and regis-
tration into one single optimization scheme, let us
sketch the mutual information and feature effi-
ciency of order 1
2
for the initial noisy images of

Fig. 7g and i their quantization results with respect
to translations away from their optimal registra-
tion. The plots are shown in Fig. 8. In particular,
two important facts of the theoretical expectations
outlined in Section 4.2 can be reconfirmed. First of
all mutual information is as expected unable to
segment the initial noisy images during the
registration task: mutual information of the initial
data is larger than mutual information of the
optimally quantized data (Fig. 8a). And second,
feature efficiency of order 1

2
has a much more

pronounced maximum at optimal registration for
the quantized images than for the original data
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Fig. 6. The figures (a)–(c) had first to be registered in order to reconstruct the extended view shown in (d).
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(Fig. 8b). The second point is in fact to a smaller
degree also true for mutual information.

6.1.3. Image registration with bias correction

Interventional imaging modalities suffer fre-
quently from a large bias field. Bias field is a
standard term used in magnetic resonance imaging
to define a smooth variation of the gray level
values along the acquired image. This may be due
to different causes linked to the MR scanner, such
as poor RF coil uniformity, static field inhomo-
geneity, RF perturbation, etc. [42] This makes
image registration particularly difficult. Never-
theless, it would be of particular interest to register
pre-operatively acquired scans of different mod-
alities onto the interventional data sets. In this
section, we want to show that the presented
framework easily allows to register images with
large bias fields. The approach simply combines
minimum entropy bias-correction [42,43] with
mutual information-based image registration.
From the developed theory, one can recognize
immediately that mutual information is not
appropriate for this task as minimizing entropy
contradicts obviously the maximum mutual in-
formation principle of Eqs. (40) and (44). There-
fore, maximizing directly mutual information
would not correct the bias field even though the
error bounds of Eqs. (40) and (44) would be
minimized. Just as in the previous paragraph, this
is a typical example of inefficient features. Rather
than maximizing mutual information, we want to
maximize the efficiency coefficient of the bias-
corrected image intensities/features (Eq. (47)).
The resulting mathematical formalism can

thereafter be written as follows: let ~p 2 Rd1

parameterize the polynomial bias-correction of
[42,43], where d1 is determined by the degree of
the polynomials. Furthermore, we have to deter-
mine the parameters ~t 2 Rd2 of the geometric
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Fig. 7. Image (a) shows the reference image and (c) the initial floating image. In (e), we show the rigidly registered result. Images (b),

(d) and (f) show the quantized outputs of (a), (c) and (e) with the optimal number of bins. Images (g)–(l) show an experiment equivalent

to (a)–(f), but with noisier data sets. The contours of (b), resp. (h), are outlined in (c)–(f), resp. (i)–(l).
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transformation T, where d2 is the number of
parameters that determines the transformation. In
our specific application, we optimized over rigid-
body transformations (d1 equaled 6). Mathemati-
cally, we have

½~t
opt

;~popt� ¼ arg max
½~t;~p�2Rd1þd2

e1=2ðX ;T~tðP~pðY ÞÞÞ,

(66)

where the parameters ~popt specify the optimal bias-
correction and ~t

opt
determines the optimal rigid

transformation. Here X and Y refer to the RVs
associated to the image intensities. Fig. 9 presents
the results.
6.2. Speech-video sequences

In this application, we want to determine the
region in a video scene that contains the speaker’s
mouth, i.e. where the motion seen in the
image sequence corresponds to the audio signal
[44].
With the framework presented before we will

find the features in the audio and video signal that
minimize the lower bounds on the error probabil-
ities of Eqs. (40) and (44) in the region of the
speaker’s mouth [45]. The sampling RV O of the
Markov chains of Eqs. (35) and (36) now refers to
the time index in the sequence and not to spatial
coordinates as for medical image registration, as



ARTICLE IN PRESS

0.5

0.45

0.4

0.3

0.25

0.2

0.15

01
-20 -15

Translation

M
ut

ua
l I

nf
or

m
at

io
n

F
ut

ur
e 

E
ffi

ce
in

cy
 C

oe
ffi

ci
en

t o
f O

rd
er

s 
0.

5
Translation

-10 -5 0

Quantized Data
Original Data (-1.)

Quantized Data
Original Data

5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

0.35

0.45

0.4

0.3

0.25

0.2

0.35

Fig. 8. Figure (a) compares mutual information of the original noisy images of Fig. 7g and k with the mutual information of their

quantization results for translations away from optimal registration. For better comparison, the plot of the mutual information

between the original data sets in (a) was moved down by one unity (�1). In (b) we see feature efficiency of order 1
2
for the same images

as for (a). Plot (a) shows that maximization of mutual information is unable to perform simultaneous registration and segmentation,

contrary to the feature efficiency of (b). Also, we see that simultaneous segmentation improves the general behavior of the optimization

objectives, in particular, for feature efficiency of order 1
2
: Let us recall that feature efficiency of order 1

2
is equivalent to the well-known

and widely used normalized entropy.

Fig. 9. We rigidly registered the image of (b) onto the reference image shown in (a). (c) Shows the bad result without simultaneous

bias-correction and (d) shows good registration with simultaneous bias-correction (contours of the reference image (a) are shown in

white). In (e) we show the histograms of (c) and (d), respectively, showing the effect of the bias correction on the grey level distribution.
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the signal acquisition is now performed along a
time interval.
From Eqs. (40) and (44) it follows that small

lower error bounds in the region of the speaker’s
mouth are equivalent to a large feature space
mutual information IðF X ;F Y Þ in this region. FX

and F Y stand for the audio and video features,
respectively. On the other hand, a large bound
should result in the regions where the movements
are not caused by the speaker’s lips and are
therefore unrelated to the speech signal. So that is
where IðF X ;F Y Þ should be small.
To represent the information of the audio

signal, we first converted it into a power spectrum
(Fig. 10a). In order to deal with this multi-
dimensional audio signal, we included a linear
feature extraction step in the algorithm. As for
any couple of RVs A and B, we have HðAÞX

IðA;BÞ and from Eqs. (40) and (44) we get a
weakened lower bound for the error probabilities
Pfe1;e2g:

Pfe1;e2gX1�
IðF X ;F Y Þ þ 1

log n

X1�
HðFX Þ þ 1

log n
. ð67Þ

Therefore, we looked for the linear combina-
tion of the power spectrum coefficients W ðf i; tÞ
(Fig. 10a) that carries most entropy. The finally
obtained audio-feature is therefore defined by

FX ðtÞ ¼
X

i

aopti W ðf i; tÞ, (68)
Fig. 10. (a) The power spectrum of the video sequence. At each time

The alphas for which the weighted sum of Eq. (68) has maximum en
with

~aopt ¼ arg max
~a:j~aj¼1;aiX0

H
X

i

ai � W ðf i; tÞ

 !
. (69)

In Fig. 10b, we show for one sequence the weights
aopti that maximize the entropy of Eq. (68) and
therefore define the audio-features F X of the audio
signal.
We want to show two important points about

the presented theory. First of all there exist
features that relate the mouth movements of a
speaker directly to the corresponding speech
signal. On the other hand, we want to show that
the choice of a particular feature representation is
very crucial for the performance of the algorithm.
There are features that contain lots of informa-
tion (have lots of entropy), but are unrelated to
the other signal. Other features represent this
dependency much better and yield very good
results.
The straightforward approach to quantify the

dependency (in the sense of Eqs. (40) and (44))
between an audio and video signal of a speaker
would consist of calculating the mutual informa-
tion between the intensities of each pixel in the
frame and the audio-feature of Eq. (68). In Fig. 11,
we show the corresponding results.
We can see that this straightforward approach

does not lead to the result we could have expected.
It seems that the pixel intensities of the speaker’s
mouth do not carry much information about the
audio signal. Instead, we propose a local feature
point we have the power coefficients of several frequencies. (b)

tropy.
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Fig. 11. (a) Intensity entropies for each pixel of the sequence. It shows that our sequence contained lots of motion in the background of

the scene (people passing, waving arms, etc.). (b) Calculation of mutual information between the pixel intensities and the audio-feature.

We see that there is not a particularly high mutual information in the region of the speaker’s mouth. (c) Entropy of the video-features

FY for each pixel in the video scene. (d) Relation of this video information to the extracted audio-features F X of Eq. (68) by calculating

the feature space mutual information IðF X ;FY Þ for each pixel. (e) A typical frame of the sequence. (f) Thresholded image of (d) super-

posed on the frame of (e). It shows that the mutual information maxima lie clearly at the speaker’s mouth.
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that is more related to intensity changes (and
therefore also to motion in the scene) than to the
intensities themselves:

FY ði; j; tÞ ¼
X1

l;m¼�1

gtþ1ði þ l; j þ mÞ

� gt�1ði þ l; j þ mÞ, ð70Þ
where gtði; jÞ stands for the intensity of a pixel at
coordinates ði; jÞ in the frame at time t.
Thereafter we calculated for each pixel in the

scene the mutual information between the
resulting audio- and video-feature IðFX ;FY Þ:
As shown in Fig. 11 a clear relationship be-
tween the speech and the speaker’s mouth is
obtained.
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7. Discussion

We have shown that for medical image registra-
tion the choice of a good set of features to guide
the registration is crucial. The results can vary
significantly depending on what information the
selected features carry. The comparison of Fig. 5
between image intensities and edgeness informa-
tion shows that for some images the matching of
boundaries can be more appropriate than the
statistical matching of image intensities. Bound-
aries are small but very significant matching
criteria, while image intensities might over-empha-
size the large and therefore statistically important
regions in the data sets. In terms of maximization
of the mutual information between feature spaces,
it appears that if we consider non-rigid registration
using the voxel intensity as feature space, the
maximum of MI is achieved not because of a good
correspondence between the images but because of
an increase in the marginal entropy of the MR
image. This problem does not appear if we
consider edgeness as feature (figure (f)), whose
entropy is not increased by the geometric trans-
formation.
Thereafter we used the developed framework to

guide multi-modal signal processing in a unified
framework. This means e.g. that image segmenta-
tion or bias correction can be incorporated into a
generalized registration algorithm. We show that
our framework is able to extract the information
of the medical images, which is most important for
the registration task, and to get rid of bias artifacts
or background noise and information that can just
corrupt the registration results.
The last experiment was performed on speech-

video sequences, where we show two main points.
First of all, we demonstrate that there exists a
direct relationship between the speech signal and
the video frames which can be explored e.g. multi-
modal speaker localization. It is very important
that our proposed approach does not make any
hypothesis about their underlying relationship.
The information theoretic framework rather
quantifies non-parametrically their mutual depen-
dency. As a second important point, we show that
just as in the case of medical images, the choice of
the right features is very crucial. Our framework
gives a very flexible approach to construct feature
selection algorithms such as proposed for medical
image registration. Using this framework, we were
able to re-confirm (Fig. 11) that motion estimation
gives features much more related to the corre-
sponding speech signal than pure image intensities
(compare for example with [3]).
8. Conclusion

This paper presented two important points of
information theoretic signal processing. The first
one consisted of unifying a large class of algorithms
in one single mathematical framework, using the
information theoretical concepts of stochastic
processes and their error probabilities. Combined
with Fano’s inequality and the data processing
inequality, this mathematically compact frame-
work allows the derivation and interpretation of
optimization objectives which govern a wide range
of information theoretic signal processing tasks.
The second main subject consisted of applying

the introduced framework to the large field of
multi-modal signal processing. We applied the
theory successfully to several important and
revealing problems of medical image and speech-
video sequence processing.
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