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Abstract

We propose a new approach for image segmentation at
different scales of observation, based on a multiscale im-
age decomposition and on the active contour segmentation
model. The proposed method consists of two steps. Firstly,
a representation of a given image at multiple scales is de-
rived, by means of a smoothing method which minimizes the
weighted total variation norm of the image. This method al-
lows the longtime preservation of edges and contrast with
increasing scale, facilitating the detection of underlying
structures. Secondly, image structures are extracted at each
scale, using a level set formulation of active contours, min-
imizing the Mumford-Shah functional. Promising results of
the proposed segmentation approach on natural images are
reported.

1. Introduction

Scale is a fundamental concept in computer vision. Lin-
deberg emphasized this point in [8], observing that real-
world objects are perceived differently depending on the
scale of observation. Most natural images contain objects at
different scales and these multiscale objects are often recur-
sive, i.e. they contain substructures, which contain further
substructures etc. In the context of a computer vision sys-
tem, a high level image understanding process could dic-
tate the scale of the details to be analyzed. Consequently,
it is desirable for the lower level segmentation process to
provide the detected structures corresponding to different
scales. This is the kind of segmentation process that we tar-
get in our work.

In order to extract such multiscale objects from images,
an essential concept is thescale spaceof an image, whose
bases were set by the pioneering works of Iijima [5], Marr
[10], Witkin [19] and Koenderink [6]. The main principle of

scale spaces is to decrease the amount of information in an
image, by smoothing/simplifying the objects within it grad-
ually, resulting in a hierarchy of fine to coarse replicas of
the original image. Mathematically speaking, scale spaces
are hierarchical representations at a continuum of scales,
embedding the original imageu0 : RN → R into a fam-
ily u : RN × [0,∞) → R of gradually more simplified im-
ages.

This multiscale hierarchy can be used to extract/identify
multiscale objects with a given segmentation method. The
segmentation of multiscale objects was explored in many
different works, such as [9], [7], [4], [18], [3], [11], [14]
and [13]. Closest to our approach is the method developed
by Petrovic and Vandergheynst in [14]. They derive a scale
space of an image using the total variation flow and then
segment homogeneous image regions at each scale by ap-
plying a region growing algorithm, which minimizes the
piecewise-constant approximation of the Mumford-Shah
functional.

In our approach, we keep the same two-step frame-
work for multiscale segmentation: scale-space derivation,
followed by structure extraction at each scale. However, we
investigate new methods for each of the two steps. More
precisely, we derive our scale-space using a new variational
formulation, based on the minimization of the weighted to-
tal variation norm of the image [16], [1]. This method yields
better results than the total variation flow used in [14], in
that it better preserves the image geometry (edge positions)
and contrast. For structure extraction, we use the multiphase
level set framework developed by Vese and Chan in [17],
which has shown very good results in the segmentation of
real world images.

2. The Weighted Total Variation Scale-Space

The weighted total variation (TV) scale-space [16], [1] is
obtained by an enhancement of the well-known total varia-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion flow developed by Rudin, Osher and Fatemi [15]. The
Rudin-Osher-Fatemi model is a powerful variational tech-
nique for image denoising, remarkable for the longtime
preservation of image edges with increasing scales of de-
noising. It is based on the minimization of the following en-
ergy:

ETV (u, λ) =
∫

Ω

|∇u| dx + λ

∫

Ω

(u− u0)2 dx, (1)

whereΩ ⊂ RN designates the signal (image) domain,u0

is the given image,u is its regularized approximation andλ
is a positive parameter, dictating thescale of observationof
the solution.

Weighted TV flow with anL1-norm data fidelity term [1]
is obtained by the minimization of the modified energy

EgTV (u, λ) =
∫

Ω

g |∇u| dx + λ

∫

Ω

|u− u0| dx, (2)

where g = g(|∇u0 ∗ Gσ|) is an edge detecting func-
tion, dependent on the gradient magnitude of the gaussian
smoothed original image (Gσ is the Gaussian kernel), non-
increasing, withg(0) = 1, g(s) ≥ 0 andlims→∞ g(s) = 0.
For instanceg(s) = 1/(1 + β s2), with β > 0 an arbi-
trary parameter. The minimization ofEgTV in (2), using the
Euler-Lagrange equations and the gradient descent method,
yields the following evolution equation foru:

ut = ∇ ·
(

g
∇u

|∇u|
)

+ λ
u− u0

|u− u0| . (3)

As compared to the TV flow, the introduction of the
weighting functiong further inhibits diffusion at edge lo-
cations, contributing to edge preservation through scales.
Moreover, the replacement of theL2-norm with theL1-
norm as a fidelity measure helps to preserve the contrast of
the image, as shown in [2] and confirmed by our experimen-
tal results. Figure 1 illustrates the advantages of weighted
TV flow with respect to TV flow: observe the quality of the
two final images 1(f) and 1(g), where the bird’s eye is no
longer discernible.

3. Active Contours Driven by the Mumford-
Shah Functional

In [12], Mumford and Shah defined the image segmenta-
tion problem as follows. Given an observed imageu0 : Ω →
R, find a decomposition of the image domainΩ into con-
nected componentsΩi and an optimal piecewise smooth ap-
proximationu of u0, so thatu varies smoothly within each
Ωi and rapidly/discontinuously across the boundaries ofΩi.
For 2D images, this translates into the following minimiza-
tion problem: find(u,C) that minimize the energy func-

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 1. TV flow versus weighted TV flow. (a)
Original image u0; (b), (d), (f) TV flow, scales
λ = 0.04, 0.02, 0.008; (c), (e), (g) weighted TV
flow, scales λ = 0.4, 0.2, 0.08. Weighted TV
flow better preserves edges and contrast of
the original image through scales.



(a)

(b)

Figure 2. a) Image partition representable us-
ing one single level set function φ. b) Im-
age partition containing triple junctions, rep-
resentable using two level set functions φ1

and φ2.

tional

EMS(u,C) =
∫

Ω

(u− u0)2dxdy + µ

∫

Ω\C
|∇u|2dxdy

+ νHN−1(C),
(4)

whereC is the set of discontinuities/boundaries of the re-
gionsΩi,HN−1(C) is the(N − 1)-dimensional Hausdorff
measure, representing the length ofC and µ, ν > 0 are
weighting constants for the three competing terms. The first
term of the energy (4) imposes fidelity of the approxima-
tion u to u0, the second term dictates smoothness ofu out-
side ofC and the third term requires smoothness of the con-
tourC.

Vese and Chan [17] proposed to solve this problem us-
ing a multiphase level set approach. They use one or more
level set functions, whose zero-level sets represent the set
of curvesC. With one level set functionφ (which implies
two phases{φ > 0}, {φ < 0}), one can detect multi-

ple objects whose boundaries do not intersect, i.e. they can
be represented by the zero level set of a single function:
C = {(x, y)| φ(x, y) = 0} (see Figure 2(a)). Two level
set functionsφ1 andφ2 suffice to represent more compli-
cated scenes, including triple junctions. The possible com-
binationsφ1 ≶ 0, φ2 ≶ 0 generate four different phases,
which we can use to “color”/delimit different adjacent re-
gions in a partition (see Figure 2(b)). In the following, we
present this four-phase segmentation model, which will be
used to segment smooth regions in the multiscale image rep-
resentation.

In this model, segmentation is achieved by evolving the
level set functionsφ1 andφ2, whose zero level sets repre-
sent the contours outlining object borders. At the same time,
the piecewise smooth approximationu of the original image
u0 is computed. The link betweenφ1, φ2 andu is expressed
via the auxiliary functionsu++, u+−, u−+ andu−−, rep-
resenting the four different phases, such that:

u(x, y) =





u++(x, y) if φ1(x, y) > 0 andφ2(x, y) > 0,

u+−(x, y) if φ1(x, y) > 0 andφ2(x, y) < 0,

u−+(x, y) if φ1(x, y) < 0 andφ2(x, y) > 0,

u−−(x, y) if φ1(x, y) < 0 andφ2(x, y) < 0.
(5)

For brevity of the description, we denoteu++, u+−, u−+

andu−− by uij , wherei = +,− andj = +,−. In this way,
the minimization of the Mumford-Shah functional (4) can
be translated to the problem of findingu, φ1 andφ2 which
minimize

F (u, φ1, φ2) =
∑

i,j=+,−

∫

Ω

|uij − u0|2H(iφ1)H(jφ2)dxdy

+ µ
∑

i,j=+,−

∫

Ω

|∇uij |2H(iφ1)H(jφ2)dxdy

+ ν

∫

Ω

|∇H(φ1)|+ ν

∫

Ω

|∇H(φ2)|.
(6)

The minimization of this energy with respect to the func-
tionsu++, u+−, u−+ andu−− leads to the following Euler-
Lagrange equations:





uij − u0 = µ4uij in {iφ1 > 0, jφ2 > 0},
∂uij

∂~n
= 0 on {φ1 = 0, jφ2 ≥ 0}

∪ {iφ1 ≥ 0, φ2 = 0},
(7)

for i = +,− and j = +,− and where∂/∂~n represents
the partial derivative in the normal direction~n at the corre-
sponding boundary.

Minimizing the energyF (u, φ1, φ2) with respect toφ1

andφ2 leads to the Euler-Lagrange equations forφ1 andφ2,



which are integrated in a temporal scheme, yielding:

∂φm

∂t
= δε(φm)

(
ν∇ ·

( ∇φm

|∇φm|
)

+
∑

i,j=+,−
(−i)(2−m)(−j)(2−n)|uij − u0|2H(jφn)

+ µ
∑

i,j=+,−
(−i)(2−m)(−j)(2−n)|∇uij |2H(jφn)

)
,

(8)

for m,n = 1, 2 andm 6= n.
For segmentation, the level set functions are initialized

as signed distance functions to some initial contours (cir-
cles on a grid, in our case). Then the discretized versions of
the evolution equations (7) and (8) (see [17] for details of
the numerical schemes) are applied successively, until the
steady state is reached (the values of the evolving functions
no longer modify from one iteration to the next). The fi-
nal segmenting contours are given by the zero level sets of
φ1 andφ2, while the approximation tou0 is given by:

u =
∑

i,j=+,−
uijH(iφ1)H(jφ2). (9)

4. Multiscale Segmentation Using Active Con-
tours

Our goal is to design an algorithm which can capture the
structures present in an image, at different scales of obser-
vation of the image. Such an algorithm could be used in dif-
ferent ways by a computer vision system. A higher level im-
age understanding process could indicate the desired scale
of observation and the multiscale segmentation algorithm
would output the detected objectsfor the required scale. Al-
ternatively, the segmentation process could be given just the
input image and be required to extract the meaningful ob-
jectsat each scale(from a collection of scales). Then the
high level process could chose to analyze the scene at a par-
ticular scale/level of detail (for instance based on the num-
ber of objects found by the segmentation at each scale).

To this end, our algorithm needs to use a simplify-
ing/smoothing process that would generate a multiscale rep-
resentation of the original image. Secondly, it should extract
the structures (i.e. homogenous regions and their bound-
aries) from the image decomposition at each scale.

For the first task we choose the weighted total varia-
tion flow presented above, because of its edge and con-
trast preserving properties, favorable for the segmentation
phase which follows. For structure extraction, we adopt the
four-phase piecewise smooth version of the active contour
model described above. The four phase model allows the
segmentation of fairly complex image structures, such as
triple junctions, and has offered very promising results in
the literature [17].

The main problem of active contour models is their sen-
sitivity to the initial conditions. Since they are relying on
gradient descent for energy minimization, they are suscep-
tible to fall into local minima, depending on their initial con-
ditions. In order to solve this problem, we start the segmen-
tation process at the coarsest/highest scale of observation
of the image. Here, the image is simplified the most, since
its details have been filtered out by the smoothing process.
Therefore, its energy landscape contains less local minima
and the active contours are be more likely to capture the
global minimum. At the coarsest scale, we use the “seed
initialization”(circles placed on a regular grid), which has
shown good results in [17]. Once the coarsest scale has been
segmented, the main structures in the given image will have
been detected. We can then use the resulting active contours
as initial condition for the image at the next finer scale, since
their position will already be close to the global minimum.

The detection of new emerging structures in the finer
scales is performed naturally within the active con-
tour framework proposed in [17]. This is because the seg-
mentation model is able to captureinterior structures, i.e.
structures appearing inside other structures which have al-
ready been outlined by the active contours. The reason for
this is that the approximations to the Dirac and the Heav-
iside functions (δε(z) and Hε(z)) (which are used in the
evolution equations 7, 8) haveinfinite support. There-
fore, the evolution of the level set functions is not re-
stricted to a narrow band around the zero level set, but takes
place within the whole image domain, allowing the appear-
ance of new contours.

In the following, we summarize our approach in an al-
gorithmic setting. Letu0 be the original image,φ1 andφ2

the level set functions modeling the active contours and
u++, u+−, u−+, u−− the auxiliary functions designat-
ing the four phases of the piecewise smooth Mumford-Shah
model, denoted concisely byuij , where i = +,− and
j = +,−. The proposed algorithm consists of the follow-
ing steps:

Stage 1
Derive the multiscale image representation using weighted
TV flow:

• generate stack of scaled imagesu(λ1), u(λ2), . . . u(λm)
by running to steady state the discretized version of
equation (3) on the original imageu0, for decreas-
ing weights of the fidelity termλ1 > λ2 > . . . > λm

(u(λ1) - finest scale image,u(λm) - coarsest scale im-
age).

Stage 2
Extract structures from each scale using active contours:

• initialize level set functions (seed initialization):
φ1(0) = φ0

1, φ2(0) = φ0
2;



• for λ = λm downto λ1

segmentu(λ)

1. set timen = 0;

2. initialize uij(0) = u(λ) for i, j = +,−;

3. computeuij(n + 1) using uij(n) and φ1(n),
φ2(n) for i, j = +,−, according to the evolu-
tion equations (7);

4. computeφ1(n+1), φ2(n+1) usingφ1(n), φ2(n)
anduij(n+1), i, j = +,−, according to the evo-
lution equations (8);

5. n = n + 1;

6. if the evolving functionsφ1, φ2 and uij , with
i, j = +,− have not reached their steady state,
then continue evolution:go to step 3
elsefinished segmentation ofu(λ):

– output final segmenting contours for scale
λ as the zero level sets ofφ1(n), φ2(n)
and the segmented objects, as the connected
components of the four phasesuij(n), with
i, j = +,−;

– initialize level set functions for the next
scale as the final level set functions at this
scale:φ1(0) = φ1(n), φ2(0) = φ2(n);

• end for.

5. Experimental results

We have applied our algorithm on two natural images
containing structures at different scales. The images are pre-
sented in Figure 3(a) and 3(b) and will be denoted as ’Sergi’
and ’Cameraman’, respectively. Figures 4 and 5 illustrate
the result of the first stage of the algorithm - the multiscale
representations of the two images. In order to demonstrate
our algorithm, we use four samples from the scale space of
each image, as can be seen in Figures 4 and 5. These sam-
ples correspond to different scales of observation, given by
different weightsλ of the fidelity term in the weighted TV
energy (2). Since the disappearance of details in the images
throughout the scale space appears to be exponentially con-
nected to theλ parameter, we have chosen an exponential
law of variation forλ, in the form:λ = λ0α

m. Thenλ0 and
α were set to some arbitrary values, the same for both im-
ages (λ0 = 10, α = 0.95) andm was varied in order to
obtain samples of the scale space. Therefore, in the follow-
ing we will refer tom as the scale parameter. As can be
seen in Figures 4 and 5, the first stage of the algorithm has
achieved its purpose, providing us with a multiscale rep-
resentation of the two images. The details of the images
are gradually filtered out and finally only the main struc-
tures remain: the man and the painting (’Sergi’ image) and
the cameraman, the field and the sky (’Cameraman’ image).

(a) Original image ’Sergi’ (b) Original image ’Came-
raman’

Figure 3. Original images considered for mul-
tiscale segmentation.

Figures 6 and 7 show the results of the second stage of the
algorithm. For both images, the parameters used for the ac-
tive contour model areµ = 30, ν = 100. The final seg-
menting contours for each scale are depicted with green and
magenta, superposed on the corresponding images at each
scale. They represent the zero level sets of the functionsφ1,
φ2, at the steady state of their evolution. At the coarsest level
of scale, the fine details of both images have been elimi-
nated by the weighted TV flow. Therefore, the subsequent
active contour segmentation has outlined only the main ob-
jects still visible in the images: the man and the painting
(’Sergi’ image) and the cameraman, the field and the sky
(’Cameraman’ image). As we go down to finer scales, more
details appear in the observed images and are outlined by
the segmentation process. The obtained results prove the ef-
fectiveness of the proposed algorithm for the intended pur-
pose: image segmentation at multiple scales of observation.

6. Conclusion and Future Work

We have introduced an algorithm for image segmenta-
tion at multiple scales. To this end, we have combined an
image regularization technique with a variational segmen-
tation technique. In a first stage, we derive a multiscale rep-
resentation of the given image, using the weighted TV flow,
which favors the long-time preservation of image edges and
contrast with increasing scale. In the second stage, we suc-
cessively segment each image in the scale-space, using ac-
tive contours based on the Mumford-Shah functional. We
start from the coarsest scale and use the resulting contours
at one scale as initial contours in the segmentation of the
next scale.

We have obtained promising results in the segmentation
of natural images containing multiscale structure. We are
currently investigating the merging of the two phases of our
algorithm into a single variational model, by incorporating
scale directly into the Mumford-Shah segmentation frame-



(a) Scalem = 0 (b) Scalem = 58 (c) Scalem = 92 (d) Scalem = 108

Figure 4. Stage 1 for ’Sergi’ image: weighted total variation scale space.

(a) Scalem = 0 (b) Scalem = 76 (c) Scalem = 92 (d) Scalem = 113

Figure 5. Stage 1 for ’Cameraman’ image: weighted total variation scale space.

work. We conclude that the proposed algorithm can con-
tribute in the automation of the image understanding task,
providing an outline of the significant structures in images,
which correspond to different observation scales.
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(a) Initial active contours on initial
scalem = 108

(b) Scalem = 108 (c) Scalem = 92 (d) Scalem = 58 (e) Scalem = 0

Figure 6. Stage 2 for ’Sergi’ image: segmentation of the weighted TV scale space, using active con-
tours.

(a) Initial active contours on initial
scalem = 113

(b) Scalem = 113 (c) Scalem = 92 (d) Scalem = 76 (e) Scalem = 0

Figure 7. Stage 2 for ’Cameraman’ image: segmentation of the weighted TV scale space.


