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Abstract

This paper presents an algorithm to correlate audio and visual data generated by the same physical phenomenon.
According to psychophysical experiments, temporal synchrony strongly contributes to integrate cross-modal informa-
tion in humans. Thus, we define meaningful audiovisual structures as temporally proximal audio-videoevents. Audio
and video signals are represented as sparse decompositionsover redundant dictionaries of functions. In this way, sig-
nals are expressed in terms of their salient structures, allowing the definition of perceptually meaningful audiovisual
events. The detection of these cross-modal structures is done using a simple rule called Helmholtz principle.

Experimental results show that extracting significant synchronous audiovisual events, we can detect the existing
cross-modal correlation between those signals even in presence of distracting motion and acoustic noise. These results
confirm that temporal proximity between audiovisual eventsis a key ingredient for the integration of information
across modalities and that it can be effectively exploited for the design of multi-modal analysis algorithms.

Index Terms

Audiovisual association, multi-modal data processing, cross-modal event localization, geometric video represen-
tation, Gestalt theory, Helmholtz principle,a contrariodetection.

I. I NTRODUCTION

In this work we introduce and discuss a new framework for detecting events in audiovisual signals. In
particular, we want to localize the source of a sound in the video sequence. Such task is quite trivial for
humans, while it is particularly challenging for automaticsystems. It is for this reason that we have decided
to study a perceptually-driven approach to audiovisual fusion, that is based on our previous work on audio-
visual modeling and fusion [1], [2], and that has been inspired by the research of Desolneux, Moisan and
Morel onGestalt theoryand Computer Vision [3], [4], [5].

First of all, let us briefly introduce what Gestalt theory is.Starting from the first decades of past century,
Gestaltists [6], [7] have tried to express all the basic lawsthat rule human visual perception. The basic
set of such laws consists ofgrouping laws: Starting from local data, objects are formed by recursively
building larger visual objects,i.e. gestalts, that share one or more common properties. Such properties
represent specific, simple qualities of visual objects. Thelist of qualities according to which gestalts are
built includes proximity, similarity, continuity of direction, amodal completion, closure, constant width,
tendency to convexity, symmetry, common motion, past experience [7]. Clearly, such simple rules are not
able, alone, to explain the human perception of the world. Thus, more complex principles governing the
collaboration and the contrast between gestalt laws have also been introduced. Here, we will focus our
attention on the basic set of simple grouping laws, called byDesolneux and coworkers [5]partial gestalts.
The interested reader is referred to [7] for an exhaustive presentation of the Gestalt theory of perception.

There are two interesting facts that we want to emphasize, inorder to make clear why we are interested in
Gestalt theory and how is it related to our research work on cross-modal event localization.

• Gestalt laws have been demonstrated to hold not only for visual perception, but also for other
type of sensorial experiences, like acoustic and tactile perception [7]. Moreover, several works in
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psychophysics and neuroscience have also shown that Gestalt-like rules, and notably temporal proxim-
ity, contribute to integrate cross-modal information in humans [8], [9], [10], [11]. In particular, Jack
and Thurlow [8] found that synchronization of visible movements with peaks of speech intensity was
the main condition for considering audiovisual stimuli originated by the same generating event. Thus,
we can think of designing an audiovisual event detector thatexploits cross-modal information just like
humans do. We will discuss more in detail in section IV how we can build a model of audiovisual
phenomena that will allow us to definemeaningful audiovisual gestalts.

• A great effort to apply Gestalt theory to Computer Vision has been done in the last years by
several researchers [3], [4], [5], [12]. Desolneuxet al. have shown that it exists a very simple and
general principle, that they have calledHelmholtz principle, which allows to decide whether a gestalt is
reliable or not. This principle was introduced to try to describe how perception decides to group objects
according to a certain quality. We will detail its formulation in section III.

To summarize, firstly we will define meaningful audiovisual gestalts. As we have just stated, one of the
basic principle ruling the perception of audiovisual phenomena is the synchrony between acoustic and visual
stimuli. Thus, the audiovisual structure we will consider here is the co-occurrence of an audio and a video
event. Audio and video signals will be represented as sparsedecompositions over redundant dictionaries of
basic functions. This technique allows one to express a signal in terms of its most salient structures, mak-
ing thus possible the definition of perceptually meaningfulaudiovisual events. Then, using the Helmholtz
principle, we will detect such cross-modal gestalts.

The report is structured as follows: Section II introduces the research studies that motivated the work
presented in this manuscript. Section III describes the Helmholtz principle. In section IV, we introduce the
representational framework for audio and video signals andwe define the meaningful audiovisual events we
want to detect. Section V describes the audiovisual gestaltdetection method based on the Helmholtz princi-
ple. Experimental results are reported in section VI and finally concluding remarks are given in section VII.

II. RELATED WORK

In this work we want to study the correlation between audio and video signals in multimedia sequences,
to detect consistent audiovisual pairs that could originate from the same physical phenomenon.

Physiological and psychophysical studies have shown that audio-visual synchrony plays a fundamental
role in the spatial localization of sound source. In fact, sounds appear to be produced by visual stimuli
which are synchronous with acoustic signals. This effect becomes evident when the perceived spatial sound
source is known to be false, as it happens when watching a showon TV or a ventriloquist’s puppet. It is not
thus by chance that the phenomenon of mislocating the sound source towards its apparent visual source is
called in the psychophysical communityventriloquism effect. The phenomenon can occur in a large variety
of conditions, and seems to depend strongly on the synchronybetween audio and video stimuli [8], [9], [10],
[11] (see also [13] for a review). Interestingly, the effectis not specific to speech, since it still appears if
the lips are flipped upside-down [10] or if the mouth is replaced by synchronized light flashes [9]. What is
important, is the temporal co-occurrence of audiovisual stimuli.

Hershey and Movellan [14] first used these observations to design a simple algorithm which locates sounds
using audio-video synchrony. The correlation between audio and video was measured using the correlation
coefficient between the energy of an audio track and the valueof single pixels. Successive studies in the
field [15], [16], [17], [18] focused on the statistical modeling of relationships between audio and video
features, proposing more and more sophisticated, and effective, audiovisual fusion strategies. Surprisingly
enough however, the audio-video features employed in theseworks are still extremely simple and poorly
connected with the physics of the problem: We refer in particular to pixel-related features typically used for
video representations. We believe that, in order to understand more in detail audio-video structures and to
improve the performances of audiovisual fusion algorithms, an effort should be done to model the observed
physical phenomenon. From what we have highlighted above, it seems clear that there is a predominant
structure governing the processing of audiovisual signals, i.e. the temporal synchrony between acoustic and
visual “events”.
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What we propose to do here is to define the sound source localization problem as a detection problem.
The structure (orgestalt, according to the formalism introduced in the previous section) to be detected
is the temporal co-occurrence of audio and video events. Clearly, the automatic definition ofmeaningful
audiovisual events is non-trivial. We try to overcome this problem by using sparse representations of signals
over redundant codebooks of functions intended to capture relevant signal features. In this way audio and
video signals can be expressed in terms of their salient structures, and we will show that audiovisual events
can be automatically and reasonably simply defined. These audiovisual gestalts will be then localized with
the Helmholtz principle, which is introduced in the next section.

III. H ELMHOLTZ PRINCIPLE

The Helmholtz principle is a simple rule to decide if a partial gestalt is meaningful or not. It roughly
states that an event is perceptually meaningful if it has very low probability to be observed by chance.
Desolneux, Moisan and Morel formalized the Helmholtz principle in the following manner. Assume that we
are observingn objectsO1, O2, . . . , On. Assume thatk of them, for exampleO1, . . . , Ok, share a common
quality. Is the presence of this common feature a pure coincidence, or is there a better explanation for
it? In order to answer this question, we make the following mental experiment: We assumea contrario
that the considered quality has been uniformly and independently distributed on all objectsO1, . . . , On. Of
course, the independence assumption is not realistic, but here we are defining ana contrariomodel which
grossly represents the absence of relevant events. Then we (mentally) assume that the observed objects are
distributed according to this random uniform process. Finally, we ask the question: Is the observed set of
points probable or not? The Helmholtz principle states thatif the expectation of the observed configuration
O1, . . . , Ok is very small, then we are observing a meaningful event, a gestalt.

The power of the Helmholtz principle resides in the fact that, conversely to classical Bayesian methods,
it does not require a precise modelization of the observed phenomenon. In fact, here we coarsely model a
general statistical background which represents the absence of significant events. An event is considered to
be relevant if it has, according to this generic model, a verylow probability. In this case, we suppose that
such a particular event has a better explanation than chancealone, it is a meaningful gestalt. It is important to
underline that the configurations to be detected have to be specified before the observation. Moreover, these
events have to be defined so that they correspond qualitatively to some perceptually meaningful structures.
We will see in the next section how this can be achieved in the case of audiovisual scenes.

IV. A UDIOVISUAL GESTALTS

As already stated, the audiovisual gestalt we want to detectis the co-occurrence of an acoustic and a visual
event. Such synchronization of events is the main manifestation of a physical phenomenon (utterance of a
sound by a speaker for example), whose effects are recorded over different channels (audio and video in this
case). As underlined at the end of the previous section, the audiovisual configuration to detect has to be
defined in such a manner that it depicts a perceptually meaningful structure. We observe here that a visual
signal is mainly made of moving regions surrounded by contours with high geometrical content. Pixel-
related quantities seem thus a relatively poor source of information that moreover has a huge dimensionality
and does not exploit structures in images.

Therefore, the idea is that of considering spatio-temporalvideo approximations using geometric primi-
tives. An image sequence is decomposed in 3-D video components intended to capture geometric features
(like oriented edges) and their temporal evolution. In order to represent the large variety of geometric char-
acteristics of video features, redundant codebooks of functions have to be considered. Note that representing
the video signal as a set of edge-like features that are tracked trough time, we try to define meaningful video
structures that obey Gestalt principles. In particular, sets of individual pixels are grouped together and rep-
resented with a 3-D moving edge according to the rules of proximity, similarity and common motion, which
are three of the basic Gestalt grouping laws postulated by Kanizsa [7] (see section I).
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The video representation algorithm has been developed by Divorra [19], and it has been already adopted
in [1], [2], giving encouraging results in the context of multimodal sequence analysis. The use of geomet-
ric video decomposition has at least two main advantages. Firstly, when considering image structures that
evolve in time we deal with dynamic features that have a true geometrical meaning. Secondly, geometric
sparse video decompositions provide compact representations of information, allowing a considerable di-
mensionality reduction of the input signals. This propertyis particularly appealing in this context, since we
have to process signals of very high dimensionality.

In the next two sections, we will briefly describe the technique used to represent the audio signal and the
video representation algorithm of Divorra, letting the interested reader refer to the above cited papers [1],
[2], [19]. Finally, based on such representations, in section IV-C we will define meaningful audiovisual
events.

A. Audio Representation

As already stated, we look for synchrony between audio-video events. An interesting audio event, from
our point of view, is the presence of a sound. Therefore, we need an audio feature that simply allows to
assess the presence or not of an acoustic event. Here, we consider an estimate of audio energy contained per
frame. To compute such an estimate, we exploit the properties of signal representations over redundant dic-
tionaries using Matching Pursuits [20] (MP). The sparse decomposition of the audio track, in fact, performs
a denoising of the signal, pointing out its most relevant structures.

The audio signala(t) is decomposed using the MP algorithm of Mallat and Zhang overa redundant
dictionaryDA of unit norm functions called atoms. The family of atoms thatform DA is generated by
scaling, translating in time and modulating in frequency a generating functiong(t) ∈ L2(R). In our case,
we consider a dictionary of Gabor atoms. That is, the generating functiong(t) is a normalized Gaussian
window, which has been chosen for its optimal time-frequency localization [21].

The approximation ofa(t) using basic functions taken from the codebookDA can be expressed as:

a(t) ≈
∑

ωi∈Ω

cωi
gωi

(t), (1)

wherecωi
are the coefficients andΩ is the set of atom indexes picked to approximate the signal.

An estimate of the time-frequency energy distribution of the functiona(t) can be derived straightforwardly
from its MP decomposition [20]. From this energy distribution of the audio signal, we can derive an audio
featurefa(t) that estimates the average acoustic energy present at each time instant, as we have shown
in [2]. Fig. 1 shows one of the analyzed audio signal with its time-frequency energy distribution and the
corresponding functionfa(t).

B. Video Representation

The image sequence is represented using the algorithm proposed by Divorra [19]. This technique decom-
poses a sequence into a set of 2-D atoms evolving in time, allowing to represent salient geometric video
components tracking their temporal transformations.

I(~x) can be approximated with a linear combination of atomsGγ(~x) retrieved from a redundant dictionary
DV of 2-D atoms, we can write:

I(~x) ≈
∑

γj∈Γ

cγj
Gγj

(~x) , (2)

wherej is the summation index,cγ corresponds to the coefficient for every atomGγ andΓ is the subset of
selected atom indexes from dictionaryDV . The codebookDV is built by applying a set of geometric trans-
formations to a mother functionG, in such a way that it generates an overcomplete set of functions spanning
the input image space. The considered transformations are anisotropic scalings1 ands2, translationst1 and
t2 over the 2-D plane and rotationθ. The generating function should be able to represent well edges on the
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Fig. 1. Audio signal of a subject uttering eight digits in English (top), its time-frequency energy distribution, and the estimated audio feature
fa(t) (bottom). The signal is decomposed using 1000 Gabor atoms. The colormap of the time-frequency plane image goes from black to red,
through blue, green and yellow, and the pixel intensity represents the value of the energy at each time-frequency location.

2-D plane and thus, it should behave like a smooth scaling function in one direction and should approximate
the edge along the orthogonal one. We use here an edge-detector atom with odd symmetry, that is a Gaussian
along one axis and the first derivative of a Gaussian along theperpendicular one.

The changes suffered from a frameIt to It+1 are modeled as the application of an operatorFt to the image
It such thatIt+1 = Ft(It) and

It+1(~x) =
∑

γj∈Γ

F
γj

t · (ct
γj

Gt
γj

(~x)) , (3)

whereFt represents the set of transformationsF γ
t of all atoms that approximate each frame. A MP-like ap-

proach similar to that used for the first frame is applied to retrieve the new set ofGt+1
γ (~x) (and the associated

transformationFt). At every greedy decomposition iteration only a subset of functions of the general dictio-
nary is considered to represent each deformed atom. This subset is defined according to the past geometrical
features of every atom in the previous frame, such that only alimited set of transformations are possible. The
formulation of the MP approach to geometric video representation is complex and is treated in detail in [19],
to which the interested reader is referred. A cartoon example of the used approach can be seen in Fig. 2(a),
where the approximation of a simple synthetic object by means of a single atom is performed. The first and
third row of pictures show the original sequence and the second and fourth rows provide the approximation
composed of a single geometric term. Fig. 2(b) shows the parametric representation of the sequence. We see
the temporal evolution of the coefficientct

γ, and of the position, scale and orientation parameters. TheMP
decomposition of the video sequence provides a parametrization of the signal which represents the image
geometrical structuresand their evolution through time.

C. Meaningful Audiovisual Events

The audiovisual structure we want to detect is the synchronybetween movements in the video and sound
peaks in the audio signal. The audio featurefa(t), depicted in Fig. 3 (b), basically estimates the average



ITS TECHNICAL REPORT 7

(a) Synthetic sequence approximated by 1 atom: First and third row showthe original sequence made by a
simple moving object. Second and fourth row depict the different slices that form a 3-D geometric atom.

(b) Parameter evolution of the approximated bar. From left to right and from up down, we find:
Coefficientcγ , horizontal positiont1, vertical positiont2, short axis scales1, long axis scale
s2, rotationθ.

Fig. 2. Approximation of a synthetic scene by means of a 2-D time-evolvingatom.

energy present in the audio signala(t). The output of the MP video algorithm, instead, is a set of atom
parameters that describe the temporal evolution of 3-D video features. Each atom is characterized by a
coefficient, 2 position parameters, 2 scale parameters and arotation,i.e. 6 parameters (see Fig. 2(b)). From
the position parameters, we can compute the displacement ofeach video atom and thus extract exactly the
information we desire, that is the movement of important visual structures. Therefore, for each video atom
we compute the absolute value of the displacement as

d =
√

t21 + t22, (4)

wheret1 andt2 are the horizontal and vertical position parameters of the atom. In order to be more easily
compared to the audio feature, that has a smooth behavior, weconvolve the video featured with a Gaussian
kernel, obtaining a smooth function like the one depicted inFig. 3 (c).

At this point, we have one audio feature andN video features that describe the movement of relevant visual
features, whereN is the number of atoms used to represent the video sequence. Each of these variables have
the same number of samplesT , since we downsampleft(a) that has a higher temporal resolution.

The considered video features reflect the movement, from frame to frame, of the image structures associ-
ated with the corresponding geometric primitives. The audio feature indicates the acoustic energy content at
a given time instant. Peaks in such signals suggest the presence of an event. In the video case, it can be the
movement with respect to a certain equilibrium position (i.e. lips opening or closing). For the audio, a peak
in the functionfa(t) indicates the presence of a sound. If those audio and video peaks occur at time instants
that are temporally close, we are in the presence of agestaltthat reflects two expressions (acoustic and visual
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Fig. 3. Scheme of the proposed audiovisual fusion criterion. Starting from the original audiovisual sequence (a), we compute the audio feature
fa(t), shown in (b), and the displacement feature associated to a video atom placed over the speaker’s mouth, depicted in (c). The evolution
of the two features exhibit a remarkable synchrony. From these signalswe extract the audio energy peaks and the displacement peaks and the
activation vectorsya(t) andyv(t) are built (d–e). The synchronization vectors(t) is constructed by computing the logicalAND between the
two activation vectors (f).

signals) of the same physical phenomenon (production of a sound). Thus, for a given feature vectorx(t) we
build anactivation vectory(t) which is based on the information about the peaks locations.First, we detect
the peaks in the audio feature and in each of theN video features, obtaining vectors which equal 1 where
peaks occur and 0 otherwise. Then, such vectors are filtered with a rectangular window of sizeW . The filter
models delays and uncertainty, since it rarely happens thatactivation peaks occur exactly at the same time
instant in both acoustic and video feature vectors. An activation vector describes the presence of an event
associated to the corresponding signal. It has value 1 when the feature is “active”, and 0 otherwise.

We end up with one activation vector for the audio,ya(t), andN activation vectorsyi
v(t), one for each

video atom. By simply computing a logicalAND betweenya(t) and all the video activation vectors con-
structed over a given observation time slot, we buildN vectors, that we callsynchronization vectorssi(t).
The vectorssi(t) keep value 1 at those time instants at which both audio and theconsidered video atom are
active and 0 otherwise. Thus, the number of 1 present in the vector indicates the degree of synchronization
between the audiovisual pair. Fig. 3 summarizes the construction of one synchronization vectorsi(t).

V. DETECTION OFAUDIOVISUAL MEANINGFUL EVENTS

Once synchronization vectors are available, we need a method to select those audiovisual structures which
form meaningfulaudio-video pairs. We would like to do that in an automatic way, and tuning as less
parameters as possible. In the next sections we will show howwe can build a multi-modal event detector
based on the Helmholtz grouping law presented in section III. The parameters of the algorithm reduce to
just one, from which the detection accuracy weakly depends.

A. An Audiovisual Event Detector Based on the Helmholtz Principle

At this step of the reasoning, for each video atom we have built a synchronization vectorsi(t). Now,
suppose that we observe a synchronization vector of lengthn (i.e. it has been built over a temporal window
of n samples), and let the number of 1 in such vector be equal tok. We can ask ourselves: Is the numberk
big enough, so that we can consider the corresponding video atom correlated with the audio signal? Or the
co-occurrence of audio and video events is due only to chance? We can try to answer to these questions by
applying the Helmholtz principle.
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Fig. 4. Empirical distributions ofya(t) (a) and of one featureyi
v(t), with i = 1, . . . , N (b). The normalized frequency histograms depicted

here are computed for the test sequenceMovie 2.

We first have to define the backgrounda contrariomodel, which corresponds to the absence of correlated
audiovisual events. In this case it is sound to consider thatthe observationsya(t) andyi

v(t) are independently,
identically distributed random variables. Since the general form of their distributions are unknown (anyway,
it is not reasonable to assume that a single distribution could account for all audiovisual sequences), the em-
pirical distributions are considered. Integrating the empirical distribution functions (frequency histograms)
yields the functionsPa(X) andPv(Y ), whereX andY are random variables distributed according to the
empirical distributions of the observed valuesya(t) andyi

v(t) (with i = 1, . . . , N ) respectively. Fig. 4 shows
the empirical distributions ofya(t) andyi

v(t) computed for one of the test sequences.
Let A be a 3-D atom with corresponding synchronization vectorsA of lengthn, and letk be the number

of points at whichsA assumes value 1. Let us define the eventE = “At least k points of a vector of sizen
have a value ofsA equal to 1”. Note that the probabilityP (sA = 1), given the independence hypothesis, can
be written as

P (sA = 1) = Pa(X = 1) · Pv(Y = 1). (5)

Thus, according to the background model, the probability ofthe eventE, P (E), is

P (E) = B(k, n, P (sA = 1)) = B(k, n, Pa(X = 1) · Pv(Y = 1)) (6)

whereB(k, n, p) is the tail of a binomial distribution:

B(k, n, p) =
n

∑

i=k

(

n

i

)

pi(1 − p)n−i. (7)

According to these notions, we can now define anε-meaningfulvideo atom. Let us stress that in this
context, the meaningfulness of a 3-D atom is referred to its correlation with the audio signal.

Definition 1: For a given atomA with corresponding synchronization vectorsA of sizen and containing
k matching points (i.e. k values equal to 1), we define the “number of false alarms” (NFA) as:

NFA(A) = N · B(k, n, P (sA = 1)), (8)

whereN is the number of tests.
A 3-D atomA is said to beε-meaningful ifNFA(A) ≤ ε.

It is easy to demonstrate that the expected number ofε-meaningful 3-D atoms in a sequence, according
to thea contrario model, is less thenε [3], [12]. Moreover, it also possible to show that the numberk of
matching points in a synchronization vector that are required to be significative depends on the logarithm of
ε andN [3], [12]. This means that the detection results are robust to variations of those values.
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Fig. 5. Movie 1: Audio signal (left), sample raw frame (center) and corresponding dynamic pixels (right). Gray-levels on the right picture
represent the absolute value of the difference image between two successive frames. Black pixels thus represent static regions.

B. Setting of the Parameterε

The value ofε controls the number of false detections. Settingε equal to 1, as done in [12], means that
the expected number of false detection in a sequence distributed according to the background model is less
than 1. However, the hypothesis of independence, especially for what concerns the video representation, is
far from being realistic since the video atomic decomposition exploits the correlation between neighboring
atoms (see [2], [19] for details). Because of this, several video atoms exhibitNFA smaller thenε = 1, even
without being correlated with the audio. One solution is that of considering a value ofε that is smaller then
1, as it is done in [3] whereε = 1/10.

However, better results can be achieved by exploiting some additional knowledge about the scene. Here,
we are implicitly assuming that a single audiovisual sourceis observed at each time instant. Thus, the
solution we want to find should be well localized in the image plane. Following this reasoning, we can test
multiple values ofε (smaller than 1), keeping the solution which is more localized in space. By doing that,
we basically do not fix any detection threshold. Instead, we browse a set of interesting solutions and we
chose the most suitable one.

In practice, what we will do is to consider a set ofεi uniformly spaced in a logarithmic scale between
εMIN and 1. For each valueεi, we obtain a set of video atomsGi for which NFA(A) ≤ εi, with A ∈ Gi.
For each groupGi, the variances along the horizontal (varx) and vertical positions (vary) are computed and
the maximum valueVGi

= max{varx(Gi), vary(Gi)} is kept. Clearly, a set of video atoms can be composed
of only one function: In that case the varianceVGi

is equal to zero. If a group is empty, its variance is set to
a very high value (ideally infinite). This is done to avoid thealgorithm to search for a very small threshold
εi for which the corresponding groupGi is empty and has thus zero variance. Our considered solutionG∗ is
the set of atoms which exhibits the smallest varianceVG∗.

VI. EXPERIMENTS

We show here how the proposed framework is used to locate the source of an audio signal in real-world
video sequences.

The first video clip,Movie 1, shows a hand playing the piano while a toy car moves. It was recorded at
25 frames/sec with a resolution of 144× 180 pixels. Movie 2, instead, shows two persons taking turn in
reading series of digits. The video data was sampled at 29.97frames/sec and it has a resolution of 120×176
pixels. Both soundtracks were collected at 44 kHz and sub-sampled to 8 kHz. For both sequences, only
the luminance component is considered. The original soundtrack and a sample raw frame ofMovie 1 are
depicted in Fig. 5.

The image sequences are represented with 50 time-evolving atoms, while the audio track is decom-
posed using 1000 Gabor atoms using the implementation of MP for 1-D signals of theLastWavesoft-
ware package [22]. Based on such decompositions, the audio and video features are extracted and the
activation vectors are built using a window of sizeW = 7. The synchronization vectors are computed
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Fig. 6. Results of the algorithm run onMovie 1. Correlated atoms, highlighted in white, represent the player’s fingers and the piano keys.
The moving toy car, instead, is not detected.

and the set of meaningful 3-D atomsG∗ is selected usingεMIN = 10−6 and the set of thresholdsεi =
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1}. The number of basis functions used to represent the image and
audio sequences is heuristically chosen, in order to get convenient representations. However, a distortion
criteria can be easily set, to automatically determine the required number of atoms.

For the analysis of the sequences, we use a sliding window of 60 frames over which the synchronization
vectors are computed, in order to take into account the dynamics of the scene. At each step the observation
window is shifted by 20 samples and the procedure iterated. The values of window length and shift have
been chosen considering a trade-off between the response time delay of the system, and the robustness of
the association. However, the algorithm is basically parameter-free since all the values that have to be set
are fixed for all the experiments. Moreover, from informal tests, the choice of none of the parameters results
to be critical.

Fig. 6 shows resulting sample frames of the algorithm run onMovie 1. In white, the footprints of the video
atoms correlated with the soundtrack are highlighted. The player’s fingers and the piano keys are detected
as sound source. In the left picture several 3-D atoms are extracted, since different keys are touched in
rapid succession, while in the right image one player’s finger is detected. The moving toy car introduces a
considerable distracting motion (see Fig. 5) and a non-negligible acoustic noise. However, it is filtered out
by the cross-modal localization algorithm.

Fig. 7 shows similar results forMovie 2. In the first two sample frames the left person is speaking, while in
the last two the right one is. The sequence is non-trivial, since in the second part of the movie the left person
mouths the digits which are being uttered by the right speaker. However, the algorithm is able to correctly
localize the mouth and the chin of the current speaker. It is interesting to remark how video atoms adapt
their orientation and shape according to the geometric characteristics of the structures they represent.

Fig. 7. Results forMovie 2: In the first two sample frames the left person is speaking, while in the lasttwo the right one is. The most
correlated 3-D atoms are highlighted in white. The mouth and the chin of the correct speaker are detected.

VII. C ONCLUSIONS

In this paper we present a novel algorithm for the cross-modal fusion of audiovisual signals. Multi-
modal signals are decomposed over redundant dictionaries of atoms, obtaining concise representations that
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moreover describe the structural properties of those signals. This allows to define meaningful audio-video
events (gestalts) that can be detected using a simple rule, the Helmholtz principle.

The proposed audiovisual events detection method featuresseveral interesting properties:
• The algorithm exploits the inherent physical structures of the observed phenomenon. This allows

the design of intuitive but effective audiovisual fusion criteria and demonstrates that temporal proximity
between audiovisual events is a key ingredient for cross-modal integration of information. In addition
to its simplicity, the proposed method also exhibits robustness to significant audio-video distractors.

• The algorithm naturally deals with dynamic scenes.
• There is no parameter to tune. All the parameters are fixed and from informal tests, the algorithm

results robust to significant variations of their values.
• Visual information is described in a very concise fashion. For example, instead of processing

144× 180 = 25960 time-evolving variables (pixel intensities), we consider only 50 variables (atoms
displacements).

• The atoms streams employed here are completely general, could be generated by algorithms other
than MP and can be used to encode the audio and video sequences.

• The description of the scene is extremely rich. The audio and video atomic decompositions bring a
large amount of information that can be exploited at different processing levels. If needed, for example,
the information about scale and orientation of the video atoms can be exploited.

The price to pay, for the moment, is the high computational complexity of the MP algorithm. However,
recent results on sparse signal approximation show that fast methods for the representation of signals over
redundant codebooks of functions can be achieved [23].

Possible extensions of this work include the use of stereo sound to improve the spatial localization capa-
bilities of our approach and possibly to extend it to the multiple sources case. Moreover, we are investigating
the possibility of applying our technique to other types of multimodal signals, like climatologic data or data
from robot sensors (e.g. terrain images and inertial sensors).
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