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Abstract

Kernel matching pursuit is a greedy algorithm for building an approximation of a discriminant function as a linear combina-
tion of some basis functions selected from a kernel-induced dictionary. Here we propose a modification of the kernel matching
pursuit algorithm that aims at making the method practical for large datasets. Starting from an approximating algorithm, the
weak greedy algorithm, we introduce a stochastic method for reducing the search space at each iteration. Then we study the
implications of using an approximate algorithm and we show how one can control the trade-off between the accuracy and the
need for resources. Finally, we present some experiments performed on a large dataset that support our approach and illustrate
its applicability.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, a number of machine-learning techniques that
produce sparse classifiers have been proposed. We call a
classifier sparse, if it can be represented as a combination,
usually linear, of some basis functions that depend only on
a small proportion of the training examples. Probably, the
most widely used and well known are the support vector
machines (SVMs)[1], while alternatives include the rele-
vance vector machine (RVM)[2] and the kernel matching
pursuit (KMP) [3]. The sparsity is achieved either as a re-
sult of the constraints imposed, like in the case of SVM, or
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as a consequence of explicit search for the sparsest model,
like in KMP or RVM.

However, when faced with large datasets (in the order of
tens of thousands or more examples) all these techniques
become less practical, requiring huge amounts of resources,
both in memory and CPU time. The main focus of this paper
is to propose a modification of one of these algorithms—the
KMP—so that it becomes tractable to train using large
datasets with a reasonable amount of resources. The basis
of the proposed modification are set by an approximation of
the matching pursuit, known as the weak greedy algorithm.
Using this framework, we introduce a stochastic method for
constructing the classification function. We then study the
implications of such a modification and, more importantly,
the degradation of the accuracy, which is inherent in any
approximating algorithm.

The paper is organized as follows: after reviewing in
Section 2 the KMP algorithm and its approximated vari-
ant, we present the stochastic extension of KMP and em-
pirically study its behavior on a large dataset in Sections 3
and 4, respectively. Finally, we draw some conclusions in
Section 5.
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2. Basic and weak KMP

KMP is a new algorithm that has recently been intro-
duced as an application of the matching pursuit method
from signal processing domain to the case of pattern
classification [3]. Its main advantages stem from its
conceptual simplicity and the sparsity of the models it
produces. Despite its deceiving simplicity, it achieves
performance comparable with that of more complex clas-
sifiers, like SVMs [3], but using models that are much
sparser.

The problem of learning classification functions from ex-
amples can be formally stated as an estimation problem of
a function f̂ : X ⊆ Rp → Y = {−1, 1} using the train-
ing set Zl = {zi = (xi , yi )|i = 1, . . . , l} ⊂ Z = X × Y

generated by some unknown functionf ∗, such thatf̂ will
correctly classify unseen examplesz = (x, y), i.e. f̂ (x) =
y for examplesz that are drawn from the same underly-
ing probability distributionP(Z) as the training data. It
is usually convenient to consider firstly, a more general
problem, where the goal is to find a functionf : X →
R such that a suitably chosen optimality criterion is sat-
isfied, and then to takef̂ = sign(f ). For simplicity, we
will consider only the case of square-error loss function,
L2[f ] = 1

2(yi − f (xi ))2, but the discussion remains valid
for other types of loss functions as well. Furthermore, it
is well known that without any restriction on the class of
functionsf can be chosen from, even if the performance on
the training set is good (e.g.̂f (xi ) = yi,∀i = 1, . . . , l) it
does not meanf̂ generalizes well to unseen examples and
regularization techniques must thus be used when searching
for f̂ [4].

In the case of KMP, one builds an approximation of the
classification function as a linear combination of some basis
functions selected from a dictionaryD:

fn(x)=
n∑

k=1

�kgk(x), (1)

wheregi ∈ D= {g1, . . . , gm}, �i ∈ R,∀i = 1, . . . , n andn
is the number of terms in the expansion. The generalization
capabilities of the classifier are controlled through the struc-
ture of the dictionary and the number of terms in the sum-
mation of Eq. (1). This form of the classification function
is not specific to KMP but can be found in other methods
like SVMs, additive models, radial basis functions, neural
networks and so forth[5,6].

The general matching pursuit algorithm constructs the
approximation in a greedy manner, iteratively improving the
current solution by minimizing the norm of theresidual
‖Rn‖2=‖f ∗−fn‖2. Then, for anyn�0 we define the new
approximationfn+1 to be

fn+1= fn + �n+1gn+1, f0 = 0, (2)

where

(�n+1, gn+1)= arg min
�∈R
g∈D

∥∥∥∥∥∥
f ∗−




n∑
k=1

�k gk+�g




∥∥∥∥∥∥

2

. (3)

In the space of functions, the value ofg that minimizes (3) is
the one that maximizes|〈g, Rn〉|/‖g‖, in other words it is the
function that is most correlated with the current residual. The
corresponding value for� is �n+1 = 〈gn+1, R〉/‖gn+1‖2.

Note that for our case the functions are seen as vectors of
values representing the evaluation of the function on the
training set, so the true labeling functionf ∗ is merely the
vector of training labels(y1, . . . , yl)

t andfn should be seen
as the vector(fn(x1), . . . , fn(xl ))t . Finally, when the dic-
tionary functionsgk are generated by some kernel-like func-
tion, gk(x)= �(x, xk) we obtain the basic kernel matching
pursuit algorithm[3]. Keeping this observation in mind, the
KMP method is described in Algorithm 1.

Algorithm 1. Kernel matching pursuit[3]

input : a datasetZl={(xi , yi )|i=1, . . . , l}, a kernel func-
tion �(·, ·) and the number of iterationsN.

output: fN(x)=∑N
k=1 �kgk(x)

1 build the dictionary matrix:[Dij ] = gj (xi ) =
�(xi , xj ) ∀i, j = 1, . . . , l and let dj be the jth
column ofD;
2 initialize the residual:R←− (y1, . . . , ym)t ;
3 for n= 1, . . . , N do

4
5
6

∣∣∣∣∣∣∣∣∣

kn ←− arg maxk=1,...,l
|〈dk, R〉|
‖dk‖ ;

�n ←− 〈dkn
, R〉

‖dkn
‖2 ;

R←− R − �ndkn
;

7 end

We notice that the bottleneck of the algorithm is represented
by the search of the next element from the dictionary to
be added in the function expansion (line 4 of Algorithm 1).
Usually, this requires a full search over the whole dictio-
nary (with the computation of all inner products〈dk, R〉)
and may necessitate a large number of floating point op-
erations. An alternative is provided by the so-calledweak
greedy algorithms(WGA) [7] which provide an approxi-
mation of the MP and related greedy algorithms. WGA and
its different formulations have been analyzed in Refs.[7,8]
and proofs of convergence of the algorithm exist for vari-
ous conditions. Basically, WGA generates an approximant
sequence

f̃n+1= f̃n + tn+1�n+1gn+1

= f̃n + �̃n+1gn+1, tn+1 ∈ [0, 1], (4)
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where�n+1 and gn+1 are defined as before, and�̃n+1 =
tn+1�n+1. Clearly, fortn = 1,∀n, one retrieves the original
algorithm. The sequence� = {tn|n�1} is calledweakness
sequenceand it must obey some constraints for the algo-
rithm to converge. While different conditions on� result in
different guaranteed convergence rates, we will simply re-
quire that∃t̃ > 0 such thattn � t̃ ,∀n�1 [8], which ensures
the convergence. These modifications imply that we are no
longer forced to produce the global maximum at each it-
eration of the algorithm, but just a value that represents a
fraction of this maximum. It is obvious that the closer we
are to the global maximum, the smaller is the degradation
of the performance compared with the original algorithm.
In the next section we will describe a strategy for construct-
ing the sequencẽfn (and, implicitly, the weakness sequence
�) that exploits this approximate MP algorithm and which
greatly reduces the computation times. As a final observa-
tion, we note the similarity between the termtn+1 from
(4) and other regularization terms, like shrinkage or learn-
ing rate parameters, commonly found in machine-learning
algorithms[9].

3. Stochastic KMP

We start by showing that in order to find the approximate
maximum of a sequence of numbers one can restrict the
search space to a limited subsample of the sequence, and
that the size of this subsample does not depend on the size
of the original set.

Let us assume that we are given a sample{z1, . . . , zs} of
real values generated by a probability density functionp(z),
and letP(z) be the corresponding cumulative distribution
function. Let nowz(k) denote thekth order statistic. Then
the probability distribution function ofz(k) is given by[10,
p. 22]

pk(z)= s!
(k − 1)!(s − k)! [P(z)]k−1[1− P(z)]s−kp(z), (5)

for all k = 1, . . . , s. We note that

max{z1, . . . , zs} = z(s) (6)

and it follows that the distribution of the maximum is given
by

ps(z)= s[P(z)]s−1p(z). (7)

Integrating, we obtain the cumulative distribution ofz(s) as

Ps(z)= [P(z)]s . (8)

This result justifies the following proposition.

Proposition 1. The distribution of the random vari-
able � = max{z1, . . . , zs} is given by [P(�)]s , where

z1, . . . , zs are s independent and identically distributed
random variables and P is the cumulative distribution
function.

Assuming a uniform distribution forzk we obtain the dis-
tribution of the maximum as being�s . In the case of the dic-
tionary for KMP algorithms, if we do not have any informa-
tion about the distribution of the examples, we can assume
that the values of|〈g, R〉|/‖g‖ are uniformly distributed and
we will empirically show in the experimental section that
this is a pessimistic approximation. We are then interested in
finding the number of elements that must be considered from
the full dictionary such that their maximum has a quantile of
at least, say,q, with a given probability. Using Proposition
1 and the fact that the cumulative distribution of the max-
imum is �s , we can formulate the answer as the following
proposition.

Proposition 2. Assuming a uniform distribution of z, the
maximum of a sample{z1, . . . , zs} has a quantile of at least
�1/s with probability1− �.

The practical consequence of this result is that we may
take the maximum ofs = �log�/ logq� randomly chosen
elements from the full dictionary and we still have 1−
� probability of having a value that has a quantile ofq.
For example, assume that we have 10000 examples in the
training set and we want a value that has a quantileq =
0.95 (within the largest 5% values) with probability 95%.
Then we only need to take the maximum of a subsample
of �log 0.05/ log 0.95� = 59 elements, which means merely
0.59% of the original set.

We can now define the stochastic version of KMP. Let
I
(s)
n ⊂ {1, . . . , l} be a set ofs � l indices, calledactive

set at iterationn. I
(s)
n is obtained by randomly sampling

(without replacement) from the full set of indices{1, . . . , l}
and we restrict the search for the maximum to the set
{|〈gk, R〉|/‖gk‖, k ∈ I

(s)
n }. Then the stochastic KMP

(SKMP) algorithm requires replacing line 4 of Algorithm 1
with

generate active setI (s)
n ; kn ←− arg max

k∈I (s)
n

|〈dk, R〉|
‖dk‖ .

It is clear that these modifications lead to a weak greedy
algorithm which is convergent, for the weakness sequence
produced contains only positive elements as long as

I
(s)
n �= ∅. Moreover, by controlling the values of� and
q one can control the trade-off between the speed (the
smaller s the faster the algorithm) and the accuracy (the
larger s the closer we are to the original KMP) of the
algorithm.

Finally, we note that a similar method was pro-
posed in Ref.[11] for speeding up the optimization of
SVMs.
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Fig. 1. Error rates on the testing set using models obtained by training on sets of different cardinality.
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4. Experiments

The main goal of the experiments reported here is to
investigate the behavior of the approximate version of the
KMP and to compare it with the original KMP. In all our
experiments we used the largest dataset available in the
UCI repository [12]—the Forest dataset. We transformed
the original multi-class problem into a binary classifica-
tion task where the goal was to discriminate class 2 from
all the other six classes, this kind of partitioning mak-
ing the two new classes of roughly the same size. As
we were also interested in analyzing the performance of
the algorithm on training sets having different cardinality,
we have created four different disjoint training sets of,
respectively 5000, 10,000, 15,000 and 50,000 elements,
by randomly selecting examples from the original set. Fi-
nally, we have selected an independent test set of 30,000
examples.

When using the SKMP one has to select before starting
the number of elements in the active set. In our experiments
we used two different settings, one with 59 elements and
one with 228 elements, corresponding to(�=0.05, q=0.95)
and (� = 0.01, q = 0.98), respectively. In order to analyze
the influence of the randomness introduced in the algorithm,
we have repeated 10 times each of the experiments involv-
ing the SKMP. Finally, we have also trained an SVM for
each of the four different training sets (the dashed line in
the plots) and used it as a baseline classifier for compari-
son. The results are depicted inFig. 1where the rows corre-
spond to the four different training sets, while the columns
correspond to, respectively 59 and 228 elements in the ac-
tive set. On the horizontal axes are the iterations of KMP
(from 200 to 2400) and on the vertical the error rates. The
continuous line corresponds to the error rate of the clas-
sical KMP, while the dashed line correspond to the error
rate of a SVM. The error rates of the SKMP are given as
boxplots.

The kernel used in all experiments was a Gaussian ker-
nel, �(x1, x2) = exp(−�‖x1 − x2‖2), and we let� = 0.5
for (S)KMP and � = 0.03185 for SVM with the� pa-
rameter chosen by 10-fold cross-validation on a 5000 ex-
ample set. As one can notice fromFig. 1, increasing the
training set size results in significantly better performance
of all classifiers. What is also interesting to note is that
(S)KMP algorithms generally reach the same error rate as
SVM but using much sparser models: for the four datasets
(in increasing order of their cardinality) the SVMs had
2643, 5174, 7529 and 23048 support vectors, respectively,
while the (S)KMP had the number of terms upper bounded
by the number of iterations (at most 2400). The case of
the training set having 50,000 examples requires more it-
erations for KMP to reach the same classification error
as SVM.

Comparing the two cases for SKMP, corresponding to
the two different dimensions of the active set, we see
that in the second case the degradation of the perfor-

mance is much less significant than in the first case, as
predicted by Proposition 2. Another important observa-
tion is that the behavior of SKMP mimics the one of
its deterministic counterpart. This means that an equiv-
alent level of performance can be reached given more
iterations, but this increase in the number of iterations is
largely compensated by the reduced number of floating-
point operations needed to compute the inner products
〈dk, R〉.

The main advantage of SKMP over KMP is due to the
smaller number of floating point operations needed: indeed,
if one disregards the overhead caused by the sampling pro-
cess for building the active set, the only difference between
the two algorithms resides in the way they search for the
next basis function: while KMP performs a full search—and
the number of inner products computed equals the number
of examplesl—the SKMP computes justs inner products.
This means that while the complexity of KMP is linear,
the one of SKMP is constant. Moreover, if we approximate
the gain of speed as a function ofs/ l, the gain will be
more significant with the increase of the cardinality of the
training set.

Finally, we have empirically observed that the distri-
bution of the values|〈dk, R〉| is not uniform—as initially
assumed—but rather exponential, for the particular type
of kernel and training set used. This means that our
initial hypothesis gives a pessimistic approximation of
the maximum: for an exponential density of the form
f (z) = exp(−z) the equivalent of Proposition 2 would
guarantee a quantile of at least− ln(1− �1/s) with proba-
bility 1− �, which is a better quantile than�1/s (� ∈ [0, 1)).
Nevertheless, Proposition 2 gives a good conservative
estimate.

5. Conclusions

We have presented a stochastic version of the KMP algo-
rithm that has the advantage of greatly reducing the com-
putational overhead. While being an approximation of the
original KMP, the approach described produces compara-
ble results: for example, the decrease in accuracy, for 59
elements in the active set, was around 0.5%–1%, and this
error became less significant with the increase in the num-
ber of iterations. On the other hand, one can control the
trade-off between accuracy and speed by choosing a suitable
value for� andq parameters that determine the size of the
active set.
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