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Abstract

This paper presents an algorithm to correlate audio an@Miata generated by the same physical phenomenon.
According to psychophysical experiments, temporal symapstrongly contributes to integrate cross-modal inferma
tion in humans. Thus, we define meaningful audiovisual stines as temporally proximal audio-videwvents Audio
and video signals are represented as sparse decompositemedundant dictionaries of functions. In this way, sig-
nals are expressed in terms of their salient structuresyilty the definition of perceptually meaningful audiovisua
events. The detection of these cross-modal structuresiis aiging a simple rule called Helmholtz principle.

Experimental results show that extracting significant syosous audiovisual events, we can detect the existing
cross-modal correlation between those signals even irpecesof distracting motion and acoustic noise. These gesult
confirm that temporal proximity between audiovisual evesta key ingredient for the integration of information
across modalities and that it can be effectively exploitedtie design of multi-modal analysis algorithms.

Index Terms

Audiovisual association, multi-modal data processingssfrmodal event localization, geometric video represen-
tation, Gestalt theory, Helmholtz principle contrariodetection.

|. INTRODUCTION

In this work we introduce and discuss a new framework for ctetg events in audiovisual signals. In
particular, we want to localize the source of a sound in thike@isequence. Such task is quite trivial for
humans, while it is particularly challenging for automagystems. It is for this reason that we have decided
to study a perceptually-driven approach to audiovisuabfyghat is based on our previous work on audio-
visual modeling and fusion [1], [2], and that has been irepioy the research of Desolneux, Moisan and
Morel on Gestalt theoryand Computer Vision [3], [4], [5].

First of all, let us briefly introduce what Gestalt theory $&arting from the first decades of past century,
Gestaltists [6], [7] have tried to express all the basic léne rule human visual perception. The basic
set of such laws consists gfouping laws Starting from local data, objects are formed by recurgivel
building larger visual objects,e. gestaltsthat share one or more common properties. Such properties
represent specific, simple qualities of visual objects. l$teof qualities according to which gestalts are
built includes proximity, similarity, continuity of dir¢ion, amodal completion, closure, constant width,
tendency to convexity, symmetry, common motion, past egpee [7]. Clearly, such simple rules are not
able, alone, to explain the human perception of the worldusTimore complex principles governing the
collaboration and the contrast between gestalt laws haee lsen introduced. Here, we will focus our
attention on the basic set of simple grouping laws, calle®bgolneux and coworkers [plrtial gestalts
The interested reader is referred to [7] for an exhaustieegmtation of the Gestalt theory of perception.

There are two interesting facts that we want to emphasizedar to make clear why we are interested in
Gestalt theory and how is it related to our research work oaszmodal event localization.

« Gestalt laws have been demonstrated to hold not only for visual perception, but also for other

type of sensorial experiences, like acoustic and tactile perception [7]. Moreover, savevorks in
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psychophysics and neuroscience have also shown that t3éstalles, and notably temporal proxim-
ity, contribute to integrate cross-modal information imfans [8], [9], [10], [11]. In particular, Jack
and Thurlow [8] found that synchronization of visible mowemts with peaks of speech intensity was
the main condition for considering audiovisual stimuligmiated by the same generating event. Thus,
we can think of designing an audiovisual event detectordkploits cross-modal information just like
humans do. We will discuss more in detail in section IV how a@ build a model of audiovisual
phenomena that will allow us to defineeaningful audiovisual gestalts

« A great effort to apply Gestalt theory to Computer Vision has been done in the last years by

several researchers[3], [4], [5], [12]. Desolneuxet al. have shown that it exists a very simple and
general principle, that they have calldélmholtz principlewhich allows to decide whether a gestalt is
reliable or not. This principle was introduced to try to dése how perception decides to group objects
according to a certain quality. We will detail its formulatiin section .

To summarize, firstly we will define meaningful audiovisuaktalts. As we have just stated, one of the
basic principle ruling the perception of audiovisual phmeaoa is the synchrony between acoustic and visual
stimuli. Thus, the audiovisual structure we will considerdis the co-occurrence of an audio and a video
event. Audio and video signals will be represented as splsempositions over redundant dictionaries of
basic functions. This technique allows one to express abigrterms of its most salient structures, mak-
ing thus possible the definition of perceptually meaningfudliovisual events. Then, using the Helmholtz
principle, we will detect such cross-modal gestalts.

The report is structured as follows: Section Il introdudas tesearch studies that motivated the work
presented in this manuscript. Section Il describes thenHeltz principle. In section IV, we introduce the
representational framework for audio and video signalsvemdefine the meaningful audiovisual events we
want to detect. Section V describes the audiovisual geggtdiction method based on the Helmholtz princi-
ple. Experimental results are reported in section VI andljim@ncluding remarks are given in section VII.

Il. RELATED WORK

In this work we want to study the correlation between audio @deo signals in multimedia sequences,
to detect consistent audiovisual pairs that could origifisdm the same physical phenomenon.

Physiological and psychophysical studies have shown tidibavisual synchrony plays a fundamental
role in the spatial localization of sound source. In facyrsis appear to be produced by visual stimuli
which are synchronous with acoustic signals. This effecobbees evident when the perceived spatial sound
source is known to be false, as it happens when watching ashdw or a ventriloquist’'s puppet. It is not
thus by chance that the phenomenon of mislocating the sawndes towards its apparent visual source is
called in the psychophysical communitgntriloquism effectThe phenomenon can occur in a large variety
of conditions, and seems to depend strongly on the synchreiyeen audio and video stimuli [8], [9], [10],
[11] (see also [13] for a review). Interestingly, the effexnhot specific to speech, since it still appears if
the lips are flipped upside-down [10] or if the mouth is replhby synchronized light flashes [9]. What is
important, is the temporal co-occurrence of audiovisuaisi.

Hershey and Movellan [14] first used these observationsggda simple algorithm which locates sounds
using audio-video synchrony. The correlation between@add video was measured using the correlation
coefficient between the energy of an audio track and the \@lsingle pixels. Successive studies in the
field [15], [16], [17], [18] focused on the statistical mooig) of relationships between audio and video
features, proposing more and more sophisticated, andigéeaudiovisual fusion strategies. Surprisingly
enough however, the audio-video features employed in tivesks are still extremely simple and poorly
connected with the physics of the problem: We refer in paldicto pixel-related features typically used for
video representations. We believe that, in order to undedsimore in detail audio-video structures and to
improve the performances of audiovisual fusion algorithamseffort should be done to model the observed
physical phenomenon. From what we have highlighted abowseems clear that there is a predominant
structure governing the processing of audiovisual signalshe temporal synchrony between acoustic and
visual “events”.
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What we propose to do here is to define the sound source lomafizaroblem as a detection problem.
The structure (ogestalt according to the formalism introduced in the previous isegtto be detected
is the temporal co-occurrence of audio and video events. rigléae automatic definition ofmeaningful
audiovisual events is non-trivial. We try to overcome thmsigfem by using sparse representations of signals
over redundant codebooks of functions intended to capalexant signal features. In this way audio and
video signals can be expressed in terms of their salienttsties, and we will show that audiovisual events
can be automatically and reasonably simply defined. Thediewaaual gestalts will be then localized with
the Helmholtz principle, which is introduced in the nexttgat

[11. HELMHOLTZ PRINCIPLE

The Helmholtz principle is a simple rule to decide if a pdrgjastalt is meaningful or not. It roughly
states that an event is perceptually meaningful if it hay V&w probability to be observed by chance.
Desolneux, Moisan and Morel formalized the Helmholtz ppiein the following manner. Assume that we
are observing: objectsO, O, ..., O,. Assume that of them, for exampl&),, ..., O, share a common
quality. Is the presence of this common feature a pure cdémde, or is there a better explanation for
it? In order to answer this question, we make the followinghtakexperiment: We assunaecontrario
that the considered quality has been uniformly and indegethgldistributed on all object9, ..., O,,. Of
course, the independence assumption is not realistic,dyat\ae are defining aa contrario model which
grossly represents the absence of relevant events. Themergdlly) assume that the observed objects are
distributed according to this random uniform process. Ijinwe ask the question: Is the observed set of
points probable or not? The Helmholtz principle statesiftthe expectation of the observed configuration
O, ...,0 is very small, then we are observing a meaningful event, tajes

The power of the Helmholtz principle resides in the fact tisahversely to classical Bayesian methods,
it does not require a precise modelization of the observesh@menon. In fact, here we coarsely model a
general statistical background which represents the abs#rsignificant events. An event is considered to
be relevant if it has, according to this generic model, a Venyprobability. In this case, we suppose that
such a particular event has a better explanation than clemae, it is a meaningful gestalt. It is important to
underline that the configurations to be detected have to éafsgal before the observation. Moreover, these
events have to be defined so that they correspond qualltatotveome perceptually meaningful structures.
We will see in the next section how this can be achieved in #se of audiovisual scenes.

IV. AUDIOVISUAL GESTALTS

As already stated, the audiovisual gestalt we want to detéoe co-occurrence of an acoustic and a visual
event. Such synchronization of events is the main mantfestaf a physical phenomenon (utterance of a
sound by a speaker for example), whose effects are recovdedifferent channels (audio and video in this
case). As underlined at the end of the previous section, udewsual configuration to detect has to be
defined in such a manner that it depicts a perceptually mganistructure. We observe here that a visual
signal is mainly made of moving regions surrounded by camsteuith high geometrical content. Pixel-
related quantities seem thus a relatively poor source ofimdition that moreover has a huge dimensionality
and does not exploit structures in images.

Therefore, the idea is that of considering spatio-tempad®o approximations using geometric primi-
tives. An image sequence is decomposed in 3-D video compoi@ended to capture geometric features
(like oriented edges) and their temporal evolution. In otdeepresent the large variety of geometric char-
acteristics of video features, redundant codebooks otimme have to be considered. Note that representing
the video signal as a set of edge-like features that areddaitkugh time, we try to define meaningful video
structures that obey Gestalt principles. In particulais sé€individual pixels are grouped together and rep-
resented with a 3-D moving edge according to the rules ofiprity similarity and common motion, which
are three of the basic Gestalt grouping laws postulated byzsa [7] (see section I).



ITS TECHNICAL REPORT 5

The video representation algorithm has been developed\ayriai[19], and it has been already adopted
in [1], [2], giving encouraging results in the context of mmodal sequence analysis. The use of geomet-
ric video decomposition has at least two main advantagestlyiwhen considering image structures that
evolve in time we deal with dynamic features that have a tre@netrical meaning. Secondly, geometric
sparse video decompositions provide compact represemsadif information, allowing a considerable di-
mensionality reduction of the input signals. This propestgarticularly appealing in this context, since we
have to process signals of very high dimensionality.

In the next two sections, we will briefly describe the teclueigised to represent the audio signal and the
video representation algorithm of Divorra, letting theeirgsted reader refer to the above cited papers [1],
[2], [19]. Finally, based on such representations, in sectV-C we will define meaningful audiovisual
events.

A. Audio Representation

As already stated, we look for synchrony between audioeviElents. An interesting audio event, from
our point of view, is the presence of a sound. Therefore, veslra audio feature that simply allows to
assess the presence or not of an acoustic event. Here, wderoms estimate of audio energy contained per
frame. To compute such an estimate, we exploit the progestisignal representations over redundant dic-
tionaries using Matching Pursuits [20] (MP). The sparsedsmosition of the audio track, in fact, performs
a denoising of the signal, pointing out its most relevanictires.

The audio signak(t) is decomposed using the MP algorithm of Mallat and Zhang eveedundant
dictionary D4 of unit norm functions called atoms. The family of atoms tf@in D4 is generated by
scaling, translating in time and modulating in frequencyeaeayating functiony(t) € L*(R). In our case,
we consider a dictionary of Gabor atoms. That is, the geimgrétinction ¢(t) is a normalized Gaussian
window, which has been chosen for its optimal time-freqydacalization [21].

The approximation ofi(¢) using basic functions taken from the codeb@k can be expressed as:

a(t) ~ Z Cuos Guoi (1), 1)

w; EQ

wherec,, are the coefficients ard is the set of atom indexes picked to approximate the signal.

An estimate of the time-frequency energy distribution effilmctiona(t) can be derived straightforwardly
from its MP decomposition [20]. From this energy distriloatiof the audio signal, we can derive an audio
feature f,(¢) that estimates the average acoustic energy present atigalnstant, as we have shown
in [2]. Fig. 1 shows one of the analyzed audio signal with iitsetfrequency energy distribution and the
corresponding functiot, ().

B. Video Representation

The image sequence is represented using the algorithmsedfy Divorra [19]. This technique decom-
poses a sequence into a set of 2-D atoms evolving in timeyialdpto represent salient geometric video
components tracking their temporal transformations.

I(%) can be approximated with a linear combination of atémér) retrieved from a redundant dictionary

Dy, of 2-D atoms, we can write:
[(#) = ) ey, Gy (7)), 2)

v;€l

wherej is the summation index;, corresponds to the coefficient for every atém andI’ is the subset of
selected atom indexes from dictionaPy,. The codeboolD,; is built by applying a set of geometric trans-
formations to a mother functiof, in such a way that it generates an overcomplete set of fumc8panning
the input image space. The considered transformationswseteopic scaling; ands,, translationg; and

t, over the 2-D plane and rotatigh The generating function should be able to represent wgkgdn the
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Fig. 1. Audio signal of a subject uttering eight digits in English (top), its tineerfiency energy distribution, and the estimated audio feature
fa(t) (bottom). The signal is decomposed using 1000 Gabor atoms. Thersafoof the time-frequency plane image goes from black to red,
through blue, green and yellow, and the pixel intensity represents the @tbe energy at each time-frequency location.

2-D plane and thus, it should behave like a smooth scalingtimmin one direction and should approximate
the edge along the orthogonal one. We use here an edgeeateterh with odd symmetry, that is a Gaussian
along one axis and the first derivative of a Gaussian alongehgendicular one.
The changes suffered from a framédo I, ; are modeled as the application of an operatao the image
I, such that/;,; = F,(I;) and
L (T) = ) B (¢, G (D)), (3)
V€L
whereF; represents the set of transformatiansof all atoms that approximate each frame. A MP-like ap-
proach similar to that used for the first frame is applied toeee the new set cﬁ}tjl(f) (and the associated
transformationt;). At every greedy decomposition iteration only a subsetiatfions of the general dictio-
nary is considered to represent each deformed atom. Théesisldefined according to the past geometrical
features of every atom in the previous frame, such that ohigited set of transformations are possible. The
formulation of the MP approach to geometric video represtéont is complex and is treated in detail in [19],
to which the interested reader is referred. A cartoon exarmpthe used approach can be seen in Fig. 2(a),
where the approximation of a simple synthetic object by reedra single atom is performed. The first and
third row of pictures show the original sequence and thersemd fourth rows provide the approximation
composed of a single geometric term. Fig. 2(b) shows thenpetréc representation of the sequence. We see
the temporal evolution of the coefficiedt, and of the position, scale and orientation parameters.Mbe
decomposition of the video sequence provides a paramdnzaf the signal which represents the image
geometrical structureandtheir evolution through time.

C. Meaningful Audiovisual Events

The audiovisual structure we want to detect is the synchbatyween movements in the video and sound
peaks in the audio signal. The audio featyit€), depicted in Fig. 3 (b), basically estimates the average
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(a) Synthetic sequence approximated by 1 atom: First and third row giewriginal sequence made by a
simple moving object. Second and fourth row depict the different slicagohm a 3-D geometric atom.

Coefficient
Position .
~ Position

—_—

Frame number Frame number Frame number

Scale
Scale
Rotaion

Frame number Frame number Frame number

(b) Parameter evolution of the approximated bar. From left to right eord €éip down, we find:
Coefficientc,, horizontal positiort:, vertical positiontz, short axis scale;, long axis scale

s9, rotationd.

Fig. 2. Approximation of a synthetic scene by means of a 2-D time-evobtiog).

energy present in the audio signdk). The output of the MP video algorithm, instead, is a set ofrato
parameters that describe the temporal evolution of 3-Dovigatures. Each atom is characterized by a
coefficient, 2 position parameters, 2 scale parameters aotdion,i.e. 6 parameters (see Fig. 2(b)). From
the position parameters, we can compute the displacemeyatobf video atom and thus extract exactly the
information we desire, that is the movement of importanti@istructures. Therefore, for each video atom

we compute the absolute value of the displacement as

d=\/t2+ 13 4)

wheret; andt, are the horizontal and vertical position parameters of tbea In order to be more easily
compared to the audio feature, that has a smooth behavi@momlve the video featur@with a Gaussian
kernel, obtaining a smooth function like the one depicteBig 3 (c).

At this point, we have one audio feature a¥dideo features that describe the movement of relevant visua
features, wheréV is the number of atoms used to represent the video sequeack oEthese variables have
the same number of samplé&ssince we downsamplg(a) that has a higher temporal resolution.

The considered video features reflect the movement, fromdr@ frame, of the image structures associ-
ated with the corresponding geometric primitives. The adelture indicates the acoustic energy content at
a given time instant. Peaks in such signals suggest thermmesé an event. In the video case, it can be the
movement with respect to a certain equilibrium positioe. (ips opening or closing). For the audio, a peak
in the functionf,(¢) indicates the presence of a sound. If those audio and vidsspeecur at time instants
that are temporally close, we are in the presencegafistialtthat reflects two expressions (acoustic and visual
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1
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(c) (e)

Fig. 3. Scheme of the proposed audiovisual fusion criterion. Startimg fhe original audiovisual sequence (a), we compute the audio feature
fa(t), shown in (b), and the displacement feature associated to a video atoed mieer the speaker’s mouth, depicted in (c). The evolution
of the two features exhibit a remarkable synchrony. From these sigieadxtract the audio energy peaks and the displacement peaks and the
activation vectorg, (t) andy, (t) are built (d—e). The synchronization vectdt) is constructed by computing the logicdND between the

two activation vectors (f).

signals) of the same physical phenomenon (production ofiadjo Thus, for a given feature vectoft) we
build anactivation vectory(¢) which is based on the information about the peaks locatiBinst, we detect
the peaks in the audio feature and in each oftheideo features, obtaining vectors which equal 1 where
peaks occur and O otherwise. Then, such vectors are filtatedwectangular window of sizé’. The filter
models delays and uncertainty, since it rarely happensatttatation peaks occur exactly at the same time
instant in both acoustic and video feature vectors. An atitm vector describes the presence of an event
associated to the corresponding signal. It has value 1 wiesfeature is “active”, and 0 otherwise.

We end up with one activation vector for the audjg(t), and N activation vectors;:(¢), one for each
video atom. By simply computing a logicaND betweeny,(t) and all the video activation vectors con-
structed over a given observation time slot, we buNldrectors, that we calBynchronization vectors;(¢).
The vectors;(t) keep value 1 at those time instants at which both audio andahsidered video atom are
active and 0 otherwise. Thus, the number of 1 present in tb®vedicates the degree of synchronization
between the audiovisual pair. Fig. 3 summarizes the cartgtruof one synchronization vectey(t).

V. DETECTION OFAUDIOVISUAL MEANINGFUL EVENTS

Once synchronization vectors are available, we need a métrselect those audiovisual structures which
form meaningfulaudio-video pairs. We would like to do that in an automatioywand tuning as less
parameters as possible. In the next sections we will showwewan build a multi-modal event detector
based on the Helmholtz grouping law presented in sectionTlle parameters of the algorithm reduce to
just one, from which the detection accuracy weakly depends.

A. An Audiovisual Event Detector Based on the Helmholtzdiyia

At this step of the reasoning, for each video atom we have buslynchronization vectot;(¢). Now,
suppose that we observe a synchronization vector of len@tke. it has been built over a temporal window
of n samples), and let the number of 1 in such vector be equal YWe can ask ourselves: Is the number
big enough, so that we can consider the corresponding vit&o eorrelated with the audio signal? Or the
co-occurrence of audio and video events is due only to ctrakés can try to answer to these questions by
applying the Helmholtz principle.
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Fig. 4. Empirical distributions of, (¢) (a) and of one featurg’ (¢), withi = 1,..., N (b). The normalized frequency histograms depicted
here are computed for the test sequellizvie 2.

We first have to define the backgrouadontrariomodel, which corresponds to the absence of correlated
audiovisual events. In this case it is sound to considethigedbservationg, (¢) andy’ (¢) are independently,
identically distributed random variables. Since the gahferm of their distributions are unknown (anyway,
it is not reasonable to assume that a single distributiotdcaccount for all audiovisual sequences), the em-
pirical distributions are considered. Integrating the &gl distribution functions (frequency histograms)
yields the functions?,(X) and P,(Y'), whereX andY are random variables distributed according to the
empirical distributions of the observed valug$t) andy’ (¢) (withi = 1,..., N) respectively. Fig. 4 shows
the empirical distributions aof, () andy’ (¢) computed for one of the test sequences.

Let A be a 3-D atom with corresponding synchronization vesgfoof lengthn, and letk be the number
of points at whichs, assumes value 1. Let us define the ev@nt “At least k£ points of a vector of size
have a value of, equal to 1”. Note that the probability?(s, = 1), given the independence hypothesis, can
be written as

P(sa=1)=PFP, (X =1)-P,(Y =1). (5)

Thus, according to the background model, the probabilithefeventr, P(FE), is
P(E)=B(k,n,P(sp=1)) = B(k,n,P,(X =1)- P,(Y =1)) (6)

whereB(k,n, p) is the tail of a binomial distribution:

B(k,n,p) = Z (?)p"(l —p)" (7)

i=k

According to these notions, we can now definesameaningfulvideo atom. Let us stress that in this
context, the meaningfulness of a 3-D atom is referred tooiteetation with the audio signal.

Definition 1: For a given atonA with corresponding synchronization vectgy of sizen and containing
k matching pointsi(e. k£ values equal to 1), we define the “number of false alariA) as:

NFA(A) = N - B(k,n, P(sa = 1)), ©)

whereN is the number of tests.
A 3-D atomA is said to be--meaningful if VFA(A) < e.

It is easy to demonstrate that the expected numberroéaningful 3-D atoms in a sequence, according
to thea contrariomodel, is less then [3], [12]. Moreover, it also possible to show that the numbexf
matching points in a synchronization vector that are regliio be significative depends on the logarithm of
e andN [3], [12]. This means that the detection results are rolusatiations of those values.
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Fig. 5. Movie 1: Audio signal (left), sample raw frame (center) and correspondjmguhic pixels (right). Gray-levels on the right picture
represent the absolute value of the difference image between twassivectrames. Black pixels thus represent static regions.

B. Setting of the Parameter

The value of= controls the number of false detections. Settirggual to 1, as done in [12], means that
the expected number of false detection in a sequence ditgdlaccording to the background model is less
than 1. However, the hypothesis of independence, espetoalivhat concerns the video representation, is
far from being realistic since the video atomic decomposigxploits the correlation between neighboring
atoms (see [2], [19] for details). Because of this, severddiatoms exhibilv /A smaller there = 1, even
without being correlated with the audio. One solution id thfaconsidering a value of that is smaller then
1, asitis done in [3] where = 1/10.

However, better results can be achieved by exploiting saidéianal knowledge about the scene. Here,
we are implicitly assuming that a single audiovisual souscebserved at each time instant. Thus, the
solution we want to find should be well localized in the imat¢gnp. Following this reasoning, we can test
multiple values ot (smaller than 1), keeping the solution which is more lo@lim space. By doing that,
we basically do not fix any detection threshold. Instead, vasvbe a set of interesting solutions and we
chose the most suitable one.

In practice, what we will do is to consider a setsfuniformly spaced in a logarithmic scale between
ey and 1. For each valug, we obtain a set of video atonds; for which NFA(A) < ¢;, with A € G,.

For each groupg-;, the variances along the horizontal (Maand vertical positions (vgy are computed and
the maximum valué’;, = max{var,(G;), var,(G;)} is kept. Clearly, a set of video atoms can be composed
of only one function: In that case the variari¢g is equal to zero. If a group is empty, its variance is set to
a very high value (ideally infinite). This is done to avoid @dgorithm to search for a very small threshold
g; for which the corresponding group; is empty and has thus zero variance. Our considered solttias

the set of atoms which exhibits the smallest variavige

VI. EXPERIMENTS

We show here how the proposed framework is used to locateotirees of an audio signal in real-world
video sequences.

The first video clipMovie 1, shows a hand playing the piano while a toy car moves. It wesrded at
25 frames/sec with a resolution of 144180 pixels. Movie 2, instead, shows two persons taking turn in
reading series of digits. The video data was sampled at 2&8¥s/sec and it has a resolution of 22076
pixels. Both soundtracks were collected at 44 kHz and sulpkaimo 8 kHz. For both sequences, only
the luminance component is considered. The original soackitand a sample raw frame ®bvie 1 are
depicted in Fig. 5.

The image sequences are represented with 50 time-evolt@msa while the audio track is decom-
posed using 1000 Gabor atoms using the implementation of &R-D signals of thd_astWavesoft-
ware package [22]. Based on such decompositions, the audiwidao features are extracted and the
activation vectors are built using a window of sidé = 7. The synchronization vectors are computed
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Fig. 6. Results of the algorithm run dviovie 1. Correlated atoms, highlighted in white, represent the player’s fingershe piano keys.
The moving toy car, instead, is not detected.

and the set of meaningful 3-D atond¥ is selected using,;;xy = 107¢ and the set of thresholds =
{1075,107°,107%,1073,1072,10~*,1}. The number of basis functions used to represent the imade an
audio sequences is heuristically chosen, in order to getetoent representations. However, a distortion
criteria can be easily set, to automatically determine éggiired number of atoms.

For the analysis of the sequences, we use a sliding windoW &fénes over which the synchronization
vectors are computed, in order to take into account the digsaofithe scene. At each step the observation
window is shifted by 20 samples and the procedure iteratéek VRlues of window length and shift have
been chosen considering a trade-off between the responseadtlay of the system, and the robustness of
the association. However, the algorithm is basically p&tamfree since all the values that have to be set
are fixed for all the experiments. Moreover, from informaise the choice of none of the parameters results
to be critical.

Fig. 6 shows resulting sample frames of the algorithm rumexrie 1. In white, the footprints of the video
atoms correlated with the soundtrack are highlighted. Taggp's fingers and the piano keys are detected
as sound source. In the left picture several 3-D atoms araagtl, since different keys are touched in
rapid succession, while in the right image one player’s fingeetected. The moving toy car introduces a
considerable distracting motion (see Fig. 5) and a nonigibtg acoustic noise. However, it is filtered out
by the cross-modal localization algorithm.

Fig. 7 shows similar results forovie 2. In the first two sample frames the left person is speakinggeviin
the last two the right one is. The sequence is non-triviakesin the second part of the movie the left person
mouths the digits which are being uttered by the right speakewever, the algorithm is able to correctly
localize the mouth and the chin of the current speaker. htisrésting to remark how video atoms adapt
their orientation and shape according to the geometricachernistics of the structures they represent.

Fig. 7. Results foMovie 2: In the first two sample frames the left person is speaking, while in thevasthe right one is. The most
correlated 3-D atoms are highlighted in white. The mouth and the chin of thectspeaker are detected.

VIlI. CONCLUSIONS

In this paper we present a novel algorithm for the cross-infdson of audiovisual signals. Multi-
modal signals are decomposed over redundant dictionare®ims, obtaining concise representations that
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moreover describe the structural properties of those Egidis allows to define meaningful audio-video
events ¢estalt3 that can be detected using a simple rule, the Helmholtzplig.
The proposed audiovisual events detection method feaderesal interesting properties:

« Thealgorithm exploitsthe inherent physical structures of the observed phenomenon. This allows
the design of intuitive but effective audiovisual fusioit@rna and demonstrates that temporal proximity
between audiovisual events is a key ingredient for crosdamiategration of information. In addition
to its simplicity, the proposed method also exhibits robess to significant audio-video distractors.

« Thealgorithm naturally deals with dynamic scenes.

« Thereisno parameter to tune. All the parameters are fixed and from informal tests, therdlgm
results robust to significant variations of their values.

« Visual information is described in a very concise fashion. For example, instead of processing
144 x 180 = 25960 time-evolving variables (pixel intensities), we sider only 50 variables (atoms
displacements).

« The atoms streams employed here are completely general, could be generated by algorithms other
than MP and can be used to encode the audio and video sequences

« Thedescription of the sceneis extremely rich. The audio and video atomic decompositions bring a
large amount of information that can be exploited at diff¢éf@ocessing levels. If needed, for example,
the information about scale and orientation of the videonstoan be exploited.

The price to pay, for the moment, is the high computationatglexity of the MP algorithm. However,
recent results on sparse signal approximation show thatrfaghods for the representation of signals over
redundant codebooks of functions can be achieved [23].

Possible extensions of this work include the use of steraadto improve the spatial localization capa-
bilities of our approach and possibly to extend it to the iplétsources case. Moreover, we are investigating
the possibility of applying our technique to other types aifitimodal signals, like climatologic data or data
from robot sensorse(g.terrain images and inertial sensors).
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