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Image Replica Detection based on Binary Support
Vector Classifier

Yannick Maret, Fŕed́eric Dufaux, and Touradj Ebrahimi

Abstract— In this paper, we present a system for image
replica detection. More specifically, the technique is based
on the extraction of 162 features corresponding to texture,
color and gray-level characteristics. These features are
then weighted and statistically normalized. To improve
training and performances, the features space dimension-
ality is reduced. Lastly, a decision function is generated
to classify the test image as replica or non-replica of
a given reference image. Experimental results show the
effectiveness of the proposed system. Target applications
include search for copyright infringement (e.g. variations
of copyrighted images) and illicit content (e.g. pedophile
images).

Index Terms— image replica detection, features extrac-
tion, support vector machine, dimensionality reduction,
image search, copyright infringement

I. I NTRODUCTION

In this paper, we propose a system to detect
image replicas. By replica, we refer not only to
a bit exact copy of a given reference image, but
also to modified versions of the image after minor
manipulations, malicious or not, as long as these
manipulations do not change the perceptual meaning
of the image content. In particular, replicas include
all variants of the reference image obtained after
common image processing manipulations such as
compression, filtering, and adjustments of contrast,
saturation or colors.

The proposed image replica detection system
can be applied todetect copyright infringementby
identifying variations of a given copyrighted image.
Another application is todiscover illicit content,
such as child pornography images.

The problem of image replica detection is a
particular subset of the more general problem of
content-based search and retrieval of multimedia
content. In recent years, multimedia search and
retrieval has been the subject of extensive re-
search works and standardization activities such as
MPEG-7 [1], [2] and the more recent JPSearch [3].

However, the problem of image replica detection has
so far been the focus of fewer research efforts.

Two approaches to detect image replicas are
watermarking [4] and robust fingerprinting [5]–
[7]. Watermarking techniques [4] consist in em-
bedding a signature in the reference image before
dissemination. Replicas of the reference image can
subsequently be detected by verifying the presence
of the watermark. This class of techniques typically
achieves high efficiency for the correct classification
of replicas and non-replicas. However, it requires to
modify the reference image, namely to embed a sig-
nature, prior to its distribution. Unfortunately, this
is not always possible. For instance, the method is
not applicable to already disseminated copyrighted
content or in the case of illicit content. Robust fin-
gerprinting techniques [5]–[7] analyze the reference
image in order to extract a signature associated
with the image content. Replicas are then identified
whenever their signatures are close to the one of the
reference. This class of techniques is often based on
a single feature, for example characteristic points of
the Radon transform [5], log-mapping of the Radon
transform [6], or intra-scale variances of wavelet
coefficients [7]. While it is usually robust, com-
putationally efficient, and suitable for fast database
indexing and retrieval, it however performs poorly
for the accurate classification of replicas and non-
replicas.

More recently, techniques for image replica de-
tection have been described in [8], [9]. Keet al [8]
propose a method based on the extraction of fea-
tures, referred to as Key Points (KPs), which are
stable in the scale-space representation. An image
is typically represented by thousands of KPs. Test
images are then classified as replicas or non-replicas
using local sensitive hashing to match their KPs
to those of the reference image. More specifically,
no distance is directly computed, but it is rather
the number of matching KPs which quantifies the
similarity between two images. While this approach
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achieves very good performance for replica detec-
tion, it requires a computationally complex features
extraction step. Qamraet al [9] propose a different
method based on the computation of a perceptual
distance function (DPF). More precisely, a DPF is
generated for each pair of reference and test images,
to measure the similarity between the two. The main
idea of the approach is to activate different features
for different images pairs. More specifically, only
the most similar features are taken into account to
compute the distance. While this method achieves
good performance, it is inferior to [8].

In this paper, we introduce a new approach for
image replica detection based on our earlier work
in [10]–[12]. More precisely, we extract 162 features
from each image, representing texture, color and
gray-level characteristics. The resulting features are
then weighted by the proportion of pixels contribut-
ing to each feature, and statistically normalized to
ensure that the features are commensurable. In the
next step, the dimensionality of the features space
is reduced. In this way, less training examples are
needed and only features relevant to the given im-
ages are kept. Finally, a decision function is built to
determine if the test image is a replica of the given
reference image. Note that the considered approach
consider a replica detector that is specifically fine-
tuned toeachreference image.

Simulation results show the effectiveness of the
proposed system. For instance, for an average false
negative rate of 8%, we achieve a fixed false positive
rate of1 · 10−4. Indeed, our technique significantly
outperforms DPF [9] even though we use fewer
features. While our performance is not as good
as KPs [8], we obtain a speed up in terms of
computational complexity in the range of 2 to 3
orders of magnitudes.

This paper is structured as follow. We present an
overview of the proposed replica detection system
in Sec. II, and a more thorough description of the
various algorithmic steps in Sec. III. In order to
evaluate the performance of the proposed system,
the evaluation methodology is defined in Sec. IV,
and experimental results are reported in Sec. V.
In Sec. VI, we discuss applications of the system.
Finally, we draw conclusions in Sec. VII.

II. OVERVIEW AND PRELIMINARY REMARKS

We first present an overview of the proposed
replica detection system. The system consists of

six steps as shown in Fig. 1a. An outline of each
step is provided in Sec. II-A. The method can be
decomposed into two distinct parts. The first one,
consisting of the steps shown in the upper part of
Fig. 1a, is independent from the reference image.
Conversely the second one, comprising the steps
shown in the lower part of Fig. 1a, depends on
the reference image. Therefore the latter steps need
to be trained. To achieve this, training examples
are needed for both replicas and non-replicas, as
detailed in Sec. II-B. The training phase is outlined
in Fig. 1b. The training performance is assessed
using the F-score metric described in Sec. II-C.
Notations used throughout this paper are detailed
in Sec. II-D.

A. Method Overview

a) Image preprocessing:In the first step the
test image is preprocessed. More specifically, the
image is resized, and represented in a modified HSI
color space. It adds some invariance against com-
mon image processing operations, such as resizing
and illumination changes.

b) Feature Extraction: Feature extraction
maps images into a common space, where compari-
son is easier. For this purpose global statistics, such
as color channels and textures, are extracted from
the test image.

c) Weighted Inter-image Differences:In the
third step, the test image features are subtracted
from those of the reference image, and ‘incom-
mensurable’ features are penalized. For example,
statistics about yellow pixels are incommensurable
when the test and reference images contain very
different proportions of yellow pixels.

d) Statistical Normalization:In the fourth step
the inter-image differences are statistically normal-
ized. In other words, the same importance is given
to each feature, independently of their value range.

e) Dimensionality Reduction:In the fifth step
the feature dimensionality is reduced. Less training
examples are needed, and only feature mixtures
relevant to the replica detection task are kept.

f) Decision Function:Finally, in the last step
a decision function is used to determine if the test
image is a replica of the reference image.

B. Training Examples

Examples of replica imagescan be generated
artificially. Indeed, the reference image can be mod-
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(a) Block Diagram for the Testing Phase. A test image is given to the system
that determines if it is a replica of a given reference image contained in the
database. The method can be decomposed into two distinct parts: steps that are
independent from the reference image (upper part of the figure), and steps that
depend on the reference image (lower part of the figure).
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(b) Block Diagram for the Training Phase. The features
fref of the reference image, the training examples{fi}i,
and the corresponding labels{yi}i are fed to the training
algorithm that produces the parameters of the reference
image dependent steps.

Fig. 1: Block diagram of the replica detection system. The system is composed of two phases, namely
training and testing.

ified using different operations, resulting in several
replicas. In this works, the replicas are generated
by the operations listed in Table I. Furthermore, it
is possible to have a richer set of training examples
by nesting two or more operations to form a new
operator known as acomposition. However, we
assume that an operation cannot be nested more than
once in the same composition. For example, a JPEG
compression cannot be followed by another JPEG
compression with the same or a different quality
factor. In this way,420 replicas of the reference
image are synthesized by using up to two nesting
levels of compositions.

Examples ofnon-replicaimages can be obtained
by using a set of images that are known to be
non related to the reference image. This set can
also be enriched by applying operations on its
elements. In this study, we only consider the gray-
level conversion. It permits to enrich the training set
with gray-level images in order to avoid relying too
heavily on the color features.

C. Training Metric

The F-score metricF (·) is used to assess the
detection performance during the training phase.

TABLE I: Training replicas generation.Image op-
erations and their parameters.

Operations Parameters
JPEG compression Q = 10, 50
Gaussian noise addition σ = 20/255, 60/255
Resizing s = 0.8, 1.2
Averaging filter order= 2, 4
Gamma correction γ = 0.8, 1.2
Horizontal flipping NA
gray level conversion NA
rotation θ = 90◦, 180◦, 270◦

cropping keep 50% and 80%
V channel change -10% and +10%
S channel change -10% and +10%

The F-score is defined as follows [13]:

F (TP, FP, P ) =
TP

P
×

TP

TP + FP
, (1)

where P is the the total number of positive in-
stances,TP is the number of positive instances cor-
rectly classified, andFP is the number of negative
instances wrongly classified. The first term in the
right hand side of (1) corresponds to theRecall.
Conversely the second term represents theprecision.
F-score balances these two conflicting properties:
precision increases as the number of false positives
decreases, and recall decreases as the number of
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false negatives diminish (usually meaning that the
number of false positives increases).

Equation (1) can be rewritten as:

Fρ (rfp, rfn) =
(1 − rfp) · (1 − rfn)

1 + ρ · rfp − rfn

, (2)

where rfp and rfn are the false positive and false
negative rates.ρ = N/P gives the ratio between
the number of negative and positive instances. In
the rest of the document, we use the formulation
given by (2). One drawback of this metric lies in the
ratio ρ between the number of negative and positive
instances. It has to be known beforehand.

D. Notations

Subscript in Greek letters index vector ele-
ments. Subscripts in Roman letters index vectors
(or scalars). Training patterns (or examples) are
denoted asxi, with i = 1, . . . ,m wherem is the
total number of training patterns. During the training
phase, a labelyi is assigned to each patternxi. A
pattern corresponding to a replica is simply called a
replica and labeledyi = +1. Otherwise it is called
a non-replicaand labeledyi = −1.

We denote theα-th feature of an image asfα.
All features of an image can be held in a column
vector denoted asf .

III. R EPLICA DETECTION SYSTEM

We now describe thoroughly the proposed replica
detection system. In particular, each step presented
in Fig. 1 is detailed along with the training proce-
dures whenever required.

A. Image Preprocessing

Before extracting features, an image is first
cropped such that only 70% of its center region is
kept. It introduces a weak robustness to operations
such as framing. Then, it is resized such that it
contains approximately216 pixels (corresponding to
a square image of256× 256 pixels), while keeping
its original aspect ratio. It introduces a weak form
of scale invariance and permits to speed up feature
extraction by reducing the number of pixels to
process.

The cropped and scaled image is then represented
in a modified Hue Saturation Intensity (HSI) space:

the logarithmic Hue, Saturation, and equalized-
Intensity space. More specifically, the logarithmic
Hue, Hlog, is defined as follows [14]:

Hlog =
log R − log G

log R + log G − 2 log B
, (3)

where R, G and B are the red, green and blue
values of a pixel. The logarithmic Hue has the
advantage to be invariant to gamma and brightness
changes [14]. The Saturation,S, is the same as for
classical HSI [15]:

S = 1 −
3 min(R,G,B)

R + G + B
. (4)

By construction, the Saturation is invariant to
changes in illumination. Finally, the equalized Il-
lumination,Iequ, is given by

Iequ = T

(
R + G + B

3

)

, (5)

where T(·) is the global histogram equalization
operator [15]. The equalization permits to make the
Intensity mostly invariant to changes of gamma and
brightness as shown in Appendix .

B. Features Choice and Extraction

In order to compare the similarity between two
images, visual features are extracted. The goal of
feature extraction is twofold. First, it maps images
onto a common space where they can be more easily
compared. Second, it reduces the space dimension-
ality by keeping only the relevant information.

Several visual features can be envisioned: color,
texture, shape, etc. For an extensive survey on
general features extraction, refer to [16]. The choice
of features depends on the image type. In the case of
the image replica detection problem, it also depends
on the type of replicas that are to be detected. For
instance, if rotated images are considered, it would
make sense to choose at least one feature that is
rotation invariant.

The features used in this work are of three types:
texture, color and gray-level statistics. They are
similar to those used in [9]. The main differences
are the added24 gray-level features, and the absence
of ‘local’ statistics. These features are found to give
good results in image retrieval applications [9]. In
total, we extract162 features, as shown in Table II.
They are detailed in the following subsections.
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TABLE II: Features overview.List the types of used
features and the number of extracted statistics.

name ♯ features
Gabor, squared coeff. mean 30
Gabor, squared coeff. std dev. 30
Color, histogram 10
Color, channel mean 24
Color, channel std dev. 24
Color, spatial distribution 20
Gray-level, histogram 8
Gray-level, spatial distribution 16
total 162

1) Texture Features:The texture features are
composed of the first and second order statistics of
each subband of the Gabor transform. The latter is
performed as in [17] on the equalized Illumination.
More precisely, the used parameters are0.75 for
the upper center frequency,0.05 for the lower center
frequency, five scales and six orientations. Mean and
standard deviation estimates of the squared coeffi-
cients are computed for each of the30 subbands.
It results in a total of30 mean and30 variance
estimates.

2) Color Features:The color features are based
on the modified HSI color space presented in
Sec. III-A. Each pixel in the image is classified into
one of tencolor classesdepending on its position
in this space. The classes are the achromatic colors
(S = 0) black, gray and white, and the chromatic
colors (S > 0) red, orange, yellow, green, cyan,
blueandpurple. The equalized Illumination is used
to classify a pixel into one of the three achromatic
classes. The logarithmic Hue is used to classify a
pixel in one of the seven chromatic classes.

This is similar to the ‘culture’ color approach
proposed in [9]. In this study, pink and brown
are also considered, whereas in our case these two
colors are classified as red or orange. Brown and
pink have the same Hue as red or orange, but
differ in the Intensity and/or Saturation channels.
Operations such as saturation or intensity changes
are common in image processing, and modify the
Intensity and the Saturation channels but not the
Hue channel. If brown and pink are considered, red
or orange pixels could be transformed into brown or
pink pixels, or vice versa. For this reason, we have
decided to include brown and pink within the red
and orange classes.

a) Color Classes Histogram:A histogram is
computed, giving the proportion of each color class

in the image. It is normalized such that it sums to
one. It comprises10 values.

b) Channel Statistics:Mean and variance es-
timates of the equalized Intensity channel are com-
puted for each color class. Mean and variance es-
timates of Saturation and logarithmic Hue channels
are also computed for each chromatic color class.
It results in a total of24 mean and24 variance
estimates.

c) Spatial Distribution Shape:The shape of
the spatial distribution of each color class is com-
puted. This is achieved by computing two shapes
characteristics for each color class: spreadness and
elongation [18], [19]. The first characteristic mea-
sures the compactness of the spatial distribution of a
color class. The second one reflects how much the
spatial distribution has more length than width. It
results in10 spreadness and10 elongation measures.

3) Gray-Level Features:The gray-level features
are based on the equalized Intensity channel of the
HSI model. The dynamic range of the image is
linearly partitioned into eight bins corresponding to
as many classes. Each pixel of the image falls into
one of these bins.

The use of gray-level feature is important because
the color features can be unsuited in some cases.
For instance, it can happen when the reference or
the test images are gray-level, or when conversion
to gray-level is one of the considered operations in
the replica detection system.

a) Gray-level Classes Histogram:A gray-
level classes histogram is computed, giving the pro-
portion of the eight intensity range in the image. It
is normalized such that it sums to one. It comprises
8 values.

b) Spatial Distribution Shape:As for color,
the shape of the spatial distribution of each gray-
level class is computed. It results in8 spreadness
and8 elongation measures.

C. Weighted Inter-Image Differences

Inter-image differences are computed in this
steps. They are basically the difference between the
statistics of the test image and those of the reference
image.

The channels statistics and spatial distribution
shape for color classes, and the spatial distribution
shape for gray level correspond to non-overlapping
regions of the images. These regions have not neces-
sarily the same size for different images. Therefore,
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a legitimate question is whether image statistics are
comparable when the regions from which they are
estimated differ significantly in size.

In the following, a method is proposed that
generates small inter-image features when inter-
image class proportions are similar and large ones
when they are dissimilar. More precisely, inter-
image statistics corresponding to significantly dif-
ferent region size are penalized.

A ‘weight’ wα is associated to each featurefα.
The weight gives the proportion of pixels taken
into account to computefα. For the color features,
the weights are the entries of the color histogram.
Likewise, the weights corresponding to gray-level
features are those of the gray-level histogram. For
the remaining features, no weight is used.

We define the weighted inter-image differenceδα

as:

δα = fα− f̄α+ ŝα ·sgn
(
fα − f̄α

)
·(wα − w̄α)2 , (6)

where f̄α and w̄α are theα-th feature, respectively
weight, of the reference image, and̂sα is a non-
negative parameter that gives more or less impor-
tance to the discrepancy between the weights. The
sign function is such thatsgn(0) = +1.

The idea behind (6) is as follows. On the one
hand, a replica feature is assumed to be close to
that of the reference image. Consequently,fα − f̄α

and wα − w̄α are small, resulting in smallδα. On
the other hand, a non-replica feature has no relation
to that of the reference image. Therefore it is less
likely that bothfα andwα are simultaneously close
than onlyfα or wα. That is, (6) ensures thatδα is,
with higher probability, smaller for a replica than
for a non-replica.

The parameterssα are found through a training
procedure. To achieve this, simple classifiers are
considered. There are as many simple classifier than
featuresα, and the decision functions are given by:

sgn (Tα − |δα(sα)|) , (7)

whereTα are thresholds chosen among the|δα(sα)|
corresponding to the replicas. Thêsα maximizing
the F-score of these classifiers are then chosen.
Namely, theŝα are computed as follows:

ŝα = argsα
max
sα,Tα

Fρ (r̂fp, r̂fn) , (8)

where r̂fp and r̂fn give estimates of the false
positive and false negative rates on the simple

classifiers using thresholdsTα and parameterssα.
To reduce computation time, thesα are chosen
among the following candidates̃µα · 10k, where
the µ̃α are the average value of the|fα| over all
training non-replicas for theα-th feature, andk =
−∞,−1, 0, +1, +2.

D. Normalization

The weighted inter-image difference are normal-
ized using a statistical normalization method [20].
More precisely, letµα and σα be the mean and
standard deviation estimates of theα-th inter-image
difference over a subset of the training set. Training
examples for which any feature is an extremum
over the training set are ignored. Therefore, outliers
examples are not taken into account. The normalized
inter-image differencẽδα is then given by:

δ̃α =
δα − µα

k · σα

, (9)

where δα is the inter-image feature given in (6).
By Tchebychev’s theorem, at least a fraction1 −
1/k2 of the δ̃α are within the interval[−1, 1]. In the
following k is set to10 so that more than 99% of
the features are within[−1, 1]. The features outside
this interval are clipped to+1 or −1.

The goal of normalization is to ensure that the
feature elements are commensurable. This is espe-
cially important for dimensionality reduction.

E. Dimensionality Reduction

The relatively large number of features prevents
to directly use many classification techniques on the
weighted inter-image differences. It would requires
a prohibitively large number of training examples,
and the optimization process would probably yield
an overtrained decision function due to the ‘curse
of dimensionality’ [21]. For this reason, the di-
mensionalityD of the vector δ̃ is reduced tod.
In our case, the initial dimensionD is 162. The
dimensionality reduction makes use of the following
linear transformation:

x = WD→d · δ̃, (10)

where thed × D matrix WD→d is computed using
a slightly modified version of the method pro-
posed in [22]. The method is based on independent
component analysis (ICA) [23]. It adds the class
information to the feature vector in order to elect
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Require: {xi}i, {yi}i, d
Ensure: WD→d

for each examplei, set x̃i = [xT
i yi]

T

apply ICA to {x̃i}i → separating matrixWa

for each rowα of W, setaα = 1
D+1

PD+1
β=1 |wαβ |

setγ = 0.9 and∆γ = 0.001
repeat

setR = W

for each elementαβ of R, setrαβ = 0 if |rαβ | < γ · aα

delete rowsα of R for which rα(D+1)

PD

β=1 |rαβ | = 0

set d̃ = “number of rows inR”
if d̃ = d then

delete the(D+1)-th column ofR
setWD→d = R

else
setγ = γ + sgn(d̃ − d) · ∆γ

end if
if no convergence tod then

set∆γ = ∆γ/2
end if

until d̃ = d

a
W size is(D+1) × (D+1)

Fig. 2: Dimensionality Reduction Algorithm.It is a
modified version of [22] that enables to seta priori
the number of dimensiond.

the independent components best suited to the bi-
nary classification problem. The algorithm [22] is
modified so that the number of dimensions can be
seta priori. The method is briefly described in the
Fig. 2.

F. Decision Function

The decision function needs to determine whether
the vectorx corresponds to a replica of the reference
image. It is a binary classification problem, where
the two classes correspond to replicas and non-
replicas, respectively. The goal is to build, using a
limited number of training examples, a classifier that
generalizes well to novel patterns. Many classifica-
tion algorithms can be used for this purpose. In our
previous works [11], [12], we showed that Support
Vector Machine (SVM) yielded good performances
for the replica detection problem.

The basic SVM [24], [25] is a binary classifier
that separates two classes with an hyperplane. Fur-
thermore, non-linear kernels allow to map patterns
into a space where they can be better discriminated
by a hyperplane.

1) Support Vector Machine:We use theν-
parametrization [24], [26] of the SVM, and a ra-
dial basis function as kernel. The dual constrained
optimization problem is given in (11). In the dual

form, the Lagrangian is maximized by optimizing
the Lagrangian multipliersαi.

max
α

−
1

2

m∑

i,j=1

αiαjyiyj k(xi,xj), (11)

subject to the constraints
∑m

i=1 αiyi = 0,
∑m

i=1 αi ≥
ν, and0 ≤ αi ≤ 1/m. In this work, we use a radial
basis function kernel given by:

k(xi,xj) = exp

(

−
||xi − xj||

2

σ2

)

. (12)

The parameters of this classification technique are
ν ∈ [0, 1] and σ ∈ R

+. The parameterν can be
shown to be an upper bound on the fraction of
training errors, and a lower bound on that of support
vectors [24], [26]. The kernel parameterσ controls
the complexity of the decision boundary. The con-
strained optimization problem given in (11) can be
solved by means of standard quadratic programming
techniques.

The decision function indicates to which class the
test patternz belongs. It is given by:

f(z) = sgn

(
m∑

i=1

yiαi k(z,xi) + b

)

, (13)

where the constant b is determined by
the support vectors. More precisely,
b = yk −

∑m
i=1 yiαi k(xi,xk), for all xk such

that 0 < αk < 1/m. The name support vectors
stems from the fact that many of the optimized
αi are equal to 0. Hence, only a relatively small
fraction of the training patterns defines the decision
function.

2) Determination of the Classification Parame-
ters: In theν-SVM, the kernel parameterσ and the
parameterν are to be determined. More precisely,
they need to be set in order to minimize thegen-
eralization error is minimized, which is the error
obtained when testing novel pattern with a trained
decision function.

More precisely, we want to minimize the F-score
F (rfp, rfn, ρ) whererfp is the generalization error
for false positive (novel non-replicas classified as
replicas), rfp is the generalization error for false
negative (novel replicas classified as non-replicas),
andρ is the ratio between the number of novel non-
replicas and replicas. In the considered application,
there are usually many more non-replicas than repli-
cas so thatρ ≫ 1. Nevertheless,ρ remainsa priori
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unknown. Moreover,rfp andrfn are also unknown
and need to be estimated.

Cross-validation is a popular technique for es-
timating generalization error. Ink-fold cross-
validation, the training patterns are randomly split
into k mutually exclusive subsets (the folds) of ap-
proximately equal size. The SVM decision function
is obtained by training onk−1 of the subsets, and is
then tested on the remaining subset. This procedure
is repeatedk times, with each subset used for testing
once. Averaging the test error over thek trials gives
an estimate of the expected generalization error.
This method was shown to yield a good estimation
of the generalization error [27].

In the following, we use a normalized version of
the radial basis function kernel whereσ in (12) is
replaced byκ·σ. The normalization constantκ is set
to the second decile of the distribution of the intra-
replica distances within the training set. It ensures
that the optimal value ofσ is larger than one with
high probability.

While ν has an intuitive signification, it is not
clear what should be its optimal value [26], [28]. It
was shown that twicēR, a close upper bound on the
expected optimal Bayes risk, is an asymptotically
good estimate [28]. However, no such bound can
be easily determineda priori.

In this work, good parameters forσ andν are es-
timated in two steps:coarseandfine grid searches.
In each step, a tenfold cross-validation is carried out
for each feasible pairs(ν, σ). The pair for which the
estimated F-score is the highest is then chosen. The
tried pairs are the following:

• Coarse search:(σ, ν) for ν = 0.05 · 2k, k =
−4, ..., 4 andσ = k, k = 1, . . . , 10.

• Fine search:(σ, ν) for ν = ν1 · (1 + k/6), k =
−2, . . . , +2 and σ = σ1 · (1 + k), k =
−2, . . . , +2. Here,ν1 andσ1 denote the value
determined in the first step.

IV. EVALUATION METHODOLOGY

A. Test Images

To simulate the performance of the proposed
approach, we used the same image database as
in [8]1. It contains18, 785 photographs including
(but not limited to) landscapes, animals, construc-
tions, and people. The image sizes and aspect ratios

1 http://www-2.cs.cmu.edu/ ˜ yke/retrieval/

are variables, for example900× 600, 678× 435, or
640×480. They are mostly color images, except for
about one thousand images that are gray-levels.

For training, we randomly selected700 images
in the database. Among the selected pictures,200
are randomly chosen to be the reference images,
and the remaining are used as non-replica examples
during the training phase. For each reference image,
a replica detector is built as described in Sec. III.

The replica detectors are then tested on the re-
maining images in the database. This permits to
estimate the false positive rate for each reference
images. The false negative rate is estimated by
testing the replica detectors on test replica exam-
ples. They are generated by the transforms listed
below. These operations are the same than the ones
used in [8], [9]. They are implemented using the
free software suite ImageMagick2. There are twelve
categories, as shown thereafter. An example for each
of them is depicted in Fig. 3.

• Colorizing. Tint the Red, Green, or Blue chan-
nel by 10%;

• Changing contrast. Increase or decrease the
contrast using ImageMagick’s default param-
eter;

• Cropping. Crop by 5%, 10%, 20%, or 30%;
• Despeckling. Apply ImageMagick’s despeck-

ling operation;
• Downsampling. Downsample by 10%,

20%,30%,40%, 50%, 70%, or 90% (without
antialiasing filtering);

• Flipping. Flip along the horizontal axis.
• Color Depth. Reduce the color palette to 256

colors;
• Framing. Add an outer frame of 10% the image

size. Four images are produced with different
frame color.

• Rotating. Rotate by 90◦, 180◦or 270◦.
• Scaling. Scale up by 2, 4, 8 times, and down

by 2, 4, 8 times (use antialiasing filter).
• Changing Saturation. Change the values of the

saturation channel by 70%, 80%, 90%, 110%,
or 120%.

• Changing Intensity. Change the intensity chan-
nel by 80%, 90%, 110%, or 120%.

2 http://www.imagemagick.org

http://www-2.cs.cmu.edu/~yke/retrieval/
http://www.imagemagick.org
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(a) Original

(b) Replicas

Fig. 3: Examples of Test Replicas.There is one
replica example per category, the order used is the
same than in the text (left-right, top-down).

B. Evaluation Metrics

In order to evaluate the performance of the pro-
posed system, we measure the tradeoff between the
false positiveand false negativerates.

The Receiver Operating Characteristic (ROC)
curve [13] is often used to represent the tradeoff
between error types. In this study, we use a variant
of the ROC curve called Detection Error Tradeoff
(DET) curve [29]. In DET curve error rates are
plotted on both axis. It means that both axis can
make use of a logarithmic scale. The interpretation
of DET curves is analogous to that of ROC curves:
a classifier X is more accurate than a classifier Y
when its DET curve is below that of Y.

The DET curve is computed using the values
under the sign function in the right-hand side of
(13). Every reference image detector produces a
DET curve, which are synthesized in a single DET
curve by using vertical averaging [13]. The max-

TABLE III: Vertically averaged DET curve pre-
cision. The precision is obtained by taking into
account the number of test examples (18, 085 for
the non-replicas, and40 for the replicas), and the
number of individual DET curves used for averaging
(200).

error type maximal absolute precision
rfp ± 1

18,085
= ±5.5 · 10−5

rfn ± 1
40·200

= ±1.3 · 10−4

imal absolute precision that can be achieved on
the vertically averaged DET curve is reported in
Table III. It takes into account the number of test
replicas (P = 40), the number of test non-replicas
(N = 18, 085), and the number of individual DET
curves (n = 200).

V. RESULTS

In this section, we present experimental results in
order to evaluate the performance of the proposed
replica detection system. In the following, the used
parameters ared = 50 for dimensionality reduction,
andρ = 104 for the F-score parameterization, unless
stated otherwise.

A. Influence of the F-Score Metric Parameterization

In this experiment, we explore the effect of
possible parameterizations of the F-score metric.
The valueρ gives the ratio between the number of
expected non-replica instances and that of expected
replica instances. In the considered applications,
these numbers can hardly be determineda priori.
However, we can safely assume thatρ is much larger
than one because there are many more non-replicas
than replicas.

Figure 4a shows the vertically averaged DET
curve for ρ = 1. Then, Fig. 4b depicts the vertical
differences between the averaged DET curves for
ρ = {102, 104, 106} and that forρ = 1. Globally,
different values ofρ influence only slightly on
the results, namely the difference is less than1%.
However, highρ values favor classifiers with very
low false positive rates while keeping reasonable
false negative rates.

B. DET Curves Distribution

We now analyse the distribution of DET curves
before vertical averaging. Figure 5 shows the false
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Fig. 4: Influence ofρ. Vertically averaged DET
curves for a fixed number of dimensionsd = 50,
and different values ofρ.

negative rates histograms for a fixed false positive
rate rfp = 5 · 10−5 (leftmost value of the curves in
Fig. 4) and two different values ofρ, namely1 and
104. On the one hand, the two histograms show that
about 50% of the individual classifiers have false
positive rates below5%. Actually, about25% of the
classifiers have no false negative at all. On the other
hand, the two histograms show that a small number
of classifiers (respectively15 and 9) presents false
positive rates above50%. Moreover, this proportion
can be seen to decrease whenρ increases. The
corresponding reference images possess few colors,
or are gray-level images. It shows that color related
features are very powerful discriminating features,
and that the lack of color variety complicates the
replica detection task. The bad classifiers partici-

0 0.2 0.4 0.6 0.8 1
0

50

100

150

rfp

co
un

t

ρ = 1

ρ = 104

Fig. 5: False negative histograms. For a fixed false
positive raterfp = 5 · 10−5 (leftmost value of the
curves in Fig. 4), number of dimensionsd = 50,
and two different values ofρ.

pate heavily in increasing the average false positive
rates. When their proportion diminishes, so does the
average false positive error, explaining the results
obtained in Fig. 4.

C. Gray Level Features

In this trial, the detection performance obtained
by using gray-level features are compared to that
when not using them. Figure 6 depicts the perfor-
mance improvement brought by adding gray-level
features. The performance gap augments as the false
positive rate decreases. Note that gray-level images
are present in both the reference images and the test
images. Straightforwardly making use of gray-level
features greatly improves the performance on these
images. Moreover, it also increases the performance
for color images. Indeed, gray-level features capture
information that is missed by the color features,
namely the global intensity shape.

A possible improvement is to use a replica detec-
tion system to test color images, and another one
which does not make use of color features to test
test gray-level images. The drawback of such an
approach is that it requires storing two descriptions
for each reference image.

D. Weighted Inter-Image Differences

In this experiment, we analyse the advantage of
using weighted inter-image differences. Figure 7
illustrates the performance increase due to the
weighted inter-image differences. The DET curve
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Fig. 6: Influence of gray-level features. Vertically
averaged DET curves with, and without, using gray-
level features.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.05

0.10

0.15

0.20

rfp

r
f

n

‘optimzed’ sα

sα = 0

Fig. 7: Influence of the weighted inter-image differ-
ences. Vertically averaged DET curves forsα = 0
and optimizedsα.

with sα = 0 corresponds to the situation where
the differences are not weighted. In this case, (6)
becomesδα = fα − f̄α. The other DET curve corre-
sponds to the case where thesα have been optimized
as described in Sec. III-C. The performance gap
increases as the false positive rate diminishes. For
low false positive rates, the false replicas are mainly
images that are similar to the reference image. For
example, if the reference is a picture of a city,
most false replicas contain buildings or straight
structures. That is, many of the features of the false
replicas are close to those of the reference image.
In this situation, the use of weighted inter-image
differences helps in taking the correct decision.
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Fig. 8: Influence of the dimensionality reduction.
Vertically averaged DET curves for different values
of d.

E. Dimensionality Reduction Performance

We now explore the efficiency of the dimen-
sionality reduction step. Figure 8 illustrates the
performance obtained with different dimensionsd:
in general, the larger the number of dimensions, the
better the performances. However, the gain is not
very important when going overd = 50. The thick
line represents the performances achieved without
dimensionality reduction. In this case, the perfor-
mance is mostly equivalent to that ofd = 40 for low
false positive rates (rfp < 10−4) and significantly
lower for higher false positive rates. This can be
easily explained by the limited number of training
examples. Indeed, the number of needed training
examples grows as the number of dimension in-
creases [21], [30].

Another factor explaining the results obtained in
Fig. 8 is related to metric consideration. When no
dimensionality reduction is applied, the distance
used for the kernel computation is proportional to
a weighted Euclidian distance where the weights
are given by the inverse of the standard deviation,
as shown by (9) and (12). This givesa priori
equal weights to each feature. However, there is no
reason that every features carry the same amount of
discriminative information. Moreover, they depend
on each other. When dimensionality reduction is
applied, the reduced patternsxi are of unit variance,
and theoreticallyindependent[23]. In that case,
giving equal weights to every features makes more
sense and gives better results. In fact, recent works
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TABLE IV: Storage requirements estimation.Real
number are coded on 16 bits (two bytes). The num-
ber of dimensions after dimensionality reduction is
50. In our experiment (usingd = 50 andρ = 104),
the average number of support vectors is found to
be about85.

name size in bytes
image features 162 · 2 = 324
image weights 162 · 0 = 0
norm. const. 2 · 162 · 2 = 648
dim. reduct. matrix 50 · 162 · 2 = 16, 200
support vectors 50 · 85 · 2 = 8, 500
total 25,672 = 25 kilobytes

have shown that using metrics that are learned
from side-information can improve classification
results [31], [32]. In the case of the replica detec-
tion problem, two side-informations are available:
the class (replica or non-replica), and the relative
distance to the reference for replicas (for example,
a JPEG compressed image withQ = 10 is farther
to the reference than one withQ = 90). Future
research will study the improvements brought by
using learned metric in the replica detection prob-
lem.

F. Efficiency

The replica detection method efficiency is now
analysed in term of storage requirement and com-
putational effort.

A number of parameters are needed to compare
a test image to a given reference. Namely, they
are the reference image features and weights, the
normalization constants, the dimensionality reduc-
tion matrix, and the support vectors of the deci-
sion functions. In the following we refer to the
aforementioned elements as thedescriptionof the
reference image. The storage requirement are listed
in Table IV. On average, about25 kilobytes are
needed to store each description. In other words,
one megabyte can held, on average, up to forty
descriptions. This is a negligible amount of memory
for today computers.

Another important aspect is that of computational
complexity of the method. The proposed method
require a training for each reference image. The
training is computationally complex and take up to
fifteen minutes per reference image on a PC with
a 2.8 GHz processor and 1Go of RAM. Feature
extraction from the replica examples is the most

TABLE V: Average running time for testing.The ex-
periments were carried out on a PC with a 2.8GHz
processor and 1Go of RAM.

name time, s
reference
image indep.

preprocessing 0.2
feature extraction 1.8a

reference
image dep.

weighted features 48 · 10−6

normalization 90 · 10−6

dim. reduction 17 · 10−6

decision function 50 · 10−6

a0.1 s when optimized as in [9].

complex part of the training, and takes up to75% of
the running time. Since training can be done offline,
its computational complexity is less critical.

The computational complexity of testing is es-
timated in Table V. Note that except for the SVM
part, the method is implemented inMatlab without
any optimization. This incurs longer running time.
For instance, the feature extraction could be reduced
to, at least,0.1 seconds [9]. In the discussion that
follows, we assume an optimized feature extraction
step. The preprocessing and feature extraction steps
are reference image independent, and take up about
0.3 seconds. The remaining steps are reference im-
age dependent, and take up about0.2·10−3 seconds.
When the reference image database contains less
than1, 500 images, most of the testing time is spent
on the test image preprocessing and the feature
extraction. In that case, up to four test images
can be processed per second. For larger reference
databases, most of the testing time is spent on
the reference image dependent steps. The number
of test images that can be processed each second
decreases linearly as the number of reference images
grows. Future research will concentrate on pruning
the reference images, in order to avoid testing them
all. That is, only the reference images for which the
test image can be potentially a replica are selected.
Such methods can reduce the testing time, and have
been applied with success in [8], [9].

G. Comparison with Existing Replica Detection
Methods

Figure 9 compares the performance of the pro-
posed replica detection system with state of the
arts techniques in [8], [9]. The continuous line
corresponds to the vertically averaged DET curve
obtained with our system, usingd = 50 and ρ =
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104. The dashed line represents the performances
of a replica detection method based on Perceptual
Distance Function (DPF) [9]. The circle point indi-
cates the performance of a replica detection system
based on key points (KPs) [8]. For DPF the curve
is obtained by inspecting the precision-recall curve
reported in Fig. 5 of [9], and usingN = 20, 000 and
P = 40. For KPs, the point is computed using the
information reported in Table 1 and 2 of [8], and
usingN = 18, 722 andP = 40.

It can be seen that the proposed method achieves
good performance. For instance, an average false
negative rate of8% corresponds to a fixed false
positive rate of1 · 10−4. On the one hand, our
method outperforms that of DPF for false positive
rates below10−2. Moreover, it should be noted that
the features used in the current work are mainly a
subset of those used in DPF: we use162 features
against298 in the latter study. On the other hand,
the proposed method is outperformed by KPs. In
our method, most of the wrongly classified replicas
(false negative errors) correspond to replicas for
which the illumination or the intensity have been
changed to a great extend. The method KPs uses
features (salient points, or key points [33]) invariant
to this change but computationally more complex to
extract. Indeed, the feature extraction time of KPs is
between 1 and 10 seconds per image [8], [9]. This
is between 10 to 100 times slower than that for the
proposed method (when optimized as in [9]).

VI. A PPLICATIONS AND SCENARIO

The proposed image replica detection system
is suitable to detect copyright infringement or to
identify illicit content. In this section, we discuss
in more details the scenarios to use the proposed
technique in such a task.

In the design of our system, we assume a given
database of reference images, and we test input test
images towards this database in order to identify
replicas. Furthermore, we assume that the set of
test images can be extremely large, but the set of
reference images is moderate in size. To guarantee a
fast testing procedure, we consider a limited number
of low level features, as previously discussed. Note
that in order to handle large set of reference images,
a subset of all the features can be used in a first
step in order to quickly drop test images which are
classified as non-replicas with high confidence.

In the target applications, the database of ref-
erence images can for instance be a collection of
copyrighted images or illicit child pornography im-
ages. To perform the task of copyright infringement
or illicit content detection, several configurations
are possible. In one scenario, we consider a proxy
server performing network sniffing at nodes of the
Internet. The proxy server contains the database of
reference images, or more specifically the extracted
features, normalization constants, reduction matrix
and classifier for each reference. Subsequently, the
proxy server processes each incoming image, apply-
ing preprocessing and features extraction, compares
it pairwise with each reference image, and finally
decides whether it is a replica of one image in
the database. In another scenario, we consider a
web crawler to search for replicas on the Internet.
Similarly to the previous case, the crawler looks
for test images and compares them to a database
of reference images in order to identify replicas.

Other applications and scenarios are also pos-
sible, although the proposed system may be less
suited for them. For instance, the technique can also
be used in an image web search engine in order to
prune the results of a query by eliminating replicas.
Alternatively, it is also possible to build an index of
web images, and to check whether a given reference
image has replicas in this index.

As common in a classification technique, a trade-
off exists between the false positive and false neg-
ative rates. On the one hand, a low false positive
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rate is desired whenever a user does not want to be
overwhelmed by false positive. On the other hand, a
low false negative rate is preferable for a user who
wished to detect all possible replicas. The optimal
trade-off is therefore application dependent.

VII. C ONCLUSION

In this paper, we have described a technique
to classify whether a test image is a replica of a
given reference image. We performed experiments
on a large database containing18, 785 photographs
representing a wide range of content. We were able
to detect, on average,92% of the replicas while
achieving a fixed false positive rate of only1 ·10−4.
Moreover, we showed that using a replica detector
that is fine-tuned to each reference image can greatly
improve the performance.

Future works include the addition of a pruning
step in order to decrease the number of reference
image to be tested (presently all reference images
are to be tested). It can be accomplished by means
of tree-based indexing techniques. Another work
consists in using additional side information to
improve the fine-tuning of the replica detector.

APPENDIX

INVARIANCE OF EQUALIZED ILLUMINATION TO

GAMMA AND ILLUMINATION CHANGES

Intensity and gamma changes are modeled as:

g(r) = αrγ , (14)

wherer is the intensity of the input image (in the
range[0, 1]), andg(r) that of the output image.

Let pi(w) be the probability density of pixels
of the input image. It follows that the probability
density of the output image is given by:

po(w) = h′(w) pi(h(w)), (15)

whereh(w) = g−1(w) = (w/α)1/γ andh′(w) is its
first derivative.

The global histogram equalization maps the im-
age with a given probability densityp(w) to an
image with an uniform probability density. The
mapping is given by [15]:

s = T(r) =

∫ r

0

p(w) dw (16)

wherer is the intensity before equalization, ands
the one after.

Let so = T(ro) be the equalized intensity after
changes of illumination and gamma onri. More
precisely,

so = T(ro) = T(g(ri)) =

∫ g(ri)

0

po(w) dw (17)

=

∫ g(ri)

0

h′(w) pi(h(w)) dw (18)

=

∫ h(g(ri))=ri

0

h′ (g(v)) pi (h(g(v))) g′(v) dv

(19)

=

∫ ri

0

h′ (g(v)) pi(v) g′(v) dv (20)

=

∫ ri

0

d

dv



h (g(v))
︸ ︷︷ ︸

=v



 pi(v) dv (21)

=

∫ ri

0

pi(v) dv = T(ri) = si. (22)

An image and its versions processed by (14) are
mapped to the same equalized image by (16). The
only fact used above is that an inverse exists for
the functiong(·). Therefore the above results can
be generalized to any reversible transformation of
the image.

Note that it cannot be proved in general that
the discrete version of the histogram equalization
produces the discrete equivalent of a uniform prob-
ability function [15]. However, in practice, discrete
histogram equalization yields images that are mostly
invariant to the gamma and illumination changes.
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