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Image Replica Detection based on Binary Support
Vector Classifier

Yannick Maret, Fedeéric Dufaux, and Touradj Ebrahimi

Abstract— In this paper, we present a system for image However, the problem of image replica detection has
replica detection. More specifically, the technique is based so far been the focus of fewer research efforts.
on the extraction of 162 feature_s c_orresponding to texture,  Two approaches to detect image replicas are
color anq gray-level chgrgctensucs. These feat_ures are watermarking [4] and robust fingerprinting [5]-
then weighted and statistically normalized. To improve . . N
training and performances, the features space dimension- [/]- \Watermarking techniques [4] consist in em-
ality is reduced. Lastly, a decision function is generated D€dding a signature in the reference image before
to classify the test image as replica or non-replica of dissemination. Replicas of the reference image can
a given reference image. Experimental results show the subsequently be detected by verifying the presence
effectiveness of the proposed system. Target applicationsof the watermark. This class of techniques typically
include search for copyright infringement (e.g. variatiors 5 cpieves high efficiency for the correct classification
of copyrighted images) and illicit content (e.g. pedophile . . . .
images). of re_pllcas and non-r(_apllcas. However, it requires _to

modify the reference image, namely to embed a sig-
_ Index Terms—image replica detection, features extrac- natyre, prior to its distribution. Unfortunately, this
tion, support vector machine, dimensionality reduction, s oy always possible. For instance, the method is
image search, copyright infringement . . LT .
not applicable to already disseminated copyrighted
content or in the case of illicit content. Robust fin-
l. INTRODUCTION gerprinting techniques [5]-[7] analyze the reference
image in order to extract a signature associated

In this paper, we propose a system to detegith the image content. Replicas are then identified
image replicas. By replica, we refer not only teuhenever their signatures are close to the one of the
a bit exact copy of a given reference image, buéference. This class of techniques is often based on
also to modified versions of the image after mingf single feature, for example characteristic points of
manipulations, malicious or not, as long as thesige Radon transform [5], log-mapping of the Radon
manipulations do not change the perceptual meaniagnsform [6], or intra-scale variances of wavelet
of the image content. In particular, replicas includeoefficients [7]. While it is usually robust, com-
all variants of the reference image obtained aftputationally efficient, and suitable for fast database
common image processing manipulations such iaglexing and retrieval, it however performs poorly
compression, filtering, and adjustments of contraséy the accurate classification of replicas and non-
saturation or colors. replicas.

The proposed image replica detection systemMore recently, techniques for image replica de-
can be applied taletect copyright infringemeridy tection have been described in [8], [9]. ¢ al [8]
identifying variations of a given copyrighted imagepropose a method based on the extraction of fea-
Another application is tadiscover illicit content tures, referred to as Key Points (KPs), which are
such as child pornography images. stable in the scale-space representation. An image

The problem of image replica detection is & typically represented by thousands of KPs. Test
particular subset of the more general problem ohages are then classified as replicas or non-replicas
content-based search and retrieval of multimedising local sensitive hashing to match their KPs
content. In recent years, multimedia search ama those of the reference image. More specifically,
retrieval has been the subject of extensive ree distance is directly computed, but it is rather
search works and standardization activities such the number of matching KPs which quantifies the
MPEG-7 [1], [2] and the more recent JPSearch [imilarity between two images. While this approach
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achieves very good performance for replica detesix steps as shown in Fig. |1a. An outline of each
tion, it requires a computationally complex featurestep is provided in Sec. II-A. The method can be
extraction step. Qamrat al [9] propose a different decomposed into two distinct parts. The first one,
method based on the computation of a perceptuainsisting of the steps shown in the upper part of
distance function (DPF). More precisely, a DPF Big. [1a, is independent from the reference image.
generated for each pair of reference and test imagé€snversely the second one, comprising the steps
to measure the similarity between the two. The masthown in the lower part of Fig. 1a, depends on
idea of the approach is to activate different featuréise reference image. Therefore the latter steps need
for different images pairs. More specifically, onlyo be trained. To achieve this, training examples
the most similar features are taken into account &me needed for both replicas and non-replicas, as
compute the distance. While this method achievdstailed in Sec. II-B. The training phase is outlined
good performance, it is inferior to [8]. in Fig. [1b. The training performance is assessed
In this paper, we introduce a new approach farsing the F-score metric described in Sec. II-C.
image replica detection based on our earlier woNotations used throughout this paper are detailed
in [10]-[12]. More precisely, we extract 162 featurem Sec! II-D.
from each image, representing texture, color and
gray-level characteristics. The resulting features afe Method Overview

then Weighted by the proportion of pierS contribut- a) Image preprocessingm the first step the
ing to each feature, and statistically normalized t@st image is preprocessed. More specifically, the
ensure that the features are commensurable. In ffge is resized, and represented in a modified HSI
next step, the dimensionality of the features spagglor space. It adds some invariance against com-
is reduced. In this way, less training examples afgon image processing operations, such as resizing
needed and only features relevant to the given ifind illumination changes.

ages are kept. Finally, a decision function is built to  b) Feature Extraction: Feature extraction
determine if the test image is a replica of the givemaps images into a common space, where compari-
reference image. Note that the considered approagh is easier. For this purpose global statistics, such
consider a replica detector that is specifically finés color channels and textures, are extracted from
tuned toeachreference image. the test image.

Simulation results show the effectiveness of the ¢) Weighted Inter-image Differencedn the
proposed system. For instance, for an average falsid step, the test image features are subtracted
negative rate of 8%, we achieve a fixed false positii®@m those of the reference image, and ‘incom-
rate of1-10~*. Indeed, our technique significantlymensurable’ features are penalized. For example,
outperforms DPF [9] even though we use fewsstatistics about yellow pixels are incommensurable
features. While our performance is not as goadhen the test and reference images contain very
as KPs [8], we obtain a speed up in terms efifferent proportions of yellow pixels.
computational complexity in the range of 2 to 3 d) Statistical Normalizationin the fourth step
orders of magnitudes. the inter-image differences are statistically normal-

This paper is structured as follow. We present ared. In other words, the same importance is given
overview of the proposed replica detection systeto each feature, independently of their value range.
in Sec..ll, and a more thorough description of the e) Dimensionality Reductionin the fifth step
various algorithmic steps in Sec. |lll. In order tahe feature dimensionality is reduced. Less training
evaluate the performance of the proposed systeexamples are needed, and only feature mixtures
the evaluation methodology is defined in Sec. IVfelevant to the replica detection task are kept.
and experimental results are reported in Sec. V. f) Decision Function:Finally, in the last step
In Sec. VI, we discuss applications of the systera.decision function is used to determine if the test
Finally, we draw conclusions in Sec. VII. image is a replica of the reference image.

II. OVERVIEW AND PRELIMINARY REMARKS B. Training Examples

We first present an overview of the proposed Examples ofreplica imagescan be generated
replica detection system. The system consists artificially. Indeed, the reference image can be mod-
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(a) Block Diagram for the Testing PhasA test image is given to the systen{b) Block Diagram for the Training PhaseThe features
that determines if it is a replica of a given reference image contained in fihg of the reference image, the training examp{€s},,
database. The method can be decomposed into two distinct parts: stepsethand the corresponding labefg; }; are fed to the training
independent from the reference image (upper part of the figune)seeps that algorithm that produces the parameters of the reference
depend on the reference image (lower part of the figure). image dependent steps.

Fig. 1: Block diagram of the replica detection systefine system is composed of two phases, namely
training and testing.

Ifled using diff(_arent Operations, r_esulting in SeveraiABLE I: Training rep"cas generationlmage op-
replicas. In this works, the replicas are generat@fations and their parameters.

by the operations listed in Table I. Furthermore, it Operations Parameters
is possible to have a richer set of training examples éPEG _Compressiogd_t_ %725150 658/255

. . aussian noise addition o = s
by nesting two or more operations to form a new Resizing s=08.1.2
operator known as aomposition However, we Averaging filter order= 2,4
assume that an operation cannot be nested more than Samma C|0fr|re<:_tlon v = ’(\)l-:, 1.2

: " orizontal flipping
once in thg same composition. For example, a JPEG aray level conversion NA
compression cannot be followed by another JPEG rotation 0 = 90°,180°, 270°
compression with the same or a different quality crOﬂping e keep 50%dand 80%
: : V channel change -10% and +10%

factor. In this way,420 replicas of the reference S channel change _10% and +10%

image are synthesized by using up to two nesting
levels of compositions.

Examples ofnon-replicaimages can be obtainedrne F_score is defined as follows [13]:
by using a set of images that are known to be
non related to the reference image. This set can  p(p pp py " TP (1)
also be enriched by applying operations on its o P TP+ FP’

elements. In this study, we only consider the Oralinere P is the the total number of positive in-

level conversion. It permits to enrich the training S%ttanceSTP is the number of positive instances cor-
with gray-level images in order to avoid relying to?ectly classified, and’P is the number of negative
heavily on the color features. instances wrongly classified. The first term in the
right hand side of| (1) corresponds to tiecall
Conversely the second term representstieeision
F-score balances these two conflicting properties:
The F-score metricF'(-) is used to assess theprecision increases as the number of false positives
detection performance during the training phaseecreases, and recall decreases as the number of

C. Training Metric
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false negatives diminish (usually meaning that ttiee logarithmic Hue, Saturation, and equalized-

number of false positives increases). Intensity space. More specifically, the logarithmic
Equation (1) can be rewritten as: Hue, H,., is defined as follows [14]:
(1—Tfp)'(1—’l"fn) logR—logG
e HO - ; 3
Fp(’r’fp77ﬂfn) 1+,0'7"fp—7”fn ; (2) log 10gR+10gG_210gB ( )

wherer;, andr;, are the false positive and falsevhere R, G and B are the red, green and blue
negative ratesp = N/P gives the ratio betweenvalues of a pixel. The logarithmic Hue has the
the number of negative and positive instances. @flvantage to be invariant to gamma and brightness
the rest of the document, we use the formulatigifanges [14]. The Saturatiof, is the same as for
given by (2). One drawback of this metric lies in thélassical HSI [15]:

ratio p between the number of negative and positive 3min(R, G, B)
instances. It has to be known beforehand. S=1- RiG+B (4)
By construction, the Saturation is invariant to
D. Notations changes in illumination. Finally, the equalized II-
Subscript in Greek letters index vector eldumination, I, is given by
ments. Subscripts in Roman letters index vectors R+G+ B
(or scalars). Training patterns (or examples) are Tequ =T (T)’ (5)

denoted ask;, with i = 1,...,m wherem is the
total number of training patterns. During the trainingthere T(-) is the global histogram equalization
phase, a label; is assigned to each patteky. A operator [15]. The equalization permits to make the
pattern corresponding to a replica is simply calledlatensity mostly invariant to changes of gamma and
replica and labeledy; = +1. Otherwise it is called brightness as shown in Appendix .
a non-replicaand labeledy; = —1.

We denote thex-th feature of an image af.. g Features Choice and Extraction

All features of an image can be held in a column S
vector denoted af. In order to compare the similarity between two

images, visual features are extracted. The goal of
feature extraction is twofold. First, it maps images
onto a common space where they can be more easily
We now describe thoroughly the proposed replic@mpared. Second, it reduces the space dimension-
detection system. In particular, each step presengddly by keeping only the relevant information.
in Fig.[1 is detailed along with the training proce- Several visual features can be envisioned: color,
dures whenever required. texture, shape, etc. For an extensive survey on
general features extraction, refer to [16]. The choice
of features depends on the image type. In the case of
the image replica detection problem, it also depends
Before extracting features, an image is firgin the type of replicas that are to be detected. For
cropped such that only 70% of its center region iastance, if rotated images are considered, it would
kept. It introduces a weak robustness to operatiomake sense to choose at least one feature that is
such as framing. Then, it is resized such that nbtation invariant.
contains approximately'® pixels (corresponding to The features used in this work are of three types:
a square image af56 x 256 pixels), while keeping texture, color and gray-level statistics. They are
its original aspect ratio. It introduces a weak forreimilar to those used in [9]. The main differences
of scale invariance and permits to speed up featwee the adde@4 gray-level features, and the absence
extraction by reducing the number of pixels tof ‘local’ statistics. These features are found to give
process. good results in image retrieval applications [9]. In
The cropped and scaled image is then representetal, we extract 62 features, as shown in Table Il.
in a modified Hue Saturation Intensity (HSI) spac&hey are detailed in the following subsections.

[Il. REPLICA DETECTIONSYSTEM

A. Image Preprocessing
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TABLE II: Features overview.ist the types of used in the image. It is normalized such that it sums to
features and the number of extracted statistics. One. It comprised0 values.

name 4 features b) Channel StatisticsMean and variance es-
Gabor, squared coeff. mean 30 timates of the equalized Intensity channel are com-
ggﬂ?r'hsisqt‘(‘)zrrz?ncoeﬁ' std dey. :158 puted for each color class. Mean and variance es-
Color, channel mean 24 timates of Saturation and logarithmic Hue channels
Color, channel std dev. 24 are also computed for each chromatic color class.
Color, spatial distribution 20 It results in a total of24 mean and24 variance
Gray-level, histogram 8 .

Gray-level, spatial distribution 16 estimates.

total 162 c) Spatial Distribution ShapeThe shape of

the spatial distribution of each color class is com-
puted. This is achieved by computing two shapes
1) Texture Features:The texture features arecharacteristics for each color class: spreadness and
composed of the first and second order statisticsalbngation [18], [19]. The first characteristic mea-
each subband of the Gabor transform. The lattergares the compactness of the spatial distribution of a
performed as in [17] on the equalized Illuminatiorcolor class. The second one reflects how much the
More precisely, the used parameters are5 for spatial distribution has more length than width. It
the upper center frequendy5 for the lower center results in10 spreadness and elongation measures.
frequency, five scales and six orientations. Mean and3) Gray-Level FeaturesThe gray-level features
standard deviation estimates of the squared coeffre based on the equalized Intensity channel of the
cients are computed for each of thé subbands. HSI model. The dynamic range of the image is
It results in a total of30 mean and30 variance linearly partitioned into eight bins corresponding to
estimates. as many classes. Each pixel of the image falls into
2) Color Features:The color features are base@ne of these bins.
on the modified HSI color space presented in The use of gray-level feature is important because
Sec. llI-A. Each pixel in the image is classified intéhe color features can be unsuited in some cases.
one of tencolor classesdepending on its positionFor instance, it can happen when the reference or
in this space. The classes are the achromatic coltite test images are gray-level, or when conversion
(S = 0) black gray and white, and the chromatic to gray-level is one of the considered operations in
colors (S > 0) red, orange yellow, green cyan the replica detection system.
blue andpurple. The equalized lllumination is used @) Gray-level Classes HistogramA gray-
to classify a pixel into one of the three achromatigvel classes histogram is computed, giving the pro-
classes. The logarithmic Hue is used to classifyp@rtion of the eight intensity range in the image. It
pixel in one of the seven chromatic classes. is normalized such that it sums to one. It comprises
This is similar to the ‘culture’ color approachS values.
proposed in [9]. In this study, pink and brown b) Spatial Distribution Shape:As for color,
are also considered, whereas in our case these #1® shape of the spatial distribution of each gray-
colors are classified as red or orange. Brown affyel class is computed. It results #1spreadness
pink have the same Hue as red or orange, RRd8 elongation measures.
differ in the Intensity and/or Saturation channels.
Operations such as saturation or intensity chandes Weighted Inter-Image Differences
are common in image processing, and modify the Inter-image differences are computed in this
Intensity and the Saturation channels but not tleéeps. They are basically the difference between the
Hue channel. If brown and pink are considered, regatistics of the test image and those of the reference
or orange pixels could be transformed into brown @mnage.
pink pixels, or vice versa. For this reason, we have The channels statistics and spatial distribution
decided to include brown and pink within the redhape for color classes, and the spatial distribution
and orange classes. shape for gray level correspond to non-overlapping
a) Color Classes HistogramA histogram is regions of the images. These regions have not neces-
computed, giving the proportion of each color clasarily the same size for different images. Therefore,
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a legitimate question is whether image statistics ackassifiers using thresholdg, and parameters,,.

comparable when the regions from which they afi® reduce computation time, the, are chosen

estimated differ significantly in size. among the following candidateg,, - 10¥, where
In the following, a method is proposed thathe [, are the average value of thé,| over all

generates small inter-image features when intéraining non-replicas for the-th feature, and: =

image class proportions are similar and large onesco, —1,0, +1, +2.

when they are dissimilar. More precisely, inter-

image statistics corresponding to significantly dify Normalization

ferent region size are penalized.

A ‘weight' w,, is associated to each featufe. The weighted inter-image difference are normal-

. : , . jized using a statistical normalization method [20].
The weight gives the proportion of pixels take'll\flore orecisely, lety, and o, be the mean and

into account to computé,. For the color features, o . . ;
the weights are the entries of the color histogragt.andarOI deviation estimates of indh inter-image

Likewise, the weights corresponding to gray-lev ifference over a subset of the training set. Training

features are those of the gray-level histogram. )tgamples f_or. which any feature Is an extremum
the remaining features, no weight is used. over the training set are ignored. Therefore, outliers

- : g : examples are not taken into account. The normalized
aSWe define the weighted inter-image differenige inter-image difference, is then given by:
= N = _ \2 N 504 - H'oz
5a:fa_fa+5a'5gn (foz_fa)'(wa_wa) s (6) 604: ’ (9)

k- o,

where f, andw, are thea-th feature, respectivelywhere §, is the inter-image feature given in|(6).

weight, of the reference image, arid is a non- By Tchebychev's theorem, at least a fractibn-

negative parameter that gives more or less impar¢k? of the 6, are within the interval—1, 1]. In the

tance to the discrepancy between the weights. Tfa#lowing & is set to10 so that more than 99% of

sign function is such thafgn(0) = +1. the features are withifi-1, 1]. The features outside
The idea behind (6) is as follows. On the onghis interval are clipped te-1 or —1.

hand, a replica feature is assumed to be close toThe goal of normalization is to ensure that the

that of the reference image. Consequently— f. feature elements are commensurable. This is espe-

and w, — w, are small, resulting in smafl,. On cially important for dimensionality reduction.

the other hand, a non-replica feature has no relation

tp that of the reference image;. Therefore it is Ieg Dimensionality Reduction

likely that both f,, andw,, are simultaneously close _

than only f., or w,. That is, [(6) ensures that, is, The relatively large number of features prevents

with higher probability, smaller for a replica thari© directly use many classification techniques on the
for a non-replica. weighted inter-image differences. It would requires

The parameters, are found through a training® prohibitively large number of training examples,

procedure. To achieve this, simple classifiers apgd the optimization process would probably yield

considered. There are as many simple classifier tHfh overtrained decision function due to the ‘curse

featuresa, and the decision functions are given by?! dimensionality’ [21]. For this reason, the di-
mensionality D of the vectord is reduced tod.

sgn (T, — 9a(Sa)]) (7) In our case, the initial dimensio® is 162. The
dimensionality reduction makes use of the following

whereT,, are thresholds chosen among the(s.)|  |inear transformation:

corresponding to the replicas. Thg maximizing ~
the F-score of these classifiers are then chosen. x=Wp_4-9, (20)

Namely, thes, ar mput follows: . . .
amely, thes, are computed as follows where thed x D matrix Wp_,, is computed using

5q = arg, max F, (Tsp, ), (8) a slightly modified version of the method pro-
ST posed in [22]. The method is based on independent

where 74, and 7y, give estimates of the falsecomponent analysis (ICA) [23]. It adds the class
positive and false negative rates on the simpieformation to the feature vector in order to elect
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Require: i fis iti, d . . .. .
s V‘E,XDL (v} form, the Lagrangian is maximized by optimizing
for each example, setx; = [x7 ;)7 the Lagrangian multipliersy;.
apply ICA to {%;}; — separating matri]>31VVTE .
for each rowo of W, setan = 55 .57, |wasl 1
sety — 0.9 and A, = 0.001 max —; Z a0y k(% %5), (11)
repeat . ij=1
setR =W

for each elementy3 of R, setras = 0 if [rag| <7 - ta
delete rowsx of R for which 7o pi1) 3-5-; [ras| =0
setd = “number of rows inR”
if d=d then

delete the(D+1)-th column of R

setWp_s =R
else B

sety =~ +sgn(d—d) - A,

subject to the constrainls’;” | c;y; = 0, > oy >
v, and0 < a; < 1/m. In this work, we use a radial
basis function kernel given by:

k(x;,x;) = exp (—M) . (12

o

end if The parameters of this classification technique are

if no convergence td then v € [0,1] ando € R*. The parameter can be

ol = B2 shown to be an upper bound on the fraction of
until d = d training errors, and a lower bound on that of support

vectors [24], [26]. The kernel parametercontrols
the complexity of the decision boundary. The con-
Fig. 2: Dimensionality Reduction Algorithnit is a Strained optimization problem given in (11) can be
modified version of [22] that enables to sepriori solved by means of standard quadratic programming
the number of dimensiod. techniques.

The decision function indicates to which class the

test patternz belongs. It is given by:

the independent components best suited to the bi-
nary classification problem. The algorithm [22] is
modified so that the number of dimensions can be
ls:%é[zp.mon. The method is briefly described in th%vhere

W size is(D+1) x (D+1)

f(z) =sgn (Z vy k(z,%;) + b) , (13)
=1

the constantb is determined by

the support vectors. More precisely,

o _ b=uyr— > v k(x;,x;), for all x, such

F. Decision Function that 0 < o, < 1/m. The name support vectors

The decision function needs to determine whethstems from the fact that many of the optimized
the vectorx corresponds to a replica of the reference; are equal to 0. Hence, only a relatively small
image. It is a binary classification problem, whergaction of the training patterns defines the decision
the two classes correspond to replicas and ndonction.
replicas, respectively. The goal is to build, using a 2) Determination of the Classification Parame-
limited number of training examples, a classifier th&rs: In the v-SVM, the kernel parameter and the
generalizes well to novel patterns. Many classific@arameterns are to be determined. More precisely,
tion algorithms can be used for this purpose. In otltey need to be set in order to minimize tgen-
previous works [11], [12], we showed that Suppo#dralization error is minimized, which is the error
Vector Machine (SVM) yielded good performancesbtained when testing novel pattern with a trained
for the replica detection problem. decision function.

The basic SVM [24], [25] is a binary classifier More precisely, we want to minimize the F-score
that separates two classes with an hyperplane. Fl+y,, 7, p) Wherer,, is the generalization error
thermore, non-linear kernels allow to map patterfigr false positive (novel non-replicas classified as
into a space where they can be better discriminateplicas),r;, is the generalization error for false
by a hyperplane. negative (novel replicas classified as non-replicas),

1) Support Vector Machine:We use thewv- andp is the ratio between the number of novel non-
parametrization [24], [26] of the SVM, and a rareplicas and replicas. In the considered application,
dial basis function as kernel. The dual constrainédere are usually many more non-replicas than repli-
optimization problem is given in (11). In the duatas so thap >> 1. Neverthelessy remainsa priori
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unknown. Moreovery;, andry, are also unknown are variables, for exampk#0 x 600, 678 x 435, or
and need to be estimated. 640 x 480. They are mostly color images, except for
Cross-validation is a popular technique for esbout one thousand images that are gray-levels.

timating generalization error. Ink-fold cross-  por training, we randomly selected0 images
validation, the training patterns are randomly spli the database. Among the selected pictugss,
into & mutually exclusive subsets (the folds) of apsre randomly chosen to be the reference images,
proximately equal size. The SVM decision functiogng the remaining are used as non-replica examples
is obtained by training ok —1 of the subsets, and iSqyring the training phase. For each reference image,

then tested on the remaining subset. This procedyr¢epjica detector is built as described in Sed. 11l
is repeated times, with each subset used for testing :
The replica detectors are then tested on the re-

once. Averaging the test error over therials gives o] : ) .
ging g gjaining images in the database. This permits to

This method was shown to yield a good estimatio(?‘?timate the false positive rate for each reference
of the generalization error [27] Images. The false negative rate is estimated by

In the following, we use a normalized version Oﬁ,esting the replica detectors on test replica exam-
the radial basis function kernel whesein (12) is bles. They are generated by the transforms listed
replaced by:-o. The normalization constantis set below. These operations are the same than the ones

to the second decile of the distribution of the intrz‘ised in [8], [9]. They are implemented using the

replica distances within the training set. It ensurés - software suite ImageMagrckThere are twelve
that the optimal value of is larger than one with categories, as shown thereafter. An example for each

high probability. of them is depicted in Fig. 3.

While » has an intuitive signification, it is not , colorizing Tint the Red, Green, or Blue chan-
clear what should be its optimal value [26], [28]. It g py 100,

was shown that twicé, a close upper bound onthe | changing contrast Increase or decrease the
expected optimal Bayes risk, is an asymptotically  gntrast using ImageMagick’s default param-
good estimate [28]. However, no such bound can gter:

be easily determined priori. . Cropping Crop by 5%, 10%, 20%, or 30%:

In this work, good parameters ferandv are es- , pespeckling Apply ImageMagick’s despeck-
timated in two stepscoarseandfine grid searches. ling operation;

In each step, a tenfold cross-validation is carried out, pownsampling Downsample by  10%,

for each feasible pairg/, o). The pair for which the 20%,30%,40%, 50%, 70%, or 90% (without
estimated F-score is the highest is then chosen. The aptjajiasing filtering):;

tried pairs are the following: . Flipping. Flip along the horizontal axis.

« Coarse search(o,v) for v = 0.05 - 2% k = « Color Depth Reduce the color palette to 256
—4,..,4ando =k, k=1,...,10. colors;

. Fine search{o,v) for v =1y - (1 + k/6),k = . Framing Add an outer frame of 10% the image
—2,...,42 and o = o, - (1 + k),k = size. Four images are produced with different
—2,...,+2. Here,v; ando; denote the value frame color.
determined in the first step. . Rotating Rotate by 90, 1800or 270.

« Scaling Scale up by 2, 4, 8 times, and down
IV. EVALUATION METHODOLOGY by 2, 4, 8 times (use antialiasing filter).

. Changing SaturationChange the values of the
saturation channel by 70%, 80%, 90%, 110%,
To simulate the performance of the proposed or 120%.

approach, we used the same image database as Changing IntensityChange the intensity chan-

in [8]%. It contains 18,785 photographs including nel by 80%, 90%, 110%, or 120%.

(but not limited to) landscapes, animals, construc-

tions, and people. The image sizes and aspect ratios

A. Test Images

! http://www-2.cs.cmu.edu/ ~ ykefretrieval/ 2 http:/lwww.imagemagick.org
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TABLE III: Vertically averaged DET curve pre-
cision. The precision is obtained by taking into
account the number of test examplds, (085 for
the non-replicas, and0 for the replicas), and the
number of individual DET curves used for averaging
(200).

error type \ maximal absolute precision

T — =5
Tfp i@ = 455" 1074

imal absolute precision that can be achieved on
the vertically averaged DET curve is reported in
Table!lll. It takes into account the number of test
replicas P = 40), the number of test non-replicas
(IV = 18,085), and the number of individual DET
curves ¢ = 200).

V. RESULTS

In this section, we present experimental results in
order to evaluate the performance of the proposed
replica detection system. In the following, the used
R 5 parameters aré = 50 for dimensionality reduction,

(b) Repﬁcs ’ andp = 10* for the F-score parameterization, unless
stated otherwise.

Fig. 3: Examples of Test Replica3here is one

replica example per category, the order used is tae Influence of the F-Score Metric Parameterization

same than in the text (left-right, top-down). In this experiment, we explore the effect of

possible parameterizations of the F-score metric.
_ _ The valuep gives the ratio between the number of
B. Evaluation Metrics expected non-replica instances and that of expected

In order to evaluate the performance of the préeplica instances. In the considered applications,

posed system, we measure the tradeoff between {gS€ numbers can hardly be determirgegriori.

false positiveand false negativaates. However, we can safely assume thas much larger

The Receiver Operating Characteristic (RO I)Hwan one because there are many more non-replicas

: an replicas.
curve [13] is often used to represent the tradeotf _. .
between error types. In this study, we use a variant':Igure 4a shows the vertically averaged DET

of the ROC curve called Detection Error Tradeoff » "< forp = 1. Then, Fig. 4b depicts the vertical
(DET) curve [29]. In DET curve error rates aredlfferenczes E)etv\geen the averaged DET curves for
plotted on both axis. It means that both axis c ff:e rg\? ’vla?lu’elso }(;fan(ijnftlzitrlézrpori 1.slci; lgtkl)a"z’n
make use of a logarithmic scale. The interpretati P y slightly

of DET curves is analogous to that of ROC curve _eWree\;c,eurItsr,“ nﬁm\?gutehse fg\l/f(f)irilr:si:i:‘iseisvsvi:ﬁ %/her
a classifier X is more accurate than a classifier oW falsé gsiﬁve rates while keenin reasona)t/)Ie
when its DET curve is below that of Y. P ping

. , false negative rates.
The DET curve is computed using the valueé'JI S€ negaflve rates

under the sign function in the right-hand side of o

(13). Every reference image detector producesBa DET Curves Distribution

DET curve, which are synthesized in a single DET We now analyse the distribution of DET curves
curve by using vertical averaging [13]. The maxbefore vertical averaging. Figure 5 shows the false
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150
0.20¢ I
CJp=10*

0.15 100

count

£
<010 50

0 I-‘I-‘ﬂ.ﬂ.n — e o - | S
0.2

0.4 0.6 0.8 1
Tfp

0.05

10 10° o ’ 10 10° Fig. 5: False negative histogram&or a fixed false
positive rater;, = 5-107° (leftmost value of the
curves in Fig! 4), number of dimensions= 50,
and two different values of.

(a) Average DET curve fop =1

0.02

ooir pate heavily in increasing the average false positive
rates. When their proportion diminishes, so does the
average false positive error, explaining the results
obtained in Fig. 4.

ATf"

- — — p=10?

70.01__;' C. Gray Level Features

------- p=10"
=1 In this trial, the detection performance obtained
0,02 Lo , by using gray-level features are compared to that
m ? T ° * when not using them. Figufe 6 depicts the perfor-
mance improvement brought by adding gray-level
. . features. The performance gap augments as the false
Fig. 4: Influence ofp. Vertically averaged DET pnsitive rate decreases. Note that gray-level images
curves for a fixed number of dimensiods= 50, gare present in both the reference images and the test
and different values op. images. Straightforwardly making use of gray-level
features greatly improves the performance on these
images. Moreover, it also increases the performance
negative rates histograms for a fixed false positifer color images. Indeed, gray-level features capture
ratery, = 5- 107" (leftmost value of the curves ininformation that is missed by the color features,
Fig./4) and two different values of, namelyl and namely the global intensity shape.
10%. On the one hand, the two histograms show thata possible improvement is to use a replica detec-
about 50% of the individual classifiers have falseajon system to test color images, and another one
positive rates below%. Actually, abou25% of the which does not make use of color features to test
classifiers have no false negative at all. On the othekt gray-level images. The drawback of such an
hand, the two histograms show that a small numbgsproach is that it requires storing two descriptions
of classifiers (respectivelys and9) presents false for each reference image.
positive rates above0%. Moreover, this proportion
can be seen to decrease whgnincreases. The . .
corresponding reference images possess few coldts,Weighted Inter-image Differences
or are gray-level images. It shows that color relatedIn this experiment, we analyse the advantage of
features are very powerful discriminating featuressing weighted inter-image differences. Figure 7
and that the lack of color variety complicates thidustrates the performance increase due to the
replica detection task. The bad classifiers particieighted inter-image differences. The DET curve

(b) Vertical differences to curje 4a
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0.20 0.2 10 dim. red.
no gray-level features
d=10
------- with gray level features d=2
0.15 0.15r
d =30
d =40
< 010 < o1 =50
-0 s Ny 0.

0.05 0.05F

10° 10° 107 107 10°
Tfp
Fig. 6: Influence of gray-level featured/ertically Fig. 8: Influence of the dimensionality reduction

averaged DET curves with, and without, using grayertically averaged DET curves for different values
level features. of d.

0.20

------- ‘optimzed” s, E. Dimensionality Reduction Performance

Sa =0

We now explore the efficiency of the dimen-
sionality reduction step. Figure| 8 illustrates the
performance obtained with different dimensia#s
in general, the larger the number of dimensions, the
better the performances. However, the gain is not
very important when going ovet = 50. The thick
line represents the performances achieved without
dimensionality reduction. In this case, the perfor-
mance is mostly equivalent to that éf= 40 for low
false positive ratesr{, < 10~*) and significantly
lower for higher false positive rates. This can be
Fig. 7: Influence of the weighted inter-image differeasily explained by the limited number of training
ences Vertically averaged DET curves fo, = 0 examples. Indeed, the number of needed training
and optimizeds,,. examples grows as the number of dimension in-

creases [21], [30].

Another factor explaining the results obtained in
with s, = 0 corresponds to the situation wher€ig. 8 is related to metric consideration. When no
the differences are not weighted. In this case, (Bdmensionality reduction is applied, the distance
becomes’, = f, — f.. The other DET curve corre-used for the kernel computation is proportional to
sponds to the case where thehave been optimizeda weighted Euclidian distance where the weights
as described in Sec. lll{C. The performance gape given by the inverse of the standard deviation,
increases as the false positive rate diminishes. @ shown by |(9) and (12). This gives priori
low false positive rates, the false replicas are maingual weights to each feature. However, there is no
images that are similar to the reference image. Faason that every features carry the same amount of
example, if the reference is a picture of a cityiscriminative information. Moreover, they depend
most false replicas contain buildings or straiglttn each other. When dimensionality reduction is
structures. That is, many of the features of the falapplied, the reduced patterrsare of unit variance,
replicas are close to those of the reference imaged theoreticallyindependent[23]. In that case,

In this situation, the use of weighted inter-imaggiving equal weights to every features makes more
differences helps in taking the correct decision. sense and gives better results. In fact, recent works

0.15
‘i 0.10F
=

0.05
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TABLE IV: Storage requirements estimatioReal TABLE V: Average running time for testingihe ex-
number are coded on 16 bits (two bytes). The numperiments were carried out on a PC with a GBz
ber of dimensions after dimensionality reduction isrocessor and Go of RAM.

50. In our experiment (using = 50 andp = 10%), name time, s
the average number of support vectors is found to reference preprocessing [ 0.2
image indep. feature extraction| 1.8
be about’s. weighted features 48 - 10~ °
name size in bytes reference normalization 90-107°
image features 162 -2 =324 image dep. dim. reduction 17-107°
image weights 162-0=0 decision function | 50 - 1076
norm. const. 2-162-2 =648
dim. reduct. matrix| 50162 -2 = 16, 200 a L .
Support vectors 50 -85 -2 — 8, 500 0.1 s when optimized as in [9].
total 25,672 = 25 kilobytes

complex part of the training, and takes uprt; of
have shown that using metrics that are learn#@e running time. Since training can be done offline,
from side-information can improve classificatioffs computational complexity is less critical.
results [31], [32]. In the case of the replica detec- The computational complexity of testing is es-
tion problem, two side-informations are availabldimated in Table V. Note that except for the SVM
the class (replica or non-replica), and the relati@art, the method is implementedifatlab without
distance to the reference for replicas (for exampl@fy optimization. This incurs longer running time.
a JPEG compressed image with= 10 is farther For instance, the feature extraction could be reduced
to the reference than one wit) = 90). Future to, at least0.1 seconds [9]. In the discussion that
research will study the improvements brought bpllows, we assume an optimized feature extraction

using learned metric in the replica detection proistep. The preprocessing and feature extraction steps
lem. are reference image independent, and take up about

0.3 seconds. The remaining steps are reference im-
age dependent, and take up abegat 10~3 seconds.

F. Efficienc ’ _
_y _ . _ When the reference image database contains less
The replica detection method efficiency is noW,an1 500 images, most of the testing time is spent

analysed in term of storage requirement and CoRl; the test image preprocessing and the feature

putational effort. extraction. In that case, up to four test images

A ”“mber of parameters are needed to compalg, pe processed per second. For larger reference
a test image to a given reference. Namely, theiahases most of the testing time is spent on
are the reference image features and weights, {ig eference image dependent steps. The number
r}ormallza}tlon constants, the dimensionality redu_BT test images that can be processed each second
tion matrix, and the support vectors of the deCljgqreases linearly as the number of reference images
sion functions. In the following we refer t0 they.qys Future research will concentrate on pruning
aforementioned elements as tescriptionof the i« ofarence images, in order to avoid testing them

reference image. The storage requirement are ”SQ . That is, only the reference images for which the

in Table 1V. On average, aboul> kilobytes are o5t image can be potentially a replica are selected.
needed to store each description. In other wor

uch methods can reduce the testing time, and have
one megabyte can held, on average, up to foffu., applied with success in [8], [9].
descriptions. This is a negligible amount of memory

for today computers. _ _ o ) _
Another important aspect is that of computation&- Comparison with Existing Replica Detection
complexity of the method. The proposed methdfethods
require a training for each reference image. TheFigure/ 9 compares the performance of the pro-
training is computationally complex and take up tposed replica detection system with state of the
fifteen minutes per reference image on a PC witlits techniques in [8], [9]. The continuous line
a 2.8 GHz processor and I5o of RAM. Feature corresponds to the vertically averaged DET curve
extraction from the replica examples is the mosbtained with our system, using = 50 and p =
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02r N VI. APPLICATIONS AND SCENARIO
\ proposed method
\
\ - T TDPE The proposed image replica detection system
L \ . . . . . .
015 ¢ K is suitable to detect copyright infringement or to

identify illicit content. In this section, we discuss
in more details the scenarios to use the proposed
technique in such a task.

In the design of our system, we assume a given
database of reference images, and we test input test
images towards this database in order to identify
replicas. Furthermore, we assume that the set of

0 test images can be extremely large, but the set of

0.1

Tfn

0.05

10" 10° 107 10! 10 _ . al
Tfp reference images is moderate in size. To guarantee a
fast testing procedure, we consider a limited number

glow level features, as previously discussed. Note

Fig. 9: Comparison with other method3he pro-
posed method is compared against other methog1

KPs [8], and DPF [9]. at in order to handle large set of reference images,

a subset of all the features can be used in a first
step in order to quickly drop test images which are
classified as non-replicas with high confidence.

A i In the target applications, the database of ref-
10%. The dashed line represents the performancgsce images can for instance be a collection of

of a replica detection method based on Percept%[pyrighted images or illicit child pornography im-

Distance Function (DPF) [9]. The circle point indiygeg Tq perform the task of copyright infringement
cates the performance of a replica detection systeffijjjicit content detection, several configurations

based on key points (KPs) [8]. For DPF the curvge nossible. In one scenario, we consider a proxy

is obtained by inspecting the precision-recall CUN& a1 nerforming network sniffing at nodes of the
reported in Fig. 5 of [9], and usingy’ = 20,000 and |ytermet. The proxy server contains the database of
P = 40. For KPs, the point is computed using thesterence images, or more specifically the extracted
information reported in Table 1 and 2 of [8], anGgatres, normalization constants, reduction matrix
using N = 18, 722 and P = 40. and classifier for each reference. Subsequently, the
It can be seen that the proposed method achieWgXy server processes each incoming image, apply-
good performance. For instance, an average falgg preprocessing and features extraction, compares
negative rate of’% corresponds to a fixed falsdt pairwise with each reference image, and finally
positive rate ofl - 10%. On the one hand, ourdecides whether it is a replica of one image in
method outperforms that of DPF for false positivéhe database. In another scenario, we consider a
rates belowl0~2. Moreover, it should be noted thatveb crawler to search for replicas on the Internet.
the features used in the current work are mainlySimilarly to the previous case, the crawler looks
subset of those used in DPF: we us®® features for test images and compares them to a database
against298 in the latter study. On the other handgf reference images in order to identify replicas.
the proposed method is outperformed by KPs. In Other applications and scenarios are also pos-
our method, most of the wrongly classified replicegible, although the proposed system may be less
(false negative errors) correspond to replicas feuited for them. For instance, the technique can also
which the illumination or the intensity have beebhe used in an image web search engine in order to
changed to a great extend. The method KPs ugsgne the results of a query by eliminating replicas.
features (salient points, or key points [33]) invariarlternatively, it is also possible to build an index of
to this change but computationally more complex wweb images, and to check whether a given reference
extract. Indeed, the feature extraction time of KPsiigage has replicas in this index.
between 1 and 10 seconds per image [8], [9]. ThisAs common in a classification technique, a trade-
is between 10 to 100 times slower than that for thadf exists between the false positive and false neg-
proposed method (when optimized as in [9]). ative rates. On the one hand, a low false positive
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rate is desired whenever a user does not want to béet s, = T(r,) be the equalized intensity after
overwhelmed by false positive. On the other handchanges of illumination and gamma on More
low false negative rate is preferable for a user whecisely,

wished to detect all possible replicas. The optimal

(r3)
trade-off is therefore application dependent. so = T(r,) = T(g(r;)) = /g p,(w)dw (17)
0
g(ri)
| VII. CONCLUSION- | :/ W (w) p,(h(w)) duw (18)
In this paper, we have described a technique 0

to classify whether a test image is a replica of a hlg(ri)=rs )
given reference image. We performed experiments :/0 b (g(v) pi (h(g(v))) g'(v) dv
on a large database containing, 785 photographs (29)
representing a wide range of content. We were able ri
to detect, on average)2% of the replicas while :/ h' (g(v)) p;(v) &' (v) dv (20)
achieving a fixed false positive rate of only10—*. 0
Moreover, we showed that using a replica detector "d
that is fine-tuned to each reference image can greatly /0 I h(g(v))| py(v) dv (21)
improve the performance. =v

Future works include the addition of a pruning [ o N
step in order to decrease the number of reference _/0 pi(v)dv ="T(ri) = s (22)
image to be tested (presently all reference imaggﬁ image and

are to be tested). It can be accomplished by me 8 : :
) ) : pped to the same equalized image by (16). The
of tree-based indexing techniques. Another WOl "tact used above is that an inverse exists for

_consists in gsing a_ldditional side_ information tg, . functiong(-). Therefore the above results can
improve the fine-tuning of the replica detector. be generalized to any reversible transformation of

its versions processed by!(14) are

the image.
APPENDIX Note that it cannot be proved in general that
INVARIANCE OF EQUALIZED ILLUMINATION TO  the discrete version of the histogram equalization
GAMMA AND ILLUMINATION CHANGES produces the discrete equivalent of a uniform prob-

Intensity and gamma changes are modeled asability function [15]. However, in practice, discrete
histogram equalization yields images that are mostly

— 2l
g(r) = ar”, (149 invariant to the gamma and illumination changes.
wherer is the intensity of the input image (in the
range(0, 1]), andg(r) that of the output image. ACKNOWLEDGEMENTS
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