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Abstract

Multimodal signals can be defined in general as signals originating from the
same physical source, but acquired through different devices, techniques or
protocols. This applies for example to audio-visual signals, medical or satel-
lite tmages. Understanding the joint dependencies of such signals is the first
step toward intelligent means for their analysis. Information theory offers
a rich theoretical framework in which such dependencies can be emphasized
and from this, new methods of signal analysis can be developed.

Measures derived from information theory have been used in classifica-
tion, in a preprocessing step aimed at finding the relevant features. These
features can either be simply chosen from the available data (feature selec-
tion) or be obtained as the result of some linear or nonlinear transform
(feature extraction). The common point of such techniques is the optimiza-
tion of information theoretic measures of the obtained features, measures
that should relate to the content of relevant information present in them.

FEzxtending these methods to multimodal signals would offer powerful means
to understand in which way such signals are related and thus, how to extract
the relevant information from them.



1 Information theoretic background

Information theory is a vast domain that has grown from communication
theory, with contributions spanning from computer science or physics to
statistics. Two of its theorems that are important in the context of signal
processing are the data processing inequality and Fano’s inequality.

1.1 The data processing inequality

Most of the time, data needs to be preprocessed before it can be analyzed.
The data processing inequality proves that no processing of the data can
increase the amount of information in it.

The theorem is formally stated as follows [1]: if X, Y and Z are three
random variables forming a Markov chain X — Y — Z (that is, X and Z are
conditionally independent given Y, p(x, zly) = p(z|y)p(zly)), and I(X;Y),
I(X;Z) are the Shannon mutual information values measured between X
and Y, respectively X and Z, then I(X;Y) > I(X; 7).

Assuming that the relevant information that is sought in the signal is rep-
resented by the random variable X and the data by Y, there is a dependency
between them. If the data passes through some transformation g(Y) = Z,
these three random variables form a Markov chain X — Y — ¢(Y'). This
means that I(X;Y) > I(X;¢(Y)). The inequality shows that no function
applied on the data can possibly increase the amount of relevant information,
but only decrease it (or keep it unchanged).

Note that this does not mean that preprocessing data is wrong or fu-
tile. The inequality just states what can or can not be obtained from the
data. Indeed, processing the data can reduce its dimensionality, remove
noise or redundancy, but it can never add information that was not there
initially. However, knowing how much relevant information was contained
in the original data is usually impossible to compute in practice, because of
the difficulties of computing information theoretical measures.

1.2 Fano’s inequality

When estimating one random variable from the value of another dependent
random variable, some errors will be made. Fano’s inequality quantifies the
probability of making such errors, tying it to the conditional entropy of the
two. Formally, if X and Y are two random variables and H(X|Y) is the
Shannon conditional entropy between them, then the probability of error
when estimating X from Y will verify this inequality [1]:

H(X|Y)-1
Pe = logN

where N is the number of elements in the range of X.

(1)



Assuming again that the information that we are seeking is represented
by the random variable X, and the data by Y, we have a quantitative lower
bound on the error that is made when trying to infer something from the
data.

As an example, X could represent the class labels in the case of supervised
classification. Then the bound gives us a measure of the best performance
achievable by a hypothetical ideal classifier. However, there are no guaran-
tees that a particular classifier will reach such a performance. In practice,
it would be our goal to ensure that Fano’s bound is as low as possible, so
that any classifier, if properly trained, has a chance of performing well. The
bound only gives the lowest theoretical error, and minimizing it ensures that
classifiers can potentially reach such a low error.

So minimizing the lower bound of the error does not guarantee a low er-
ror. However, if the bound is high, the error will certainly be high regardless
of the classifier.

1.3 Mutual information in classification

In the case of supervised classification, several methods of feature selection
or extraction use mutual information as a measure of the quality of the
features.

In feature selection, the aim is to choose from the data only the features
that are relevant to the problem. In the case of extraction, features are
obtained as the result of linear or nonlinear transforms applied on the data.
The purpose of both selection and extraction is to reduce the dimensionality
of the data, while at the same time retaining only the information that is
necessary for classification.

Dimensionality reduction is desirable because it makes it easier to train
a good classifier. The training process is faster when the data has a lower
dimensionality, and the same accuracy may be attained with less samples.
If noise is removed from the data through this operation, accuracy may even
improve, although we know from the data processing inequality that such
transforms on the data can never add information that was not present there
before.

Let C be a random variable representing the class labels and X the data.
The following relations describe the connections between the entropies of
the two variables and their mutual information [1]:

I(C;X) = H(C)+H(X) - H(C,X) 2)
= H(C)-H(C|X) (3)
= H(X) - H(X|C) (4)

The same relations can be illustrated on a Venn diagram, as in figure 1.
Intuitively, mutual information measures the information shared between C
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Figure 1: Venn diagram for the mutual information and conditional en-
tropies for class labels (C) and data (X).

and X. If they were independent, their mutual information would be zero.
Conversely, if C and X were identical, their mutual information would be
equal to the entropy of C (or X) alone.

Applying some transform on the data to obtain features results in a new
random variable F=f(X) (feature selection can be considered a particular
case of a data transform). The three random variables C, X and F form a
Markov chain, C' — X — F.

Intuitively, the extracted features should contain as much information
about the class labels as possible. So, one criterion for the extraction of
features should be to maximize the mutual information between C and F,
as this measure shows how much the features can say about the class labels.
Indeed, many algorithms for feature selection or extraction take such an
approach.

The same reasoning can be justified through Fano’s inequality, as:

H(C|F)—-1 H(C)—-I(C;F)—-1
Pe = logN N logN

()

Pe expresses here the probability of making an error when estimating the
class labels from the features, that is, when doing the classification. Since
the class entropy H(C') is a constant, trying to minimize the lower bound of
this error probability is equivalent to maximizing the mutual information.
It is evident from the data processing inequality that this maximization can
not add information, since I(C; F') < I(C;X), but we can try to extract
as much information as possible from the data, approaching I(C; X) while
keeping the dimensionality low, as illustrated in figure 2.

The conditional entropy H(C|F) plays an important role in Fano’s in-
equality. Indeed, it shows how much information about the class labels can
not be inferred from the features, or how hard it is to separate the classes,
given the features. When H(C|F) is high, the classes are difficult to dis-
cern. Intuitively, this means that the class probability distributions overlap,



Figure 2: Venn diagram showing how the mutual information between the
class labels and the extracted features relates to the MI between the class
labels and the original data.

leading to a high error probability. At the other end, a low H(C|F') means
the class probability distributions are clearly separated and the probability
of error is consequently low.

Considering now the conditional entropy of the features given the classes,
H(F|C), we have a measure of how much information in the features is
irrelevant to the task. This can be considered noise and should ideally be
kept as small as possible, ensuring that the classifier is not supplied with
irrelevant data.

As mutual information is hard to compute in a high dimensional space,
practically all feature selection or extraction algorithms use approximations
to deal with this problem. The MIFS algorithm [2] ("Mutual Information-
based Feature Selection”) proposed by Batitti in 1994 selects features based
on their individual performance, that is, how large is the mutual informa-
tion between one feature individually and the class label. This avoids the
difficulty of computing MI in high dimensions, but may miss features which
are only relevant when taken together. The typical example for this is a
XOR classification problem (where the class labels are the result of a XOR
operation between the binary features), because here, one individual feature
is irrelevant to the classification task, which can only be performed when
the features are taken together.

To avoid picking redundant features, MIFS penalizes features that are
too similar, that is, they have high mutual information between them. Many
related algorithms exist, such as those proposed in [3] or [4].

Bollacker [5] prefers the joint mutual information as a criterion, searching
pairs of features that together have a high mutual information with the
class label. His SMIFE (Separated Mutual Information Feature Extractor)
algorithm is similar to PCA, in the sense that a joint mutual information
matrix is built and its eigenvectors are found. Analogous to PCA, these
eigenvectors should be directions of high mutual information with the class
label in the feature space.

A different approach is taken by Principe [6]. In his methodology for
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Figure 3: A depiction of the joint probability for a two-class example. In
this case, if the vertical line represents the decision boundary, the samples
from the grayed area will be misclassified. It can be easily seen that the
error is minimal when the boundary is placed on the point where the two
probability functions intersect [9].

information theoretic learning, he derives new measures for entropy and
mutual information, measures that include the nonparametric probability
density estimator implicitly. They are easier to compute, as they are based
on the interaction between pairs of samples. His methodology describes in
general how to adapt the free parameters of learning machine according to
information theoretic criteria. This methodology is applied by Torkkola [7, 8]
for feature extraction. He aims to find dimensionality reducing functions,
either linear or nonlinear, that maximize the mutual information of the new
features with the outputs.

1.4 Bayes error and information theory

If X is the data and C; are the classes, the posterior probability is defined
as p(C;|z). This is the probability that a sample belongs to the class C;
after having observed the feature vector z. Ideally, a classifier should select
the class having the largest posterior probability, that is, choose the class
C, such that p(Cg|x) > p(C;|z) for any i # k. It can be proven that this
leads to a minimal probability of misclassification [9]. However, the true
probability distributions are hard to estimate, so in practice the probability
of error will be higher.
From Bayes’ rule, the posterior probability is equal to

p(z|C;)p(Cy)

p(Cila) = PR

Since p(z) is independent of the class, the classification rule can also be
written as p(x|Cy)p(Ck) > p(z|C;)p(C;) for any i # k. Figure 3 shows how
in the simple two-class case this rule leads to a minimum classification error.



In the general case, if the class of a sample is chosen as
Cy = arg max p(Cjlz),
7

the probability of error in the case of the sample x is given by 1—max p(C;|z).
The total probability of error, called Bayes error, is the expectation of this
measure over all the samples:

pe = Ep [1 - mlaxp(Cilx)}
_ / p(x) [1 - mlaxp(Ci\x)] dz

= 1—/mzaxp(x\ci)p(0i)dx

Since we used the classification rule that gives the minimal classification
error, Bayes error is the smallest error that can be theoretically obtained. No
classifier can perform better. However, computing the bound numerically
depends on the estimation of the probability density function.

The link to information theory is shown by Vasconcelos [10] through the
following bound on Bayes error:

_log(2N —1)

1
> ——H(C|F

~ logN

where N is the number of classes.

This bound is very similar to Fano’s bound, the only difference between
them being an additive constant ﬁ log % The extremes of the two
bounds are equal. Furthermore, since the constant is always positive, it
follows that the bound of Vasconcelos is higher than Fano’s bound. When
the number of classes grows, the difference between the two bounds decreases
rapidly. A justification of this difference may be the fact that Fano’s bound
as presented here is a weakened form of a higher error bound. The initial

form of the inequality, as found in [1]:

+1, (6)

H(pe) +pelogN > H(C‘F) (7)

does not allow the bound on the probability of error to be expressed explic-
itly.

In conclusion, minimizing the conditional class entropy H(C|F’) or corre-
spondingly maximizing the mutual information I(C; F) leads to minimizing
a bound on Bayes error.



2 The gains of multimodal signal processing

2.1 The meanings of ”multimodality”

The word multimodal is used by researchers in different fields and often with
different meanings. There is sometimes a confusion between multimodal and
multimedia. We will present a number of different situations where the word
multimodal appears, and its associated meaning. We will also emphasize
the difference between the meaning given to multimodal in the context of
multimodal interfaces (or systems), compared to that of multimodal signals.

Most commonly, the word multimodal is used in the field of human-
computer (or man-machine) interaction. Here, a modality is a natural way
of interaction: speech, vision, face expressions, handwriting, hand gestures
or even head and body movements. Using several such modalities can lead
to multimodal speaker tracking systems, multimodal speech recognizers, or,
more generally, multimodal interfaces. Such interfaces aim to facilitate the
human-computer interaction, augmenting or even replacing the traditional
keyboard and mouse. An example is given by audio-visual speech recognition
[11], which aims to improve the performance of audio-only speech recognition
through the use of the visual modality.

As will be shown in the following, apparently not all multimodal in-
terfaces or systems use or analyze multimodal signals. The difference will
become apparent after the overview of such systems and the modalities em-
ployed.

For psychologists, sensory modalities represent the human senses (sight,
hearing, touch and so on). This is not very different from the previous
interpretation. However, other researchers can use the word modality in a
completely different way. For example, linked to the concept of medium as
a physical device, modalities are the ways to use such media [12]. The pen
device is a medium, while the actions associated to it, like drawing, pointing,
writing or gestures are all modalities.

Generally, the word multimodal is associated to the input of information.
However, there are cases where the output of the computer is considered
multimodal, as is the case of multimodal speech synthesis, the augmentation
of synthesized speech with animated talking heads.

In the context of medical image registration, a modality can be any of
a large array of imaging techniques, ranging from anatomical, such as X-
ray, MRI or ultrasound, to functional, like fMRI or PET [13]. Multimodal
registration is the process of bringing images from several such modalities
into spatial alignment. The same term is used in remote sensing, where
the modalities are images with different spectrums [14] (visible, infrared or
microwave for example).

A multimodal biometrics system [15] can rely on fingerprints, face, iris,
retina, signature, voice or other types of information, all with the purpose



of establishing the identity of the user. The modalities named here are not
as closely related as, for example, medical images.

With all these different situations, defining multimodal systems in general
is difficult. All multimodal systems extract meaning from multiple sources of
information. However this is quite vague and insufficient, as not all systems
using multiple input sources can be called multimodal.

Defining multimodal signals may be just as difficult. They are defined as
signals originating from the same physical source [16] or phenomenon, and
thus manifesting some dependency. This dependency is present even if they
might have been distorted, affected by noise or changed in other ways which
would make it difficult to emphasize their common origin. Note however that
this definition excludes some combinations of signals previously mentioned
as modalities. Gestures and speech do not have a dependency at the signal
level, and the same is true for fingerprints and signatures.

Take for example a pen and voice ”put-that-there” interface (which is
definitely a multimodal interface). In this case, the signals, voice and pen
gestures, are purely complementary, and we would not expect any correlation
between the two other than the moment in time when they occur. The two
signals do not originate from the same physical source, and they do not
convey the same information.

In multimodal biometrics, multimodal databases can be built by joining
separate sets of single modality data collected from different persons. This
can be done as there is no correlation at the signal level between fingerprints
and handwritten signatures (or faces), so the experiments on such databases
are still valid.

We shall limit the scope of our discussion to signals that do have a
common source, that we expect to have a dependency or to be correlated
in some way. From the information theoretic point of view, that means
there should be features in the multimodal signals that have a high mutual
information between them. This mutual information represents a measure
of the information that is shared between the multimodal signals.

2.2 Different goals

But is the common information the only useful information in the multi-
modal signals? Not necessarily. Most of the time, the information that we
seek may be more than just the shared information between the signals.
Take for example multimodal medical image registration. There may be de-
tails visible in one modality and invisible in another. This complementarity
is exactly the reason why multiple modalities are used in the first place. The
shared information is the part used for registration, but the complementary
information remains in the registered images.

When the goal is feature extraction, the features should contain all (or
most of) the information that is relevant to the given task. When samples
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Figure 4: Venn diagram for the mutual information and conditional en-
tropies for class labels (C) and features from two modalities (X and Y).

representing this relevant information are available, they could be used to
guide the feature extraction process. An example for this case is audio-
visual speech recognition. Here, the relevant information is the phoneme
class to which a sample belongs, so the features extracted from both the
audio and visual modalities should exhibit a dependency with these phoneme
classes. Extracting features from only the part that is common may miss
the information that is complementary.

On the other hand, when the goal is the synchronization or alignment
of the two signals, the extracted features should be associated to the infor-
mation that is common to the two signals. This is the case for example for
audio-visual speaker tracking. Having a video sequence of people speaking,
the goal is to find the region in the image which shows the highest depen-
dency with the sound. This region should correspond to the mouth of the
active speaker at a given time, as the movements of the mouth should cor-
relate to the audio [17]. Here, the relevant information is unavailable, as we
do not know for sure which features best express the synchrony between the
two signals. But it can be assumed that the mutual information is a good
indicator of this synchrony.

Making an analogy with machine learning, we could call the first case,
the one where the relevant information is known, supervised, and the second
unsupervised.

2.3 The supervised case

Assume that, besides the multimodal signals, we also have class labels avail-
able. Let X, Y and C be three random variables, the first two representing
signals, and the third the class labels. Figure 4 represents the information
theoretic measures showing the way information can be distributed between
the three. We will present next the significance of each component and how

10



it can be used.

I(X;Y;C) is a measure of how much information is present in both
modalities, and is at the same time relevant for our problem. However, being
present in both means it can also be considered redundant in one of them.
Once identified, features that seem to be tied to this type of information
could be picked from only one modality, the one that is more reliable at a
given time.

I(X;C|Y) and I(Y; C|X) measure the amount of relevant information is
specific to one of the signals X and Y. This is the complementary information
that is most of the time the reason why several signals are used. If all the
relevant information was common to the signals, then it could be extracted
only from one, and the second would be unnecessary.

Take for example the case of audio-visual speech recognition. The class
information is in this case represented by phoneme labels. Features from the
two modalities that are correlated with these labels are relevant, and they
will have a high mutual information with the class label. If they also have a
dependency between them, that means that their information is common to
the two modalities, and they have some redundancy. If not, then they are
complementary, and each feature has specific information about the class
label.

I(X;Y|C) is the information present in both signals, but irrelevant to
our problem. This could be noise that is accidentally correlated in both
signals, but could also be real information that is not needed. Depending on
the problem, the class labels may not justify all the dependencies between
the modalities. The class labels do not model the underlying physical source
of the signal, but rather the information that we seek about that source.

We return to the example of audio-visual speech. There may be some
correlation between the audio and video signals which is specific to each
individual. This information is not correlated with the phoneme labels, and
increases the value of I(X;Y|C). Imagine now that, instead of trying to
recognize the spoken words, we want to identify who is speaking. In this case,
the audio-visual correlation that is specific to each person becomes relevant
information, while the one related to the phonemes becomes irrelevant.

The entropies are also significant. H(C|X,Y") shows how difficult it is to
discern the classes, given the features. Its value is linked to the probability
of misclassification, as shown by Fano’s bound.

H(X|C,Y) and H(Y|C,X) quantify how much irrelevant information
is specific to each modality. When extracting features, the corresponding
conditional entropies of the features should be kept low.

Two things can be gained from exploiting the multimodality: comple-
mentarity and redundancy. Complementarity implies that each modality
brings its own contribution, and the result is more useful than individual
modalities. Redundancy means that some information is duplicated and,
depending on the application, this can be used. The redundancy can lead
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to better noise tolerance, or even allow a system to function in the extreme
case when one of the modalities has been lost completely.

Let us consider now the extraction of features in this context. Let F'x be
the features extracted from modality X, and Fy from Y. In all supervised
applications, the extracted features should have a maximum mutual infor-
mation with the class labels, so I(C; Fx; Fy), I(C; Fx|Fy) and I(C; Fy|Fx)
should be simultaneously maximized.

Since the information represented by I(C; Fx; Fy) appears in both mo-
dalities, including it in both F'x and Fy leads to some redundancy. Depend-
ing on the application, this redundancy may either be considered undesirable
and minimized, or it may contribute to the system’s reliability and tolerance
to noise.

An extraction scheme where one modality is favored may also be taken
into consideration. If one of the modalities, for example X, is more reliable
than another, features could be extracted based mainly on X, representing
the information I(C; Fx), while additional features would augment them
with the complementary information I(C; Fy'|Fx). A possible example for
this is building an augmented audio vector for speech recognition, by adding
information from the video stream.

To model this process of feature extraction, two parallel Markov chains
can be built:

C—>X—>FX—>C'
C—>Y—>Fy—>é’

Assuming that the modalities are used individually to estimate the class
label C, two bounds can be set on the two error probabilities:

H(C|Fx)—1
>~ 7 =B
Pex = logN X
H(C|Fy)—-1
>~ 7 =B
Pey' = logN Y

But if the modalities are used together, the error probability will be bounded
by:

H(C|Fx,Fy)—1
logN

DeXy = = Bxy

Since conditioning reduces entropy [1],
H(C‘Fx, Fy) < H(C|Fx) and H(C|FX7 Fy) < H(C‘Fy)
It follows that the bound obtained when using both modalities, Bxy, is lower

than both bounds for individual modalities, Bxy < Bx and Bxy < By.

12
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Figure 5: Venn diagram for the mutual information and conditional en-
tropies for features from two modalities (X and Y), when class labels are
unavailable.

This shows that the multimodal approach has indeed the potential to lead
to a lower error probability.
Since:

H(C|Fx,Fy)=H(C)—-I(C;Fx|Fy) — I(C; Fy|Fx) — I(C; Fx; Fy),

minimizing the bound Byy means that I(C; Fx; Fy), I(C;Fx|Fy) and
I(C; Fy|Fx) should be maximized simultaneously, confirming our previous
statement.

Maximizing the mutual information between the features and the class
information is a promising concept, but estimating this mutual information
is difficult. The reasons for this will be detailed in section 3.

2.4 The unsupervised case

Let us consider the case when class labels are unavailable, in applications
such as image registration or speaker tracking. Here, the goal may be to
synchronize or align several signals, without knowing the type of informa-
tion that is relevant to this task. This alignment is achieved when samples
considered similar by some criteria originate from the same sampling po-
sitions in the different modalities (image registration), or regions of high
dependency are identified (speaker tracking). Taking a similar approach as
in the previous section, features could be extracted in such a way that the
relation between the signals is emphasized.

Figure 5 shows how the information could be distributed between two
modalities if we do not know which part of it is relevant. An analogy could
be drawn with the supervised case, considering that there is a part of the
mutual information that is relevant for our task and another part that is
irrelevant, but this time the border between them is hidden.

The mutual information 7(X;Y") is a measure of the information shared
between the two signals, X and Y. Making a parallel to the previous case,
the fact that it is common to both signals may not necessarily mean it is also

13



relevant in its entirety. However, if the two have a common dependency, that
will be reflected as a higher value of their mutual information. Determining
however how much of the common dependency is due to information that
is relevant to the particular problem is difficult without knowing more. For
some specific problems, we already know that the common information is
important, as is the case for medical image registration. Extracting features
with high mutual information between modalities can be further justified
with Fano’s inequality, as will be shown shortly.

The entropies H(X|Y) and H(Y|X) measure the amount of information
characteristic to each of the signals. Again referring to the previous case, this
information might not be entirely irrelevant. Some prior knowledge could
be added, specific to each modality. Let us take for example a multimodal
speaker tracking application. If face detection is used before identifying
the speaker, then this means that information that is specific to the visual
modality has been used. In this way, information specific to only one of the
modalities is used before searching for a dependency between them.

For multimodal medical image registration, typically the mutual infor-
mation is used to find a transform that maximizes the dependency between
the images. However, the registered images still contain all the informa-
tion, including that which is specific or complementary. For example, in
[16], the gradients are used as features for the registration, which is done
by maximizing the mutual information, but then the images themselves are
used for the diagnostic. This means that although the information that was
common to the modalities was used for registration, the complementarity is
still present, and, in the end, it is this complementarity of the modalities
that justifies the multimodal approach.

As can be seen from these examples, not only the mutual information
between the modalities is important. The information characteristic to each
modality should be taken into account and used whenever possible.

The signals representing each modality are all sampled signals. When
trying to achieve a synchronization of these signals, the goal is to find the
sampling positions in one modality corresponding to positions in the other.
This is the case in image registration for example. Let us consider O as a
random variable representing the sampling positions in the original signals,
and O as the estimated sampling positions. If X and Y are two different
modalities, and F'x, Fy are the features extracted from these modalities,
then, following the approach of Butz [16], two parallel Markov chains can
be built:

O—>X—>FX—>FA'y—>Y—>OA
O—>Y—>Fy—>F?X_>X—>OA

Here, Fy and Fy are feature values estimated from the other modality.

14



From these values, the corresponding sampling positions O can also be es-
timated. The probability of error when estimating O can be bounded by
[16]:

I(Fx; Fy)+1

= o > -
Pe1 =p(0#0)>1 log N B
. I(Fy; Fx)+1
= > _— =
De2 P(O 7é O) >1 lOg N B

where N is the number of sampling positions in the range O.

When estimated correctly, the variables F 'x and Fy will have the same
joint probability density functions, p(FAX, Fy) = p(Fx, Fy) and p(FY, Fy) =
p(Fx,Fy). This in turn leads to I(Fx; Fy) = I(Fx;Fy) = I(Fx; Fy),
showing that the lower bounds for the probability of error are equal [16]:

I(Fx;Fy)+1

Bi=By=1-
! 2 log N

This justifies the use of mutual information when searching for the fea-
tures that best represent the synchrony of the signals. Such features should
have a high mutual information between modalities. However, as will be
shown in the next section, it is also desirable that the entropy of these
features be small.

2.5 Feature efficiency

When looking for features having maximum mutual information, there is
always the danger of adding superfluous information to these features. This
is reflected in the joint entropy of the features, H(Fx, Fy). A high joint
entropy means that there is a lot of irrelevant information added in the
features.

This is why efficient features [16] are desirable, features that have high
mutual information, showing that they reflect the relation between the mo-
dalities, but at the same time have a low entropy, meaning that there is little
superfluous information present. Of course, since H(Fx, Fy) > I(Fx; Fy),
the joint entropy is always higher than the mutual information, but ideally,
for highly efficient features, their ratio should be close to one.

The feature efficiency coefficient measures precisely this ratio between
the mutual information and the joint entropy of features:

I(Fx; Fy)

Fyx, Fy) = X 0Y)
e(Fx, Fy) Ay 5y

(8)

As both values are positive, and H(Fx, Fy) > I(Fx; Fy), the value of
the efficiency coefficient is always between 0 and 1.
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Figure 6: An example of two perfectly separated classes in two dimensions.
As the two classes are linearly separable on each of the two directions, one
of Fy, Fy is redundant.

Maximizing the feature efficiency coefficient tries to strike a balance be-
tween minimizing the error bound through the maximization of the mutual
information, and at the same time keeping the joint entropy low.

2.6 The role of redundancy

Redundancy means that the same information can be present in several
different locations. Whether this is desirable or not entirely depends on the
context.

In the case of supervised classification, where a low dimensionality is
sought, redundancy in the extracted features should be kept low. Indeed, if
a feature does not add new information to that already present in the other
features, then it is useless. A high mutual information between features is
an indicator of redundancy in them.

However, some redundancy can still be useful. Take for example the case
in figure 6. Each of the features F1 or F2 can perfectly separate the two
classes, so one of them is redundant. But when using only one of them, the
margin of separation is small. When taken together, the margin is greatly
increased, showing that redundancy in the features can sometimes have a
positive effect. In this particular case, the redundancy can be eliminated
by transforming the coordinates through a rotation, where one axis would
be parallel to the maximum margin separating line, and the other perpen-
dicular. This would lead to one feature that has all the separating power
required, and another which is superfluous.

For both the supervised and unsupervised cases, redundancy can be
present either between the features of a single modality or between the mo-
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dalities themselves. Keeping some redundancy between modalities can im-
prove the reliability of the application. If one of the modalities is degraded,
the information in the other one can still be used. This redundancy between
the modalities is given by the information that is common to them. Such
common information uncovers the relation between the modalities, and it is
this relation that we seek to interpret.

3 Pitfalls of estimation

3.1 The curse of dimensionality

The term ”curse of dimensionality” refers to the fact that, with the increase
of dimensionality, the same amount of data becomes less and less informa-
tive. For example, 100 observations in a one-dimensional space can be used
to build a histogram and draw some conclusions, while in a 10-dimensional
space, 100 observations become only isolated points.

Computing the values of entropy and mutual information requires the
estimation of (joint) probability density functions, and this estimation is
affected by the curse of dimensionality. The number of examples that is
required grows exponentially with the dimensionality of the space.

Since computing the mutual information between multidimensional vari-
ables is a difficult problem, usually approximations are sought. Most of the
time the value of mutual information is either approximated by a sum of low-
dimensional terms, or computed directly in a low-dimensional transformed
space.

3.2 A worst-case scenario

The values obtained for entropy and mutual information are only estimates
based on the limited number of observations available. It may be possible
that these estimates are not accurate at all. The following is a worst-case
example of how misleading estimates can be.

Assume we want to estimate the values of a random variable X from
a related random variable Y, with the help of some transform g(Y’), such
that X = ¢(Y). Maximizing the mutual information between g(Y) and X
should in this case minimize the bound given by Fano’s inequality on the
probability of error. So a possible approach is to find the transform g(Y")
such that 1(X;¢(Y)) is maximized. If g is a very flexible transform however,
it could overfit, learning in the worst-case perfectly the values of X from the
training set. If g(Y) = X for all the available examples, then the mutual
information is indeed maximized, reaching I(X;X) = H(X). However,
this contradicts the data processing inequality, I(X;¢g(Y)) < I(X;Y), as
I(X;Y) < HX).
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In fact, this is only an apparent contradiction. The computed value of
the mutual information I(X;g(Y’)) is only an estimation, given the points
in the training set. The real value of I(X;¢g(Y)) should be much smaller, as
g(Y) has been overfitted.

This example shows the difference between computed and real mutual
information. In this case, the real probability densities of X and X are differ-
ent, while the estimated probabilities are identical. To avoid such problems,
some method of regularization is necessary.

While extracting features based on information theoretic measures, Tork-
kola [8] observed that ”flexible non-linear transforms” generalize poorly, es-
pecially when there are few data points. Similarly, his conclusion was that
regularization is required.

4 Conclusion

Information theory is a very useful tool in the analysis of multimodal signals.
Methods that are already used in supervised classification can be adapted
to find relevant information in multimodal signals, and expose the relations
between modalities.

The use of information theoretic measures can be justified by the min-
imization of an error bound. Choosing from one modality features that
convey a maximum of information, either about the class or about the other
modalities, minimizes the lower bound of the error, be it classification or
registration error. There are no guarantees that in practice the lower bound
can be reached, but its minimization potentially allows the error to decrease.
Obviously, if this bound was high, the error would certainly be high.

Estimation also plays a very important role. Without accurate estima-
tion, the information theoretic measures can be misleading, as was shown.
Because of the curse of dimensionality, these measures can not be practically
computed for high-dimensional data, as the number of required samples is
very high.
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