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Abstract

In this paper, we address the design ofanynumber of balanced descriptions using multiple
description scalar quantization(MDSQ), based on fast index assignment. The proposed scheme
has the advantages of low complexity, and the possibility of being extended easily to any
number of descriptions. Unlike existing schemes, it can produce balanced descriptions even at
low rate, at the price however of a slightly higher distortion. The behavior of the proposed
index assignment at high rate is in the same time similar to state-of-the-art schemes. The
proposed scheme offers the possibility to adapt to loss probability, and rate constraints, in
playing with both the number of descriptions, and the rate of each of them, to minimize the
average distortion.

I. I NTRODUCTION

In general, the goal of multiple description coding (MDC) is the generation of two
or more descriptions of a source, such that each of them gives acceptable reconstruction
quality when received alone, and the representation of source improves when the number
of received descriptions increases. Under a generic form, each descriptionn has a rate
Rn, and a side distortionDn. In this paper, we are addressing a specific case where all
the descriptions are balanced, i.e., where all the ratesRn are equal. Moreover, in the case
of a uniform source, all the side distortions are equal, and the distortion after receiving
any k among theN distortions are also equivalent.

Multiple description scalar quantization (MDSQ) has given the first practical solution
for generating multiple descriptions. The design of an MDSQ system generally follows
two steps, a scalar quantization and an index assignment method, that maps the quantized
value to a N-tuple of quantization indices(i1, i2, ..., iN). Each index is then sent over a
different channel: if all the indexes are correctly received, the signal will be reconstructed
with the highest quality that is given by the scalar quantization step. If any channel fails,
the decoder still reconstructs a version of the signal, with a lower quality.

In this paper, we propose two simple index assignment schemes able to generate
any number ofbalanceddescriptions. Except for unequal error protection (UEP) based
schemes, the common MDC schemes are generally limited to the generation of three
descriptions. The proposed design easily extends to any number of descriptions, while
keeping a very low complexity. We show that, in the case of uniformly distributed sources,
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we can achieve balanced descriptions both at low and high rates, which is not possible
with state-of-the-art MDSQ schemes. The proposed scheme is later extended to the case
of Gaussian sources. The proposed schemes are shown to perform similarly to state-of-
the-art encoders at high rate. The side distortion is however slightly penalized by the
condition of balancing distortions.
Finally, the fact that we can generate any number of descriptions is advantageously used to
optimize the average distortion for given loss probabilities and rate constraints. It provides
the flexibility to play with both the coding rates, and the number of descriptions, without
being penalized by the so-called cliff-effect that is observed in UEP-based solutions.

The paper is organized as follows: Section II briefly overviews the related work. Sec-
tion III describes our approach for the generation ofn balanced descriptions. Section IV
considers the special case of three descriptions, which interestingly presents particular
possibilities of extensions, different than the general scheme. Comparisons of our scheme
with state-of-the-art methods are given in Section V. Section VI considers the problem
of minimizing the average distortion, under given loss probability and rate constraints.
Finally, conclusions are gievn in Section VII.

II. RELATED WORK

The first approach for the generation of two balanced descriptions used the staggered
index assignment principle: two side quantizers are half of the quantization step size offset
to each other so that receiving both descriptions results in four times smaller distortion.
This scheme has a high degree of redundancy, since for B-bit resolution we need2(B−1)
bits. Therefore, it is a good solution only in the case when we want to minimize the side
distortion.

In order to reduce the redundancy between descriptions, the authors in [7] [8] proposed
using disjoint quantization bins. Moreover, the whole family of diagonal index assignment
matrices was proposed. By varying the number of diagonals in such matrices, one can
control the tradeoff between the side and central distortions. Although the presented
results were remarkable, the design of more than two descriptions was not considered.
Extending this method to the design ofn descriptions would require the search for the
solution in the hypercube of dimensionn, which is not a trivial problem. This family of
index assignments was successfully applied in wavelet-based image coders, [6].

In parallel to scalar quantization, other ideas were proposed for the generation of more
than two balanced descriptions. Most of them were based on unequal error protection
(UEP) principles. In [1], the authors use Reed-Solomon (n,k) codes to make equally
important descriptions from the output of a progressive coder. In [2], they propose adding
the controlled amount of redundancy to the same progressive coder. This is achieved by
spreading the information about each wavelet tree in many descriptions, which guarantees
recovery of the most important information. Schemes based on UEP assume that at least
k out of n descriptions are received and they don’t reconstruct the signal if fewer thank
descriptions are received. Moreover, receiving more thank descriptions might not bring
any improvement in the reconstructed quality. This is called the cliff effect. Besides,
the protection level of these schemes (k

n
) depends on the state of the channel, which

may change very rapidly during the transmission. In order to soften the cliff effect, the
authors in [5] propose using (n,k) source-channel erasure codes for the generation ofn
descriptions. They also derive the complete rate region for their scheme. However, their
study is still based on the assumption that at leastk descriptions are received.



Recently, attention has been put again to the problem of generating more than two
descriptions with scalar quantization. The staggered index assignment, combined with
UEP, was proposed for the design of three balanced descriptions in [5] and as the first
stage of the design in [3]. However, these schemes fail to give balanced descriptions at
low rates. Moreover, in [3] they stress that their method is not proper for the design
of more than three descriptions because of only one degree of freedom in the index
assignment matrix. In [4], the author proposed the encoding procedure in a multistage
fashion, where each stage doubles the number of descriptions using the method proposed
in [7]. However, his scheme allows only the number of descriptions that is a power of
two.

In this paper we tackle the problem of generating balanced descriptions based on
scalar quantization, and we give a simple and easily extendable scheme that shows how
to generateN balanced descriptions.

III. I NDEX ASSIGNMENT FOR BALANCEDMDSQ

A. Preliminaries
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Fig. 1. Three Description Coding Scheme.

In this section, we consider the problem of index assignment, for the generation ofN
balanced descriptions, based on scalar quantization. The case of three descriptions can
be represented as in Figure 1. Each of theN description has a rateRn, and the total
rateR therefore becomesR =

∑N
n=1 Rn. The distortion of a single description is called

the side distortion,Dn. The reception of all the descriptions induces a central distortion
D, and the reception of only a subsetA of the descriptions is denoted partial distortion,
DA. The reconstruction points are chosen as the centroid of the interval that is common
to the received description bins. The distortion is measured by the mean square error,
MSE, relative to the input signal.

We concentrate in this section on two different types of sources: a uniform source
on the interval[0, 1] and the Gaussian source. In the uniform case, we assume that the
MDSQ scheme first performs a uniform quantization of the input signal, with a step-size
δ, without loss of generality. Then, index assignment attributes indexes to each of the
uniform quantization intervals, that can be different for each of the descriptions. Index
assignment becomes the key of the MDSQ scheme, and directly drives the distortion
when descriptions are lost. In the lossless case, a proper index assignment should result



in a uniform quantization of the source, with step-sizeδ, when all N descriptions are
combined together.

The remainder of the section now describes two fast index assignment schemes for the
generation ofN balanced descriptions. The methods are further extended to Gaussian
sources, when all the decision levels are adapted to the different distribution.

B. Balanced index assignment for N-description: uniform distribution

(a) Step Split algorithm.
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(b) Merge and Split algorithm.

Fig. 2. Index assignment strategies forN = 5.

1) Step split scheme:To generateN balanced descriptions, we start fromN uniform
quantizers with step-size2δ. One way of generating them consists in dividingi-th bin of
i-th quantizer into two bins of sizeδ. Such a scheme is represented in Figure 2 (a) for
the case ofN = 5, and it can be seen that the reception of all the descriptions guarantees
an uniform scalar quantization with step-sizeδ.
All the descriptions obviously have the same rateRn or entropy, since they all have the
same set of quantization bins∆i, Rn = −∑

i ∆ilog∆i. It can be further verified that the
combination ofany k out of N descriptions will result in2k bins of sizeδ and(N − k)
bins of size2δ. This will additionally guarantee balanced partial distortions.

In order to increase the bit rate, the (basic) structure explained above can be simply
periodically repeated. Finally, if the number of descriptions isN and the number of
repetitions ism, we will haveδ = 1

2Nm
and the description rate, respectively the partial

distortion of receivingk out of N descriptions, are given by :

Rn = log(2Nm)− N − 1

N
(1)

D12...k =
4N − 3k

48m2N3
=

4N − 3k

12N2
2(N−1)

N

2−2R, k ≥ 1. (2)

2) Merge and split scheme:Another way to generateN balanced descriptions is based
on a similar idea, but instead of dividing one bin of size2δ into two bins of sizeδ, as
proposed above, the index assignment merges two bins of size2δ and then splits the new
bin into one bin of sizeδ and another of size3δ. The Merge and splitalgorithm results
in a structure that hasN − 2 consecutive intervals of size2 δ, one of size3 δ, and one
of sizeδ. Cyclic permutation of such a structure, by steps of2 δ, generates the set ofN



descriptions, where one column of sizeδ has finally to be added to compensate for edge
effects. The resulting index assignment is represented in Figure 2(b) for the case of five
descriptions.

It can be shown that the combination of anyk out of N descriptions results in(2k+1)
bins of sizeδ and (N − k) bins of size2δ. Different bit rates can again be obtained by
simple repetitions of the building block defined hereabove. Thus, forN descriptions and
m repetitions of the basic structure, the Merge and split scheme yieldsδ = 1

m(2N+1)
and

the description rate, side and partial distortions of receiving anyk out of N descriptions,
are given by :

Rn = log(m(2N + 1))− 2(N − 2) + 3log3

2N + 1
(3)

Dn =
8N + 13

12m2(2N + 1)3
=

8N + 13

12(2N + 1)2
4(N−2)+6log3

2N+1

2−2Rn (4)

D12...k =
8N − 6k + 1

12m2(2N + 1)3
=

8N − 6k + 1

12(2N + 1)2
4(N−2)+6log3

2N+1

2−2Rn , k ≥ 2. (5)

It can be seen that there is an explicit relation between the rate and distortions for
our schemes, even at low rates. Besides, we see that all the distortions have the same
decay rate(2−2Rn) and that they decay linearly as a function of the number of received
descriptions,k.

C. Balanced index assignment for N descriptions: Gaussian distribution

The coding of Gaussian sources is derived from the method described hereabove, by
mapping the description quantizers to the novel distribution of the source. Denote by
QU,N the set ofN quantizers used for the uniform source and byQG,N the same set
for the Gaussian source. The lower and upper decision levels of each bin inQU,N is
transformed to a new set of lower and upper decision levels inQG,N , that will adapt to
he Gaussian signal. If the Gaussian source has zero mean and unit variance, the transform
is given simply by:

g =
1 + erf( u√

2
)

2
, (6)

whereu corresponds to levels inQU,N , andg corresponds to new levels inQG,N . Note
that such a transformation guarantees that the rates of the descriptions stay balanced
for the Gaussian source. However, the side and partial distortions are not balanced any
more at low rate. The reason is that trying to keep the linear metrics balanced (i.e. rates)
for the Gaussian distribution, does not allow for keeping the square metrics (i.e., MSE
distortion) balanced, at the same time. Finally, a similar transform could also be applied
to other source distributions.
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Fig. 3. Schemes for3 balanced descriptions:(a) existing scheme, (b) schemestep split,(c) schememerge and split.

IV. SPECIAL CASE: N = 3

This section now analyzes the special case of 3 descriptions, and compares the index
assignment methods proposed before (see Figure 3 (b) and (c)) to the scheme based on
staggered index assignment, that is the first stage of the design in [3] (see Figure 3 (a)).

Consider first the staggered index assignment, represented in Figure 3(a). We see that
the quantization bins in different descriptions are offset one third of the quantization step
size δ to each other. Receiving any two descriptions will give three bins of sizeδ and
two bins of size2δ. If the third description is also received, it will solve the ambiguity
about bigger intersection bins that exists when only two descriptions are received. The
first and the third description have two bins of size3δ and one bin of sizeδ, while the
second one has two bins of size2δ and one bin of size3δ. Therefore, these descriptions
do not have the same rates and, moreover, they will result in unbalanced side distortion,
i.e., D1 = D3 6= D2. On the contrary, our schemes shift the whole quantization bins
instead of just shifting each bin by one third of the quantization step size. All quantizers
have therefore always the same set of quantization bins, and rate and distortion stay fully
balanced.

Note that in special case of 3 descriptions, there is another possibility to extend the
bit rate for themerge and splitscheme. Instead of repeating the basic structurem times,
we can extend our scheme only with intervals of size3δ, in the very same manner like
in the existing scheme. If the number of bins of size3δ is m, then δ = 1

3m+4
. Now

any two descriptions will havem + 4 intersection bins of sizeδ andm intersection bins
of size2δ. We can calculate the rates and the distortions for this special case, that become:

Rn = log(3m + 4)− 2 + 3mlog3

3m + 4
(7)

Dn =
27m + 10

12(3m + 4)3
(8)

D12 =
9m + 4

12(3m + 4)3
(9)

D123 =
1

12(3m + 4)2
(10)

For this scheme, that is calledMS2, there is unfortunately no explicit relation between
rate and distortions at low rates. However, under the high rate assumption, we will have



Rn → −log(3δ) and:

Dn ≈ 0.083 · 2−2R (11)

D12 ≈ 0.028 · 2−2R (12)

D123 ≈ 0.009 · 2−2R (13)

As we will show in the next section, this scheme will perform best out of all our proposed
solutions and outperforms existing MDSQ schemes.

V. RESULTS

In this section, we compare first the rate-distortion performance of our schemes for
the general case ofN ≥ 2 descriptions. Recall that, besides UEP-based methods, there
is no other scheme for generation of any number of balanced descriptions.

Let m1 and m2 be the numbers of repetitions in schemesstep splitand merge and
split respectively. For the same rateR, we have the following relation betweenm1 and
m2:

m2

m1

=
2N

2N + 1
2

2(N−2)+3log3
2N+1

−N−1
N > 1. (14)

Now, let us compareD12...k, k ≥ 2 for schemesstep splitandmerge and split:

Dmerge and split
12...k

Dstep split
12...k

=
48m2

1N
3(8N − 6k + 1)

12m2
2(4N − 3k)(2N + 1)3

< (1 +
1

2N
)

N3

(N + 1
2
)3

m2
1

m2
2

< (
2N

2N + 1
)2 < 1.(15)

The partial distortion is lower in themerge and splitscheme. However, in a similar way,
it can be shown that the side distortion is bigger for themerge and splitscheme, i.e.,
Dmerge and split

1

Dstep split
1

> 1. Since themerge and splitscheme performs better for all the distortions
except the side distortion, it will be used in the remainder of the paper. Note that there
is one more way to explain the advantage of themerge and splitscheme over the other
one. Namely, if we define the redundancy as:

ρ = NR−R∗ = (N − 1)log(m(2N + 1))− N(2(N − 2) + 3log(3))

2N + 1
(16)

whereR∗ = log(m(2N + 1)) is the rate of the single description that causes the same
distortion like the central distortionD, we can see that, for the same rateR, the amount
of redundancy in schemestep splitis higher:

ρstep split− ρmerge and split= log((2N + 1)m2)− log(2Nm1) > 0 (17)

Now we consider the special case when the number of descriptions isN = 3. We
present the results for the partial distortionD12 (Figure 4 (a)). It is interesting to notice
here that schemesmerge and splitand MS2 start on the same point on the RD curve,
but schemeMS2 will always give better results for higher rates. If we substituteN = 3
in (4) and (7), we will see that the schemeMS2 will asymptotically perform better
since it givesD12 = 0.028 · 2−2R, while schemesmerge and splitand step splitgive
D12 = 0.067 · 2−2R andD12 = 0.041 · 2−2R respectively. Another feature that makes the
schemeMS2 superior in the case of three descriptions is the smaller granularity at lower
rates.



Next, we compare the performance of the schemeMS2 with the one proposed in [5]
and as the first stage of the scheme presented in [3]. Recall that the existing schemes
cannot produce balanced descriptions at low rates, while our scheme produces both
balanced rates and distortions for uniform sources. However, at low rates, our scheme
performs slightly worse, as can be seen from Figure 4 (b). It can be also derived that the
schemes will nevertheless perform the same at high rates.
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Fig. 4. Comparison of schemesstep split, merge and splitand MS2 for three descriptions and distortionD12.
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Fig. 5. Comparison of schemeMS2 and the existing scheme for the Gaussian distribution andDi and Dij ,
i, j = 1, 2, 3.

Finally, we compare schemeMS2 and existing schemes for the Gaussian distribution
function. The relation between the distortionsDi, i = 1, 2, 3 for the two schemes is given
on Figure 5(a), while the relation between the distortionsDij, i, j = 1, 2, 3 is given on
Figure 5(b). From the first figure, we see thatD2 performs slightly better in our scheme,
D3 performs slightly worse, while forD1 there is a crossing point at low rate, after which



our scheme will slightly perform better than the staggered index assignment. At higher
rate, both schemes perform the same. The same conclusion can be drawn for distortions
Dij from Figure 5(b). It is interesting to notice here that the distortion in the existing
scheme based on staggered index assignment is close to balanced, even though they
are not balanced in terms of rate. On the other side,MS2 descriptions are completely
balanced in terms of rate, but tend to give less balanced distortions at low rates.

VI. M INIMIZATION OF THE AVERAGE DISTORTION IN LOSSY SCENARIOS

This section now briefly addresses the problem of minimization of the average dis-
tortion, in lossy scenarios. Assume we can sendN descriptions over a lossy network,
each one over a different channel. Assume also that the probability that each channel
will break down is equal top.

At the receiver, if we receive all descriptions, we will be able to reconstruct the
signal with the lowest distortion(D). If we receive anyk descriptions out ofN , we
will reconstruct the input signal with the distortion(D12...k). The most severe case will
correspond to the case when all descriptions are lost: in that case, the receiver can just
guess what was sent and the distortion will be equal to the variance of the source. Since
all the descriptions have the same rate and they are balanced, we can write the average
distortion in the presence of losses in the following way:

Dav =
N−1∑

k=0

(
N

k

)
pk(1− p)N−kD12...(N−k) + pNσ2 (18)

It can be seen that the average distortion in the lossy scenario will depend on the
number of descriptions, rates of descriptions and the probability of error.

Now we can formulate the following optimization problem: given the total rateR and
the loss probabilityp, find the number of descriptions and the rate of descriptions that
will minimize the average distortion. The solution to this question is given in Figure 6,
which shows the minimal achievable average distortion as a function of thep, and in
Table1 which shows the best number of descriptions, repetitions and redundancy for the
proposed scenario.

It can be seen that the case when the rate budget is small is much more sensitive to
losses of descriptions. This is due to the fact that we can produce less descriptions at
lower rates, but also because these descriptions are less redundant. We also see from
the Table1 that, for a given rateR, with the increase of packet loss ratio, the optimal
number of descriptions increases, the number of repetitions decreases and the redundancy
increases. This is not a surprising result, since for the very lossy network it makes sense
to make and send more descriptions and to make them more redundant.

VII. C ONCLUSIONS

In this paper, we proposed a very simple and easily extendable scheme for the
generation of N-balanced descriptions. As for the case of3 balanced descriptions and
uniform distribution, we see that we can make them balanced at any rate, which is not
the case with the existing scheme. However, our scheme gives slightly higher distortions
at low rates. Our scheme can easily be adapted to different lossy scenarios: depending on
the probability of error and the total budget rate, we can find the number of descriptions
and the rate of the descriptions that will minimize average distortion.



Rtot[bits] p = 10−3 p = 10−2 p = 0.1 p = 0.2 p = 0.4 p = 0.6 p = 0.9
N 2 2 2 2 2 2 2
m 4 1 1 1 1 1 1 1
ρ 0.42 0.42 0.42 0.42 0.42 0.42 0.42
N 2 2 3 4 5 5 5
m 15 269 69 8 2 1 1 1
ρ 6.53 6.53 8.72 8.62 8.95 8.95 8.95
N 2 3 4 5 6 8 8
m 25 2239 89 16 5 2 1 1
ρ 11.55 15.67 17.62 18.24 17.62 20.73 20.73
N 3 4 5 6 8 11 11
m 40 2878 223 45 15 3 1 1
ρ 25.7 29.02 30.92 32.15 31.82 34.35 34.35

TABLE I

OPTIMAL NUMBER OF DESCRIPTIONS AND REPETITIONS AND REDUNDANCY AS A FUNCTION OFp.
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