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Abstract— We consider the problem of distributed packet
selection and scheduling for multiple video streams sharing a
communication channel. An optimization framework is pro-
posed, which enables the multiple senders to coordinate their
packet transmission schedules, such that the average quality
over all video clients is maximized. The framework relies on
rate-distortion information that is used to characterize a video
packet. This information consists of two quantities: the size of
the packet in bits, and its importance for the reconstruction
quality of the corresponding stream. A distributed streaming
strategy then allows for trading off rate and distortion, not
only within a single video stream, but also across different
streams. Each of the senders allocates a share of the bandwidth
available on the bottleneck communication channel to its video
stream, proportionally to the importance of the video packets.
We evaluate the performance of the distributed packet scheduling
algorithm for two canonical problems in streaming media, namely
adaptation to available bandwidth and adaptation to packetloss
through prioritized packet retransmissions. Simulation results
demonstrate that, for the difficult case of scheduling non-scalably
encoded video streams, our framework is very efficient in terms
of video quality, both over all streams jointly and also over
the individual videos. Compared to a conventional streaming
system that does not consider the relative importance of the
video packets, the gains in performance range up to 6 dB for the
scenario of bandwidth adaptation, and even up to 10 dB for the
scenario of random packet loss adaptation.

I. I NTRODUCTION

The demand for multimedia traffic sent over the Internet
exhibits an ever growing trend today [1, 2]. Therefore, sce-
narios where multiple media streams have to share common
resources are becoming increasingly frequent. Transmission of
concurrent media streams in a wireless LAN environment, or
through a common bottleneck network node in the Internet, are
typical instances of such scenarios. In that context, it becomes
important to consider the performance of the whole streaming
system, in order to maximize the overall quality of service
of all users. The multiple media sources therefore have to be
considered jointly, and only a concerted streaming policy can
lead to minimal average distortion. The streaming strategyis
either activated in the bottleneck network node, or even better
in a distributed manner among the video sources that finely
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adapt their packet streams to the available communication
resources.

Performing proper video packet selection and scheduling
in such a setting can be an involved task. When a sender is
allocated an insufficient transmission bandwidth, it will need
to reduce its transmission rate in order to account for it. This
in turn is achieved by omitting packets prior to transmission
due to the timing constraints of the underlying streaming
application. Now, randomly omitting packets can have an
unpredictable effect on the reconstruction quality of a video
stream at the final destination.

Solutions may be proposed that try to adapt the rep-
resentation of the video information to streaming resource
variations, at the price however of high complexity, or loss
in coding performance. Video transcoding [3–6], for example,
re-encodes the stream in order to adapt the bit rate to the
available resource, but it is quite greedy in terms of complex-
ity. Scalable coding techniques [7–11] have been developed
to solve these problems, where the scalable encoding provides
an inherent prioritization among the compressed data whichin
turn provides a natural method for selecting which portionsof
the compressed data to deliver, while meeting the transmission
rate constraints. However, scalable streams have not gained
a wide acceptance due to a few shortcomings, e.g., their
coding inefficiency. On the other hand, non-scalable or non-
prioritized video content, is predominantly used in streaming
today, but it unfortunately does not suggest a natural method
of placing delivery priorities on compressed video packets.
Adaptive streaming consists in the challenging problem of
an efficient selection and scheduling of non-scalably encoded
video packets, that is the focus of this paper.

We propose a generic framework for rate-distortion op-
timized distributed streaming over a shared communication
channel. While our framework can be applied to any such
settings, the paper mainly focuses on the specific example of
scheduling multiple video packet streams in a wireless LAN
scenario. Each of the senders individually allocates a portion of
the available bandwidth to its respective video stream suchthat
the end-to-end performance in terms of video quality, over all
streams, is maximized, under given network constraints. The
framework relies on rate-distortion information that is used to
characterize a video packet. It basically consists of two quan-
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tities: the size of the packet in bits, that is usually available in
packet headers, and the importance of the packet in terms of
the reconstruction distortion for the video stream. In essence,
the framework enables the senders to trade-off in a coordinated
but still distributed fashion rate and distortion not only over
their respective video packets, but also across packets that
belong to different video streams. The main contributions of
the present paper are to extend the optimization framework
from [12] to the scenario of distributed streaming of multiple
video streams, and to examine the specific challenges that raise
therein.

There is a substantial body of prior work on video streaming
over wireless LANs, and over wireless networks in general
[13]. However, to the best of our knowledge, rate-distortion
optimized distributed streaming of multiple video sourcesas
studied in the present paper has not been investigated before.
The most closely related contemporaneous works are the fol-
lowing. [14] proposes a cross-layer ARQ algorithm for video
streaming in 802.11 wireless networks which gives priorityto
perceptually more important packets at (re)transmission.Only
a single video stream is considered. In [15], a transmission
strategy is examined that provides adaptive quality-of-service
(QoS) to layered video for streaming over 802.11 WLANs.
Again, only a single video stream is considered and no
rate-distortion optimization is performed. Similarly, in[16,
17] hybrid transmission techniques that combine Automatic
Repeat reQuest (ARQ) and Forward Error Correction (FEC)
are proposed for improved real-time video transport over
WLANs. In addition, in [18], the authors propose a system that
combines rate-distortion optimized data partitioning andprior-
itized adaptive (re)transmission for robust streaming of asingle
video source over a wireless LAN. Similarly, the authors in
[19] introduce a cross-layer protection strategy that combines
adaptive application-layer Forward Error Correction (FEC)
and physical-layer modulation with Fine-Granular-Scalability
(FGS) coding to improve the resilience of wireless video
transmission. Finally, our work is perhaps most closely related
to [20, 21], which study rate-distortion optimized bandwidth
adaptation of multiple incoming video streams at a network
node. Here, the node performs centralized optimal packet
dropping across the multiple streams in order to adjust the data
rate on the outgoing link. However, the proposed streaming
techniques do not extend to the case of distributed scheduling
of concurrent media streams, which is the scenario studied in
the present paper.

The rest of the paper is structured as follows. In the
next section, we present the rate-distortion information that
is associated with a video packet and our abstraction of the
network path between a user on the shared channel and its
respective receiver (that can be located potentially anywhere in
the Internet). These characterizations of the video sourceand
the communication channels are employed by the optimization
framework, introduced in Section III to perform transmission
decisions for the packets of every video stream that are optimal
in a rate-distortion sense. Then, in Section IV, we discuss two
possible applications of our optimization framework, namely,
bandwidth adaptation of multiple incoming video streams
at a network node, and streaming multiple video sources

over a wireless LAN. Next, in Section V we examine the
performance of our framework and we compare it to that of
a conventional system for distributed video streaming overa
shared communication channel. Finally, concluding remarks
are provided in Section VI.

II. PRELIMINARIES

A. Rate-Distortion Characterization

Let k be the index of a packet from a video stream. Then,
the rate-distortion (R-D) information associated with packet k
consists of the size of packetk in bitsR(k) and the importance
of packetk for the reconstruction distortion of the video stream
denoted asD(k). Specifically,D(k) is the total increase in
MSE distortion that will affect the video stream if packetk is
not delivered to the receiver on time (td,k), and is computed as
D(k) =

∑L

i=1 ∆di, whereL is the number of packets in the
stream and∆di is the increase in MSE distortion associated
with packeti given that packetk is missing at the receiver.
In addition, td,k is the delivery deadline by which packetk
must arrive at the receiver in order to be usefully decoded.
Note that∆di = 0 for i < k. In Figure 1 we illustrate the
distortions∆di for the loss of packetk, where for clarity of
presentation it is assumed that each packeti corresponds to a
video frame.

d
i

Frame i1 k L

Fig. 1. Loss of framek induces distortion in later frames.D(k) is the total
distortion summed over all affected frames.

It can be seen that the MSE per frame ramps up at frame
k, which is expected since the missing framek is replaced
with frame k − 1 and there are no prior losses. Here, we
assume that previous frame concealment is used for missing
frames. Due to error propagation, which in turn is caused
by the predictive nature of the encoding process, the MSE
associated with subsequent frames also exhibits a nonzero
value, as shown in Figure 1. However, due to the effects of
spatial filtering and intra refresh [22], its amplitude gradually
decreases over successive frames, till it finally becomes zero
at framej > k sufficiently apart fromk.

Note that in live streaming scenarios, where video content
is created on the fly, a sender would not have access at
any instance to all the packets from the video stream that it
is transmitting1. This is simply because some of the video
packets will be created (encoded) in the future, i.e., after
a particular transmission instance. Therefore, the numberof
packetsL that a sender can use in this context to compute the
distortion informationD(k) associated with a packetk would
actually refer to the number of successive packets available in
the sender’s buffer at transmission time of packetk.

1In other words, the size of the pre-fetch window of media packets available
to the sender is quite small
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B. Packet Loss and Delay Probabilities

We model each direction of the network path between a
sender/user on the shared channel and its respective receiver
as a time-invariant packet erasure channel with random delays.
For the forward (uplink) direction to the receiver via the
access point, this means that if a sender transmits a data
packet at timet, then the packet is lost with some probability,
say εF , independently oft. However, if the packet is not
lost, then it arrives at the receiver at some later timet′,
where the forward trip timeFTT = t′ − t is randomly
drawn according to a probability densitypF . The backward
(downlink) direction from the receiver via the access point
to the user is similarly characterized by the probability of
packet lossεB and delay densitypB. Then, these induce the
probability εR = 1 − (1 − εF )(1 − εB) of losing a packet in
either the forward or backward direction, and the round trip
time distributionP{RTT > τ} = εR + (1− εR)

∫∞

τ
pR(t)dt,

wherepR = pF ∗ pB is the convolution ofpF andpB. Note
that P{RTT > τ} is the probability that the user does not
receive an acknowledgement packet by timet + τ for a data
packet sent to the receiver at timet. The properties of the
shared channel in terms of packet loss and packet delay are
included in the model described above, as the shared channel
represents a segment of the network path between a sender
and a receiver.

III. O PTIMIZATION FRAMEWORK FORDISTRIBUTED

STREAMING

A. Expected Distortion and Rate

Consider that there areN users sending video packets
over the shared medium simultaneously. We are interested in
finding the best transmission schedules for the video packets
of each stream for a given available bandwidth on the shared
channel. The problem can be formalized as follows. Assume
that user i, for i = 1, . . . , N , has at time instantt a
windowWi of packets that are considered for (re)transmission.
Note thatWi may include in particular packets from earlier
transmissions that have not been acknowledged yet by the
corresponding receiver and whose delivery deadlines occur
after t. The user needs to decide then on omitting/dropping
a subset of packetsk(i) = {k1, k2, . . . , kP } (if any) from
Wi prior to transmission such that its assigned transmission
bandwidth is not exceeded. For example, if the allocated
bandwidth is sufficient to transmit all packets fromWi, then
k

(i) will be an empty set.
Now, the total increase in expected MSE distortion that will

affect streami if k
(i) is dropped prior to transmission can be

computed as:

D̃(k(i)) =
∑

j∈Wi

E[D(j)] (1)

=
∑

j∈k(i)

D(j)P0(j) +
∑

j∈Wi\k(i)

D(j)P0(j)P1(j),

where “\” denotes the operator “set difference”.P0 is the
probability that a packet does not arrive at the receiver by its
delivery deadline due to previous transmissions, if any, and P1

is the probability that a packet does not arrive at the receiver
due to the present transmission. Using the channel models
from Section II-B these probabilities can be computed as
follows. Let {t1, . . . , tM} be the set of previous transmission
instances of packetj and lettp denote the present time. Then,
we write

P0(j) =
M∏

m=1

P{FTT > td,j − tm|RTT > tp − tm},

P1(j) = P{FTT > td,j − tp}. (2)

Note that the above model assumes additivity of the distor-
tions associated with the individual dropped packets, ignoring
any interdependencies between their effects on the distortion,
which does not necessarily hold true when the dropped packets
are not spaced sufficiently far apart with respect to the intra-
refresh period, as recognized for example in [23]. Still, due to
its simplicity and yet good accuracy, the additive model has
found a number of applications in streaming and modelling of
packetized media, such as [12, 24, 25]. Furthermore, note that
in Eq. (2) we had to deal with expectations rather than with
the actual distortion values because of the random channel
effects. In particular, a packet sent over the channel may
not necessarily arrive at its destination on time because of
random packet loss or delay experienced during transmission.
Therefore, the distortion contribution associated with that
packet may not necessarily be zero (despite its transmission)
and hence can only be accounted for as an expected value.

Finally, R(Wi \ k
(i)) =

∑
j∈Wi\k(i) R(j) represents the

corresponding average transmission rate of useri over the
window Wi.

B. Problem Formulation

We denote the available bandwidth of the shared channel
as R∗. The total transmission rate of all users should not
exceed this quantity, i.e.,R(k) =

∑N

i=1 R(Wi \ k
(i)) ≤ R∗.

We are interested in minimizing the overall distortion over
all streams, given as̃D(k) =

∑N

i=1 γ(i)D̃(k(i)), such that
the constraint on the total transmission rate is satisfied, where
γ(i) is the weighting factor for streami that depends on the
user’s policy2. In other words, we would like to solve for the
optimal vector of dropping patterns

k
∗ = argmin

k : R(k)≤R∗

D̃(k) , (3)

where k = (k(1), . . . , k(N)). We solve for the individual
optimal drop patternsk(i)∗ by casting (3) as a non-constrained
optimization problem using a Lagrange multiplier (λ > 0):

k
(i)∗ = argmin

k(i)∈Wi

D̃(k) + λR(k), i = 1, . . . , N. (4)

It can be shown that the solution to (4) reduces to dropping
every packetj ∈ Wi for a senderi such thatλj ≤ λ, where
λj = γ(i)P0(j)D(j)/R(j) is defined as the distortion per
unit rate utility for packetj. The rest of the packets fromWi

are transmitted. Hence, we have a distributed strategy where

2For example,γ(i) > 1 may signify that streami is more important and
that therefore should be given a priority.
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each user decides on which of his own packets should be
transmitted such that the end-to-end distortion over all streams
is minimized, while at the same time the constraint on the
overall transmission rate is satisfied.

Finally, it should be mentioned that the objective function
D̃(k) of the optimization algorithm as defined above repre-
sents only one possible choice. In particular, we decided to
defineD̃(k) as a weighted sum of the individual distortions
over all streams as we were interested in maximizing the
overall rate-distortion performance of the scheduling system.
In practice, sometimes one may be interested in defining a dif-
ferent objective function, for example the maximum distortion
over all streams, in which case one will be dealing with a min-
max optimization problem. Nonetheless, the generality of the
optimization framework as presented thus far allows handling
multiple choices for the objective function of interest without
prior modification of the framework.

C. Computation of the Lagrange multiplierλ

The appropriate value of the Lagrange multiplierλ that
corresponds toR∗ and that should be common among the
senders can be computed by each one of them independently
using methods such as the bisection search or gradient descent.
However, these techniques are iterative and would require
recursive running of the optimization algorithm until an ap-
propriate value forλ is found. This in turn would incur excess
computation on the side of each sender.

Therefore, as an alternative, we propose for the distributed
scenario, to track the value ofλ over time as follows. Let
tk, for k = 0, 1, . . ., be the current transmission instance at
which the users have just ran the optimization algorithm and
let Ri(tk) be the corresponding transmission rate computed
by useri. Then, the value ofλ that is used in (4) at the next
transmission opportunity (tk+1) is computed as

λk+1 =

(
λk + θ

(
N∑

i=1

Ri(tk) − R∗

))+

, (5)

whereθ is a small constant and the function(x)+ is equal tox,
for x > 0, and to zero, otherwise. Note that Eq. (5) increases
the value ofλ if the current transmission rate of all users is
aboveR∗, and vice-versa. Whenλ is increased, the number
of packets that are omitted at each sender is also appropriately
increased, thereby causing a reduction in the transmissionrate.
Whenλ is decreased, the opposite effect is achieved. Hence, in
this way starting from an initial conservative choice forλ each
user is provided with a simple control strategy to accordingly
adjust its value over time.

Finally, it should be mentioned that (5) represents an
instance of the sub-gradient method. This class of methods
are typically used when Lagrange relaxation is invoked in op-
timization problems with integer constraints. Their properties
have been studied in greater detail, for example in [26]. In
addition, in a recent work [27] on Internet pricing for general
data services the authors provide analysis that among others
argues stability and convergence of adaptation algorithmssuch
as Equation (5).

IV. R-D OPTIMIZED DISTRIBUTED STREAMING

In this section, we consider two streaming scenarios where
the generic optimization framework proposed in Section III
can potentially be employed. The first application is scheduling
of multiple concurrent streams over a wireless LAN. The sec-
ond application is bandwidth adaptation via packet dropping at
a network node in the Internet. In both of them, the proposed
framework is used by the agent(s) in the system to perform
transmission decisions for every packet of the involved video
streams.

A. Distributed Streaming over Wireless LANs

We face an increasing proliferation of wireless LANs [28]
at present as they provide a flexible and cost effective so-
lution for many applications in computer networking [29].
Therefore, it is natural to expect that multimedia networking
over WLANs will gain a momentum in terms of importance
both for practical applications and as a research problem. In
the scenario considered here, there are multiple sources of
video traffic communicating over a shared wireless medium,
as illustrated in Figure 2. The communication is performed via
an access point that supports the WLAN environment. Using
the proposed optimization framework, each of the sources can
then independently optimize the transmission schedule forits
own packets such that the video quality over all streams sent
over the shared channel is maximized.

*

1

RR

N

n

n
≤

=

R
1

R
i

R
N

Access point

Fig. 2. N video streams sharing a wireless channel.

We assume that a Time Division Multiple Access (TDMA)
scheme is employed in order to allow for the multiple users
to share the wireless channel. In TDMA, each of the users
is dynamically assigned a time slot based on the user’s
need for throughput. It is only during this time slot that
the user can transmit its data. The time slot assignment is
done by the access point and we assume that each of the
users reports its true need for throughput as computed by
the optimization algorithm. TDMA schemes have been used
in several variations of WLANs, such as HiperLAN/2 [30],
Bluetooth [31], and home RF networks.
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1) Extension to CSMA/CA:We now present a variation of
the proposed optimization framework for the case when an al-
ternative scheme known as Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) is employed for sharing the
wireless medium among the multiple users. With CSMA/CA,
the users have to contend first for using the communication
channel prior to their actual transmissions. CSMA/CA has
been predominantly used in the series of IEEE 802.11 WLAN
standards [32].

From their respective pools of packets considered for trans-
mission at present, (Wi, i = 1, . . . , N ), every useri selects
its most important packetj based on the distortion per bit
utilities λj for j ∈ Wi. In essence, each of the users finds in
its transmission window the packet with the highest utility.
Then, the users broadcast these utility values in order to
agree on transmission priorities. The utilities are sortedin
decreasing order by each user, and each of the users transmits
its own most important packet based on this order. After all
the packets from the sorted list are transmitted, the users
update their transmission windowsWi and repeat the same
procedure. In this way, we ensure that there is still some level
of fairness provided to all users. In other words, the proposed
transmission protocol will prevent a situation where a single
user, who may indeed have many packets with high distortion
per unit rate utilities, transmits all of the time exclusively
thereby blocking the other users from sending any of their
own packets.

B. Bandwidth Adaptation via Packet Dropping

This scenario is commonly encountered in the Internet and
it occurs whenever the data rate on the incoming link at a
network node exceeds the data rate on the outgoing link.
Buffer management during transient periods of network con-
gestion when queues overflow and transcoding at the junction
point of two heterogeneous (in terms of available bandwidth)
networks are two principal examples of bandwidth adaptation.
The incoming traffic at the node consists of multiple video
streams that are multiplexed by the node on a single out-
going link. Employing the framework from Section III, the
distributed streaming system, as represented by the network
node, is interested then in optimizing the overall quality over
all streams, for the given resources, as represented by the
available bandwidth on the outgoing link. The scenario under
consideration is illustrated in Figure 3.

Note that in this setting, it is the network node that com-
putes the optimal schedules for the packets of the incoming
streams. In other words, by employing the framework from the
previous section and based on the rate-distortion information
associated with every incoming packet the node decides which
packets from every stream will be dropped at the node due to
insufficient bandwidth on the outgoing link, and which ones
will be forwarded. In addition to computing the schedules for
every stream, the node also computes what is the appropriate
Lagrange multiplierλ that should be used in (4), for the given
bandwidthR∗ on the outgoing link. As explained earlier, this
can be done in an iterative fashion using fast convex search
techniques, or alternatively by using the tracking method
proposed in Section III-C.

Network

Node

2

in
R

1

in
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N

in
R

Video Stream 1

Video Stream 2

Video Stream N

out
R
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N

n

n

in
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?

1=

Fig. 3. N incoming video streams at a network node that have to be
multiplexed on a single outgoing link.

V. SIMULATION RESULTS

In this section, we examine via simulation experiments the
performance of the proposed framework for rate-distortion
optimized distributed streaming denoted henceforthRDOpt. In
the experiments, we focus exclusively on the second prospec-
tive application of our framework discussed in Section IV-A,
i.e., transmission of multiple video sources over a common
wireless channel. However, it is important to note that some
results obtained for this particular setting are directly equiva-
lent to the scenario considered in Section IV-B.

We measure performance in terms of the average luminance
(Y) PSNR in dB of the decoded video frames both individually
at each receiver and also jointly over all receivers as a function
of different channel parameters, namely, available data rate and
packet loss rate. In particular, three scenarios are considered
in this context. In the first one, the channel is lossless, but
there is insufficient transmission data rate to send all video
packets across the channel. Therefore, the senders need to
decide which packets to send and which packets to omit/drop.
In the second scenario, there is sufficient data rate available
on the shared channel to transmit every packet of each video
stream once, however the network is lossy and some of the
transmitted packets are lost. Hence, the senders needs to decide
at each transmission opportunity whether (1) to retransmita
previous lost packet, or (2) to transmit a new packet which
has not been transmitted before. Finally, the third scenario
under consideration represents a combination of the first two
with the addition that transmitted packets here that are not
lost experience a random delay over the channel. Specifically,
in this scenario we examine streaming performance when
simultaneously the transmission data rate can be variable and
the channel exhibits random packet loss and delay.

In addition, we also examine how the framework performs
rate allocation to the individual users as a function of the
available date rate on the shared channel. Finally, at the end
we examine the performance of the algorithm for tracking the
Lagrange multiplier at each user proposed in Section III-C.
In particular, we study how through this algorithm the system
controls the data rate placed by the users on the channel both
in a steady-state operation and in transient scenarios. Typical
transient situations are when a new user joins the system or
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when there is a sudden change in the available data rate on
the shared channel.

The video sequences used in the experiments are coded
using JM 2.1 of the JVT/H.264 video compression standard
[33]. Four standard test sequences in QCIF format are used:
Foreman, Carphone, Mother & Daughter, and Salesman. In
other words, the number of users/streams sharing the wireless
channel isN = 4. Each sequence is encoded at a frame rate of
30 fps and an average Y-PSNR of about 36 dB. The specific
rate-distortion encoding characteristics for the four sequences
are shown in Table I. The first frame of each sequence is
intra-coded, followed by all P-frames. Every 4 frames a slice
is intra updated to improve error-resilience by reducing error
propagation (as recommended in JM 2.1), corresponding to
an intra-frame update period ofM = 4 × 9 = 36 frames.
An identical importance weightγ = 1 is applied across all
streams.

Sequence Rate (Kbps) Y-PSNR (dB)
Foreman 157.45 35.69
Carphone 171.30 36.60

Mother & Daughter 63.79 36.21
Salesman 64.31 35.01

TABLE I

ENCODING CHARACTERISTICS OF THE FOUR SEQUENCES.

We also study the performance of a conventional system
for distributed streaming denoted asBaseline, which does
not consider the distortion importance of different packets. In
particular, when making transmission decisions,Baselinedoes
not distinguish between two packets related to two different P
frames, except for the size of the packets.Baselinerandomly
chooses between two P-frame packets of the same size, when
adapting to the allocated portion of the available bandwidth. In
both systems,RDOptandBaseline, each user considers video
packets for transmission in non-overlapping windows of size
25.

A. Adapting to Available Bandwidth

In this particular setting, we examine the performance of
RDOptandBaselinefor the case when the available data rate
is insufficient to support transmission at full rate for eachuser,
so the users have to adapt to the allocated bandwidth.Baseline
allocates portions of the available transmission bandwidth to
each user in proportion to the encoding rates of the corre-
sponding video streams of the users.

Figure 4 shows the overall Y-PSNR (dB) performances of
RDOptandBaselineover all four sequences as a function of
the available data rate (Kbps) on the shared channel. It can be
seen thatRDOptoutperformsBaselinewith quite a significant
margin over the whole range of values considered for the
available data rate. This is due to the fact thatRDOptexploits
the knowledge about the effect of dropping of individual video
packets on the reconstructed video quality. Therefore, under
RDOpt users drop packets from their transmission windows
that will have the least impact on the overall quality of the
reconstructed videos. As can be seen from the figure, the
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performance gains ofRDOpt over Baseline increase as the
available data rate decreases. For example, at data rate of
410 Kbps, the performance improvement due to the optimized
packet dropping decisions is around 6 dB, which is quite
impressive.
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Fig. 5. Y-PSNR (dB) vs. Data rate per sequence (Kbps) for (topleft)
Foreman, (top right) Carphone, (bottom left) Mother & Daughter, and (bottom
right) Salesman.

Next, in Figure 5 we show the performances ofRDOptand
Baselinefor the individual sequences. It can be seen from
the figure that also in this case a significant improvement in
performance is observed relative toBaselinewhen packets
are dropped in a rate-distortion optimal way. For example,
when Mother & Daughter, and Salesman are transmitted over
the shared channel at 60 Kbps each, gains of 4 dB are
registered overBaseline, as shown in the bottom part of
Figure 5. Furthermore, it is interesting to note from the top
part of Figure 5 that no rate reduction and only very little
rate reduction are performed by the optimization algorithm
for Foreman and Carphone, respectively. In other words, no
packets from Foreman and only a few packets from Carphone
are dropped. This is because these two sequences exhibit
a lot of motion and scene complexity, and therefore will
exhibit a significant reduction in quality even for a small
number of dropped packets. On the other hand, the sequences
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Mother & Daughter and Salesman are far less complex in this
regards, which means error concealment can be applied quite
successfully on their missing packets. Hence,RDOpt trades-
off packets from Mother & Daughter, and Salesman for those
of Foreman and Carphone in order to maximize the overall
performance over all sequences.
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Fig. 6. Allocation (%) of the available data rate (Kpbs) on the outgoing link
for (left) Baselineand (right)RDOpt.

Finally, the allocation of data rates to the individual se-
quences as a function of the available data rate on the channel
for both, RDOpt and Baseline, is shown in Figure 6. It can
be seen from the figure thatBaselinein essence allocates data
rates in proportion to the encoding rate of each sequence and
independently of the available data rate on the shared channel.
On the other hand,RDOpt assigns increasingly larger shares
of the overall rate to Foreman and Carphone, as the data rate
is decreased. This is expected and is due to the fact that these
two sequences have a more significant impact on the overall
performance, as explained earlier. As the data rate is increased,
RDOpt gradually decreases the shares allocated to Foreman
and Carphone, and increases those for Mother & Daughter,
and Salesman, as seen in Figure 6 (right). This is due to the
fact that at these overall data rates there is already enoughrate
for the former two sequences, so the optimization algorithm
can allocate now increasingly more rate to the less important
sequences, i.e., the latter two.

Finally, it should be noted that both systems,RDOpt and
Baseline, will exhibit the same performances as the ones
demonstrated here, for the alternative centralized scenario of
bandwidth adaptation described in Section IV-B, where a bot-
tleneck network node implements a rate-distortion optimized
packet dropping strategy.

B. Adapting to Packet Loss

In this scenario, we study the performance ofBaselineand
RDOpt for the case when there is sufficient data rate to allow
each user to transmit at the encoding rate of the corresponding
video stream. However, now the uplink (forward) channel
to the access point exhibits random packet loss caused by
dropping corrupted packets at the access point, which in turn
is due to the presence of a non-zero bit error rate on the uplink
channel. Therefore, the users need to decide whether they
would retransmit previous lost packets or instead transmitnew
packets which have not been transmitted yet. In other words,in
addition to the packets from the current transmission windows,
the senders also consider for the present transmission past
packets from previous transmission windows that have been

lost during transmission. These experiments assume an ideal
feedback channel, i.e., a sender is immediately notified of
each lost packet, that the forward channel exhibits no packet
delay, and that successive packet losses are independent and
identically distributed.
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Fig. 7. Y-PSNR (dB) vs. Packet loss rate (%).

Figure 7 shows the overall performances ofRDOpt and
Baselineover all four sequences as a function of the packet
loss rate (PLR) measured in percent. It can be seen that
also in this scenarioRDOpt provides substantial gains over
Baselineover the whole range of values considered for the
PLR (except of course for PLR = 0%). For example, at
packet loss rate of 5%, the performance improvement due
to the optimized transmission decisions is 5.5 dB, which is
quite impressive. The improved performance is due to the
fact that RDOpt exploits the knowledge about the effect of
loss of individual video packets on the reconstructed video
quality, as explained earlier. Therefore, underRDOptthe users
preferentially (re)transmit packets from their transmission win-
dows that are most important for the reconstruction qualityof
the corresponding video streams. Note thatRDOpt performs
(re)transmission prioritization not only among packets ofa
video stream, but also across packets of different streams,as
discussed earlier.

Next, in Figure 8 we show the performances ofRDOpt
andBaselinefor the individual sequences. It can be seen that
also across the individual sequences a significant improvement
in performance is observed relative toBaselinewhen packet
transmission decisions are optimized jointly over the video
streams. For example, the gains overBaselineat packet loss
rate of 5% are 11 dB, 8.5 dB, 2 dB, and 1 dB respectively for
Foreman, Carphone, Mother & Daughter, and Salesman. Fur-
thermore, the results from Figure 8 clearly depict howRDOpt
trades-off rate and distortion across the different sequences.
Specifically, sufficient data rates are allocated to Foreman
and Carphone over the whole range of PLR values under
consideration such that all of their packets are delivered to their
respective receivers. Note that the allocated data rates include
retransmissions of packets lost during prior transmissions. On
the other hand, this is not true for Mother & Daughter, and
Salesman as evident from their performances shown in the
bottom part of Figure 8. Hence,RDOpt decides to place
(re)transmission priority on packets from the former two
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Fig. 8. Y-PSNR (dB) vs. Packet loss rate (%) for (top left) Foreman,
(top right) Carphone, (bottom left) Mother & Daughter, and (bottom right)
Salesman.

sequences at the expense of packets from the latter two.
The reason for this was explained earlier in the context of
bandwidth adaptation in Section V-A.

C. Adapting to Packet Loss and Available Bandwidth

This section investigates the end-to-end performance for
the scenario where the available data rate rate can be varied
and the channel exhibits random packet loss and delay on
both forward and backward directions. Now, each sender
considers packets for transmission in a sliding window of
size 10 packets. For every arriving packet on the forward
channel the receiver returns immediately to the sender an
acknowledgement packet on the backward channel. At each
transmission opportunityBaselineconsiders for retransmission
only those packets from the transmission window whose last
transmission has not been acknowledged withinµR + 3 σR

seconds from the current transmission opportunity, whereµR

andσR are respectively, the mean and the standard deviation
of the round-trip time. This time-out value is frequently used
in ARQ systems, e.g., TCP [34]. The play-out delay for
each of the videos is 500 ms, and the time interval between
transmission opportunities is 33 ms.

The forward and backward channels are modeled as follows.
Packets transmitted on these channels are dropped at random,
with a drop rateεF = εB = ε = 3 %. Those packets that are
not dropped experience a random delay, where the forward and
backward delay densitiespF and pB are modeled as shifted
Gamma distributions with parameters(n, α) and right shiftκ.
These parameters are estimated from actual traces of packet
losses and packet delays collected in wireless LANs, courtesy
of the authors in [35, 36].

Figure 9 shows the overall Y-PSNR (dB) performances of
RDOptandBaselineover all four sequences as a function of
the available data rate (Kbps) on the shared channel. It can
be seen that also in this caseRDOpt outperformsBaseline
with quite a significant margin over the whole range of
values considered for the available data rate. The improved
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Fig. 9. Y-PSNR (dB) vs. Data rate (Kbps) for bandwidth and packet loss
adaptation.

performance ofRDOpt is due to the same reasons that were
discussed earlier. Note that the results presented here are
analogous to those from Section V-A except for the fact that
both, RDOpt and Baseline, have to spend more data rate in
this case in order to achieve the same performance relative
to the results shown in Figure 4. This is because now they
have to account for the random packet loss that occurs during
transmission in each direction. As the streaming results over
the individual sequences for this scenario are equivalent to
those shown in Figure 5, except again for the increase in date
rate for the same Y-PSNR performance, they are omitted here.

D. Tracking the rightλ and rate control

In this section, we examine through several experiments
the performance of the technique proposed in (5) to track the
value of the Lagrange multiplierλ at a sender. As explained in
Section III-C, through the multiplierλ we adaptively control
the data rate at each sender as well as the overall data rate of
all senders. The value of the multiplierθ that is used in (5) is
determined empirically, based on the actual video data thatis
used in the experiments. In particular,θ is chosen such that it
ensures stability and quick convergence of the expression in
(5).
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Fig. 10. Trackingλ (bottom) and the overall data rate (top) over time.

First, we consider the performance of Equation (5) for a
given data rate constraintR∗. Figure 10 (bottom) depicts
a snapshot of the variations ofλ over time for the given
rate constraint, while Figure 10 (top) does the same for the
corresponding overall data rate placed by the users on the
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shared channel. In essence, it can be seen from Figure 10 that
as the overall date rate varies aroundR∗ = 420 Kbps due to
variations in packet sizes for each video stream, which in turn
is caused by the variability in video content over time, the
Lagrange multiplierλ is continuously adjusted, i.e., increased
or decreased, by (5) in order to control the overall data rate
accordingly.

In the next experiment, we examine the performance of the
proposed framework when a user is added to the system. In
particular, the data rate constraint is 380 Kbps, and we have
three users active in the system sending respectively, Foreman,
Carphone, and Mother & Daughter. Then, at timet = 50 sec-
onds a fourth user joins the network and starts transmittingthe
fourth video used in our experiments, Salesman. We examine
how the system allocates rates to the users after the new user
joins in. Note that prior to the increase in number of users
the overall date rate available on the channel is approximately
sufficient to send all three streams at their encoding rates.This
can be easily verified from Table I. However, after the fourth
users starts sending video packets, the system needs to adjust
to the new situation and to reallocate data rates to each user
accordingly.
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Fig. 11. Tracking date rates when a fourth user joins in att = 50 sec.

In Figure 11 we examine the variations of allocated data
rates over time. It can be seen that after the fourth user joins
the network, it starts to increase gradually its date rate on
the shared channel. However, the system is quick to learn
that in the new situation there is an insufficient data rate to
allow everyone to transmit at their encoding rates. Therefore,
the Lagrange multiplier is accordingly increased and varied
until a new equilibrium point is reached over time. Note
that the reallocated data rates actually affect only the last
two users as shown in Figure 11. In particular, the system
simply re-allocates to the new user (Salesman) some of the
data rate assigned previously to the user with the lowest
complexity sequence (Mother & Daughter). This behaviour
was seen throughout the experimental results reported in this
paper and in essence is due to the different importance of the
video packets for the reconstruction quality of each stream, as
explained earlier.

Finally, in Figure 12 we examine the performance of the
system when there is a variation in the available overall data
rate. In particular, at timet = 50 seconds the available
data rateR∗ is increased from 380 to 440 Kbps. As shown
in Figure 12 (top) the system learns about the increase in

overall bandwidth and adjusts over the course of a few seconds
the date rates of each user such that total data rate placed
on the network by all users stays in the vicinity of the
new rate constraint. This is achieved by accordingly adapting
the Lagrange multiplierλ using Equation (5) as seen from
Figure 12 (bottom). In particular, at the advent of increase
in bandwidthλ simply decreases to zero. This allows for the
users to increase their data rates as now there is more room
on the network for their packets. Then, as their overall data
rate reaches the new rate constraintR∗, λ again becomes non-
zero and varies in order to ensure that the users transmit at an
overall date rate that stays in the vicinity of the newR∗, as
shown in Figure 12.
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Fig. 12. Trackingλ (bottom) and the overall date rate (top) whenR∗ is
suddenly increased att = 50 sec.

VI. CONCLUSIONS

A framework for rate-distortion optimized distributed
streaming of multiple video sources over a shared commu-
nication channel has been presented. The framework has been
particularly investigated for the case when a TDMA scheme
is employed to allow simultaneous channel access to multiple
users, and a possible extension of the framework has been
discussed for the case when an alternative CSMA/CA scheme
is used for the same purpose. The proposed framework enables
the users to perform optimal transmission decisions so that
the overall video quality across all streams is maximized
for the given available data rate on the shared channel. The
framework employs a rate-distortion hint track information
that describes a video packet in order to perform optimal
transmission decisions. The hint track information comprises
the size of the packet in bits, and the importance of the packet
for the reconstruction quality of the corresponding stream. We
have examined the performance of our framework for two
canonical problems in video streaming: bandwidth adaptation
and packet loss adaptation. Significant gains in performance
on the order of several dBs, both jointly for all the videos and
also across the individual streams, are registered in each of the
two scenarios under examination over a conventional system
for distributed streaming which does not take into account
the distortion information associated with the video packets.
Finally, in conjunction with the framework we have proposed
and examined the performance of a simple tracking scheme for
adaptively controlling the data rate at which individual users
can transmit on the channel.
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