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Abstract

Atrial fibrillation (AF) is the most common type of human arrhythmia. Beside its clinical

description as absolute arrhythmia, its diagnosis has been assessed for years by visual inspection

of the surface electrocardiogram (ECG). Due to the much higher amplitude of the electrical

ventricular activity, the analysis of atrial fibrillation requires the previous isolation of the atrial

activity component.

In this work, an approach to separate atrial and ventricular signal components, decompos-

ing the signal over a redundant multi-component dictionary, is explored. This idea requires a

careful dictionary design, taking into account the signal structures and characteristics. Being

the dictionary overcomplete, more than one decomposition of a given signal is possible. How-

ever, we are interested in sparse solutions. A key point in this work is also, jointly with the

dictionary design, to determine the appropriate analysis technique for the best performance of

the ECG components separation. Greedy Algorithms, such as Matching Pursuit, or optimiza-

tion methods, such as Basis Pursuit are studied. To improve our signal separation, the a priori

knowledge we have from the ECG signals is also used. Finally, the solution proposed is tested

over an ECG database.

xv





Chapter 1

Introduction

1.1 Situation

Atrial Fibrillation (AF) is the most common sustained cardiac arrhythmia encountered by clin-

icians. Approximately 0.4%-1.0% of the general population suffers from this illness. This type

of arrhythmia may appear anytime, but its prevalence tends to increase along with the age (up

to 10% of the population older than 80 years has been diagnosed with AF). Usually, it affects

men slightly more often than women [1]. With the increase of life expectancy, the prevalence is

expected to double in the next 50 years.

Neither the natural history of AF nor its response to therapy are predictable enough by

clinical and echocardiographic parameters. Nowadays, AF treatment (e.g. pacemaker imple-

mentation, choice of antiarrhythmic drugs or device therapy, curative ablation) may be viewed

as a trial and error. Consequently, AF has in recent years been the subject of thorough inves-

tigations for a better understanding of its mechanism and improving its management. Several

studies have focused on finding algorithms able to predict AF by the analysis of surface elec-

trocardiographic records [2, 3, 4, 5, 6]. However, further studies are still necessary in order to

select and time the appropriate therapy for the individual patient.

1.1.1 Atrial Fibrillation Fundamentals

First of all, before explaining the mechanism and characteristics of AF, we are going to start

describing the heart and its mechanical and electrical activity.

Weighing about 300g and about the size of a large man’s fist, the human heart is the central

organ of the circulatory system. Like all mammalian hearts, it is composed of four chambers
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(see Figure 1.1):

- the upper chambers, called the left and the right atria, which receive incoming blood from

the lungs and the body, respectively;

- the lower chambers, called the left and the right ventricles, which pump blood out to the

systemic and pulmonary circulatory branches, respectively.

Separating these upper and lower chambers, there are valves that passively open and close

to direct the flow of blood. On the left part, the mitral valve separates the left atrium from the

left ventricle and, on the right part, we have the tricuspid valve that separates the right atrium

from the right ventricle.

Figure 1.1: Heart anatomy

In order to pump, the heart must receive some kind of electrical stimulation which will pro-

voke the contraction of the muscle. It starts at the top of the right atrium, in the sinoatrial node

(SA node), and propagates simultaneously through the left atrium and down to the interface

with the ventricles (see Figure 1.2). The atria and the ventricles are electrically insulated at this

interface, except for a region known as the atrioventricular node (AV node). This last behaves

like a delay line, retarding the activation signal about 100ms, that allows the atrial contraction

to finish before the ventricular contraction begins.

Once the signal clears the AV node, it is carried along a specialized noncontractile conduc-

tion system, starting with the bundle of His (AV bundle), then proceeding very fast through a

branching network, known as the Purkinje Fibers, to numerous sites along the inner chambers
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(a) (b)

Figure 1.2: Heart activation

of the ventricles. This cycle of electrical stimulation is known as normal sinus rhythm (NSR),

which provokes a synchronization between the atria and the ventricles of the heart.

In these conditions, the pacemaker function of the heart is carried out by the SA node. The

node cells initiate regular depolarization waves through atria and ventricles, 60-100 times per

minute at rest. Doing some exercise, they can fire as fast as 180-200 times per minute.

On the other hand, the standard 12-lead Electrocardiogram (ECG) is a representation of

the heart’s electrical activity recorded from electrodes on the body surface. In Figure 1.3, we

can see the evolution of the electrical activity during a healthy cardiac activation sequence by

means of its ECG representation.

In this case, the depolarization of the atria manifests itself as the P wave, in the ECG,

and the depolarization of the ventricles causes the feature known as the QRS complex. The

subsequent repolarization of the ventricular mass produces the T wave and the cardiac cycle

concludes. Figure 1.4 shows an schematic of the ECG waveform in NSR.
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Figure 1.3: Cardiac activation sequence (left) and electrocardiogram signal (right)

Figure 1.4: A schematic of the ECG exhibiting normal sinus rhythm

So far, we have slightly introduced the heart structure, its normal mechanical and electrical

activity and the tool we have to measure this last, the ECG. Now it is time to explain in what

consists the AF.

The atrial fibrillation is a supraventricular arrhythmia associated with the asynchronous
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contraction of the atrial muscle fibres. Its underlying mechanism, involving self-sustained multi-

ple reentrant waves, was discovered several decades ago. During AF, the SA node becomes the

secondary pacemaker, being supplanted by the atrial myocardium, causing the upper chambers

to quiver or to fibrillate at 350-600 times per minute (see Figure 1.5).

Figure 1.5: Heart in atrial fibrillation

On the ECG, AF is described by the replacement of consistent P waves by rapid oscillations

or fibrillatory waves (F waves) that vary in size, shape, and timing, associated with an irregular,

frequently rapid ventricular response, as we can observe in Figure 1.6.

(a) normal sinus rhythm

(b) atrial fibrillation

Figure 1.6: ECG signals in NSR and in AF
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1.2 Context

The suitable analysis and characterization of atrial fibrillation from ECG recordings needs a

previous isolation of the atrial activity component, due to the much higher amplitude of the

electrical ventricular activity. Unfortunately, this low amplitude and the fact that both signals

possess spectral distributions that notably overlap, making linear filtering solutions unsuccessful,

hinder this operation.

Different methods have already been proposed to perform the isolation of the AA. One

of them is the segmentation of the AA in the surface ECG. One identifies the QRST location

(several QRS detection algorithms are available, see [7]) and extracts the segments where there

are only atrial components, by time-oriented operations. This technique has one disadvantage,

which is the loss of the information placed in the VA parts.

Another well-known technique is the QRST cancellation. The use of adaptive recurrent

filtering and the average beat subtraction (ABS) are the principal methods proposed to this

aim. This last approach takes advantage of the fact that AF is uncoupled to ventricular activity

and, hence, the average beat is subtracted to generate a residual signal, which contains the

fibrillation waveforms. M. Stridh and L. Sörnmo [2] proposed an ABS method, based on the

correct spatiotemporal alignment of every complex prior to the cancellation. All these techniques

rely on the assumption that the average beat can represent each one accurately. However, the

morphology of the QRS often suffers slight changes caused by variations in the electrical axis of

the heart. Therefore, this last effect is reflected in the QRS cancellation efficiency.

New techniques have appeared without relying on direct QRST elimination. These treat the

problem as a blind source separation [8, 9, 10, 11, 12, 13, 14]. That is, when several signals have

been mixed together and the objective is to find out what the original signals were. A classical

example is the “cocktail party problem”, where a number of people are talking simultaneously

in a room (like a cocktail party), and one is trying to follow one of the discussions. The human

brain can handle this sort of auditory source separation problem, but it is a very tricky problem

in digital signal processing.

Blind source separation techniques are based on two important assumptions, which make

possible the use of independent component analysis (ICA) methods. First, the assumption that

there is bioelectrical independence between the atrial and ventricular regions. This allows to

view the ECG signal as a weighted sum of atrial and ventricular source contributions, noise and

artifacts. Second, the fact that the random distributions of the atrial and ventricular activities

are less than 2 gaussians. These ICA-based methods put higher order statistical conditions
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necessary to separate AA from VA [6, 15, 3, 4, 5]. Nevertheless, there are two problems with

these methods. Firstly, the assumption that AA and VA are statistically independent is really

dubious in AF; the electrical propagation in ventricles is still commanded by the AV node.

Secondly, the sources must be point sources when ICA is used for source separation. This is not

a realistic hypothesis owing to the fact that the electrical sources are strongly extended spatially

in surface to be considered as point sources.

In this work, we deal with the problem as a source separation problem, but our methodology

is really different from the techniques explained just above (ICA methods). Starting from

the ECG, we aim at obtaining two different signals containing the isolated components of the

ventricular activity and the atrial activity. This is a challenging problem since both components

overlap in the frequency domain and are not orthogonal among them. For this purpose, more

powerful approaches are needed.

During the past 10 years, many advances have been achieved by non-linear signal ap-

proximation methods, using overcomplete (non-orthogonal) sets of functions (dictionaries). In

many applications, these techniques offer better performances than those based on orthonormal

transforms. In this work, an approach to separate atrial and ventricular signal components

decomposing the signal over a redundant Multi-component dictionary will be explored.

The first objective is to build a Multi-component dictionary [14, 16] composed of two sub-

dictionaries, each one to approximate one signal. Its design must take into account the signal

structures and characteristics. Being the dictionary overcomplete, more than one decomposition

of a given signal are possible. However, we are interested in sparse solutions. Useful techniques

for these decompositions are given, among others, by Greedy Algorithms such as Matching

Pursuit or optimization methods such as Basis Pursuit. A key point in this work will be,

jointly with the dictionary design, to determine the appropriate analysis technique for a best

performance of the ECG components separation.

Moreover, the approach has to be evaluated by separating simulated ECG signals in atrial

fibrillation (AF) and real ECG signals in AF. The first ones are more useful because we can

compare the approximations with the signals used to create the simulated ECG signal.

Lastly, we apply a method which allows us to exploit the a priori knowledge we have about

the ECG signals. This will improve the signal separation.
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1.3 Organization

This report is structured as follows. In Chapter 2, the theoretical background involved in our

approach is provided, jointly with a schematic description of our method. Chapter 3 describes

the full design of the dictionary. It contains firstly, the signals built to check our system and the

different options we have tested until achieving the best dictionary. In Chapter 4, the results

with the best dictionary found and the different analysis techniques are given. In Chapter 5,

the decomposition is refined by exploiting the a priori knowledge about ECG signals. This

allows to improve the VA and AA separation as shown by numerical examples. Finally, in

Chapter 6, all relevant conclusions drawn from work carried out are summarized.



Chapter 2

Methodology Formalization

2.1 Theoretical Background

Over the last years, there has been an increase of interest looking for alternatives to traditional

signal representations. Instead of representing signals as superpositions of sinusoids or wavelets,

we now have available alternative dictionaries (union of functions called atoms), most of them

overcomplete. This means that some elements of the dictionary have representations in terms

of other elements, which causes the nonuniqueness of the decomposition of a signal f :

f =
∑

γ∈Γ

bγgγ , (2.1)

and also of the approximate decomposition:

f =
m

∑

k=1

bγk
gγk

+ rmf, (2.2)

where:

- Γ is the set of indexes, with cardinality m, of the basis functions used in the decomposition,

- Γ ⊂ Ω, where Ω is the indexes set of all basis functions composing the dictionary

D = {gγ : γ ∈ Ω},

- bγ 6= 0, ∀γ ∈ Γ,

- We assume f ≡ R
N and rmf is the residue of the approximation with m coefficients.
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The nonuniqueness gives us the possibility of adaptation, i.e., of choosing among many

representations the one which (most) fits our purposes.

On the other hand, the dictionaries D we are interested in are large and overcomplete.

Usually, they are built by the union of d ≥ 2 subdictionaries, each one particularly suitable for

describing a certain feature of the signal:

D =
⋃

i

Di, with 1 ≤ i ≤ d. (2.3)

These bases sets are also called sometimes Multi-Component Dictionaries (MCD) [16]. De-

spite the complex problems to solve with these dictionaries, the reason why they are really

appreciated is due to their capacity to bring in sparse representations and approximations.

These dictionaries have a rich collection of shapes, in order to adapt better to the characteristics

of the signals to represent/approximate.

With regard to the signal representations, we are really interested in these sparse decom-

positions. The criterion of sparseness has been studied for a long time and, in the last years,

has become popular in the signal processing community [17, 18, 19]. This is because sparseness

reflects the capacity of efficiently modelling and extracting the main structural components of

a given signal.

The sparsity of a coefficient vector is the number of places where it equals zero. On the

other hand, the diversity counts the number of places where the coefficient vector does not

equal zero. The most common measure of diversity of a vector c is its l0 quasi-norm:

‖c‖0 , |supp(c)|. (2.4)

We use, here, | · | to indicate the cardinality. For any positive p, we can define a p-norm:

‖c‖p ,

[

∑

i∈Ω

|ci|p
]1/p

. (2.5)

It is well known that the smallest p, for which Eq. (2.5) is convex, is 1.

2.1.1 Sparse Approximations

The exact representation of a signal f on a dictionary of basis functions D is defined by:
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f = Db, (2.6)

where D is the synthesis matrix associated to the dictionary D, i.e. each column of D

corresponds to an atom in the dictionary and b ∈ R
Ω is the vector of coefficients. Therefore,

the sparsest exact representation of f on D is the one with the smallest support:

arg min
b

‖b‖0 s.t. f = Db. (2.7)

On the other hand, when we tolerate some error between the reconstructed signal f̂ = Db

and the original one f , the representation turns into an approximation. In such a case, the

problem of finding the sparsest approximation of f with a maximum of m terms, such that the

error norm is minimized, can be stated as:

arg min
b

‖f −Db‖22 s.t. ‖b‖0 ≤ m. (2.8)

2.1.2 Overcomplete Dictionaries

Assuming that a non-redundant dictionary, with synthesis matrix A (i.e. D = A in Eq. (2.6)),

is used to represent f , then:

f = Ab, (2.9)

where A is a n × n matrix and their columns are linearly independent. This defines a

determined system and, therefore, we find the unique representation as:

b = A−1f. (2.10)

When the atoms are mutually orthonormal, then A−1 = AT and the decomposition becomes

very simple.

On the other hand, using redundant (overcomplete) dictionaries, the synthesis matrix is not

a square matrix any more. Then, for a given synthesis matrix B (i.e. D = B in Eq. (2.6)),

f = Bb, (2.11)
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where B is a n× d matrix with n < d.

In such a case, we have an under-determined system with infinite number of solutions.

Consequently, in general it turns the problems stated in Eq. (2.7) and (2.8) into NP-Hard

ones, implying that their complexity grows exponentially with the number of columns in the

dictionary. Several alternative approaches have been proposed, in order to make computationally

feasible the retrieval of a solution for b. In many cases, this solution may not be the sparsest

one, however.

Figure 2.1: Approximation error for a vector in the orthogonal (left) and redundant (right)
dictionaries

Figure 2.1 shows a graphical example where the approximation of a vector, by means of a

unique vector from the basis, is searched. In the orthogonal case (left), the best approximation is

obtained by projecting the vector onto v1. In the redundant case (right), a better approximation

is achieved by projecting the vector onto v3.

In general, we can prove that for any vector belonging to R
2, the approximation error

obtained by a one term approximation is always equal or lower on the redundant base than in

the orthogonal one.

2.1.3 Greedy Algorithms

Matching Pursuit

Mallat and Zhang [20, 21] introduced Matching Pursuit (MP) as a greedy algorithm that de-

composes any signal into a linear expansion of waveforms that are selected from a redundant

dictionary of functions. This expansion of waveforms refers to an iteratively extraction of vec-

tors, one by one, from the dictionary, while optimizing the signal approximation (in terms of
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energy) at each step. Although a matching pursuit is non-linear, it maintains an energy conser-

vation that guarantees its convergence.

Let us consider D = {gγ}γ∈Ω a dictionary where atoms belong to R
N , and with N linearly

independent vectors, having a unit `2-norm. Let rkf be the residual of a k term approximation

of a given signal f ∈ R
N . MP is an iterative algorithm that sub-decomposes the residue rkf by

projecting it on a vector of D that matches rkf at best.

If we consider the initial residual as r0f = f , at the first iteration Matching Pursuit begins

by projecting it on a vector gγ0
∈ D and computing the residue r1f :

f = r0f = 〈f, gγ0
〉gγ0

+ r1f. (2.12)

As r1f is orthogonal to gγ0
, the module of f will be:

‖r0f‖22 = |〈r0f, gγ0
〉|2 + ‖r1f‖22. (2.13)

Since ‖r1f‖2 is the term that must be minimized,

‖r1f‖22 = ‖r0f‖22 − |〈r0f, gγ0
〉|2, (2.14)

the atom gγ0
∈ D to be selected is the one which maximizes |〈r0f, gγ0

〉|, or, generalizing,

|〈rkf, gγk
〉|. This is,

|〈rkf, gγk
〉| = sup

γ∈Ω
|〈rkf, gγ〉|. (2.15)

From Eq. (2.12), we can easily see by induction that the K term decomposition of f is

given by:

f =

K−1
∑

k=0

〈rkf, gγk
〉gγk

+ rKf. (2.16)

Similarly, we can also deduce from 2.13 that the `2-norm of the signal f is:

‖f‖2 =
K−1
∑

k=0

|〈rkf, gγk
〉|2 + ‖rKf‖2, (2.17)
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where ‖rKf‖ converges exponentially to 0 when K tends to infinity and the number of

signal dimensions is finite [20].

Orthogonal Matching Pursuit

The approximations of a matching pursuit can be improved by orthogonalizing the directions

of projection, with a Gram-Schmidt procedure. This motivated a refinement of MP called

Orthogonal Matching Pursuit (OMP) [22], a recursive algorithm to compute representations of

functions with respect to nonorthogonal and possibly overcomplete dictionaries. In the latter,

for every newly selected atom by the MP rule, all expansion coefficients are recalculated such

that the approximation error becomes orthogonal to all the selected atoms previously (in MP,

however, only the last selected atom is orthogonal to the residual).

The resulting algorithm converges with a finite number of iterations, unlike the case for a

non-orthogonal pursuit. Unluckily, the important computational cost of the orthogonalization

is the price to be paid.

2.1.4 Basis Pursuit

Basis Pursuit

Basis Pursuit (BP) is a principle for decomposing a signal into an optimal superposition of

dictionary atoms. This paradigm was proposed by Chen, Donoho and Saunders [23] to minimize

the `1 norm of the coefficients vector, in order to avoid the non convexity and hard solution of

Eq. (2.7):

arg min
b

‖b‖1 s.t. f = Db. (2.18)

In some cases, the solution to Eq. 2.18 will coincide with that of Eq. (2.7). The problem

formulated in Eq. (2.18) can be solved by polynomial-time linear programming approaches.

Basis Pursuit Denoising

To adapt BP to the case of noisy data [23], a new principle appeared, called Basis Pursuit

Denoisign (BPDN), which refers to the solution of:
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arg min
b

1

2
‖f −Db‖22 + γ‖b‖1, (2.19)

where γ is a positive real value employed as a threshold (to limit the maximum `1 norm of

b).

BPDN can be solved using classical Quadratic Programming methods and it turned up to

adapt BP to the approximation case.

2.1.5 Dictionary Analysis

The most fundamental measure associated with a dictionary D is the coherence parameter µ

[17, 24, 25]. Assuming that the columns of D ∈ R
n×d, where d ≥ n, are all normalized, i.e.

‖dk‖2 = 1, the coherence measure (µ) equals the maximum absolute inner product between two

distinct columns in the dictionary:

µ , max
1≤k,j≤d, k 6=j

∣

∣dT
k dj

∣

∣ . (2.20)

Roughly speaking, this quantity measures the maximum similarity between two vectors in

the dictionary. Coherence is a blunt instrument because it only reflects the highest correlation.

Still, it is easy to calculate and it captures the behaviour of uniform dictionaries.

Obviously, every orthonormal basis has coherence µ = 0, indicating total independence

between the dictionary’s atoms. For overcomplete dictionaries with d ≥ n, µ is usually non-

zero, and we desire the smallest possible quantity so as to get close to the ideal independence.

As it is presented in [17]: Orthogonal Matching Pursuit and Basis Pursuit both recover every

superposition of m atoms from D whenever one of the following conditions is satisfied:

m <
1

2

(

µ−1 + 1
)

or, more generally, (2.21)

µ1(m) <
1

2
, (2.22)

where µ1(m) is the cumulative coherence measure and Γ ⊂ Ω has cardinality m:

µ1(m) , max
|Γ|=m

max
i∈Ω\Γ

∑

λ∈Γ

|〈gi, gλ〉| . (2.23)
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2.2 Approach investigated

In this section, the approach investigated in the project is presented. Our methodology is based

on the block diagram shown in Figure 2.4.

Firstly, we must start designing a Multi-component dictionary (see Eq. (2.3)), built by the

union of two sub-dictionaries. The first subdictionary would take care of the VA representation,

whereas the second of the AA representation, as it shows the next figure:

Figure 2.2: Multi-component dictionary structure to separate VA and AA signals

Subsequently, we are going to use an analysis algorithm to obtain a sparse approximation

of our original signal from the ECG, with m coefficients. But, there are several and we must

previously check which one can better manage with our problem. The studied ones will be

Orthogonal Matching Pursuit (OMP) and Basis Pursuit Denoising (BPDN). However, unless

we say the contrary, all our tests will be realized by using an OMP approach.

Of course, both dictionaries must have a low correlation to achieve a successful separation

of the VA and AA signals. That means, the basis functions to represent one signal should be as

incorrelated as possible, with the basis functions to represent the other signal. If the dictionaries

have a high correlation, the analysis algorithm could take, with more probability, atoms from

the wrong dictionary to approximate some part of the signal, that should be represented by the

other dictionary.

As a result of applying these analysis techniques, a coefficients vector will be obtained with

the same number of elements as the dictionary size:
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Figure 2.3: Sparse approximation technique with the MCD (left) and structure of the coefficients
vector (right)

where b will only contain m non-zero elements to approximate the original signal.

To carry out the desired separation, we must finally do a projection step over the VA and

AA dictionary of the two parts which forms the b vector:

fV A ' DV A · bV A

fAA ' DAA · bAA (2.24)

where bV A is the part of the coefficients vector which should contain the sparse approxi-

mation of the VA signal and bAA is the part that should contain the sparse approximation of

the AA signal.

Figure 2.4: Schematic description of the followed methodology



18 Methodology Formalization



Chapter 3

Dictionary design

3.1 Introduction

An essential requirement in our aim is to choose two appropriate dictionaries, one for the ven-

tricular activity representation, and the other for the atrial activity representation. The union

of both will set up a Multi-component dictionary (MCD) [16]:

D = DV A ∪ DAA, (3.1)

which will be used with the analysis algorithms (OMP or BP) to extract a sparse approxi-

mation of the original signal.

The reason of using this kind of dictionary is because our ECG signals (fECG) are composed

of the addition of two signals:

fECG = fV A + fAA, (3.2)

where fV A and fAA are the ventricular and atrial activity signals, respectively.

Thus, we can think about building a simulated ECG signal as a result of adding two signals,

which are going to behave as the originals (see Eq. (3.3), where ˆ indicates approximation). For

this purpose, we are going to use ECG signals of a patient in sinus rhythm (as VA) and simulated

AA in atrial fibrillation (see [26, 27, 28, 29, 30]).

f̂ECG = f̂V A + f̂AA (3.3)
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3.2 Ventricular Activity and Atrial Activity Signals

The means at our disposal to create the VA and AA signals are the following:

- 12 standard ECG-signals of simulated atrial activity in atrial fibrillation. Sampling fre-

quency: 1KHz,

- 12 standard ECG-signals of a patient in sinus rhythm. Sampling frequency: 500Hz,

- The average position of the Q,R,S and T waves and the atrial activity intervals (from AA1

to AA2) for the 12 ECG-signals from the patient. These last are the points between the

QRST complexes where there is only AA (see Figure 3.1).

0 200 400 600 800 1000 1200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

temporal axis

am
pl

itu
de

7thECG Q R S T AA
1

AA
2

AA AAAA

P−wave

Figure 3.1: Segment of a patient in sinus rhythm (lead V1). It can be observed the P-waves
inside the AA intervals

We also have some information about the structure of the VA signal, in sinus rhythm, and

the AA signal, in atrial fibrillation. For the former, we know its electrical representation in

terms of the QRST complex. Its frequencies interval is usually between 1 and 3 Hz. The second

is represented in the ECG by numerous, irregularly spaced small deflections of varying configu-

ration (F-waves), instead of the P-waves, which are the AA representation in sinus rhythm. For

this case, the frequencies interval of the signal is placed between 3 and 10 Hz [31].

With all these, we want to get a ventricular activity signal (VA) and an atrial activity signal

(AA), each one without any information from the other. Thus, we will be able to calculate the

signal separation SNR (see Eq. (3.4), where s is the original signal and ŝ the approximation)

and to give a visual approval of the obtained approximation.
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SNR(dB) = 10 log

( ‖s‖22
‖s− ŝ‖22

)

. (3.4)

3.2.1 Ventricular Activity Signal

To get a ventricular activity signal, we have jointly worked with the ECG-lead segments of the

patient in sinus rhythm and the AAi(i = 1, 2) positions, as we can see in Figure 3.1.

The proposed model to obtain this signal is shown in the next figure:

50Hz
cancellation

AAECG 

(sinus rythm)
signal

VA[n]

Figure 3.2: Ventricular activity model to obtain a ventricular activity signal from an ECG signal
in sinus rhythm

To avoid AA in our VA signal, we have put zero value from AA1 to AA2 because there is

only AA. Finally, we have introduced a low-pass filter (LPF) at 50Hz to eliminate the noise (see

Figure 3.3).
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Figure 3.3: Simulated ventricular activity signal to create a simulated ECG signal in AF

3.2.2 Atrial Activity Signal

For the atrial activity signal, we have taken the simulated AA in atrial fibrillation [26, 27, 28,

29, 30] and we have also applied a LPF at 50Hz to eliminate the noise (see model in Figure

3.4). Because of simulated AA has been generated with a sampling frequency of 1KHz, we have
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downsampled by a factor 2 to get both signals, VA and AA, with the same sampling frequency

(500Hz).

50Hz

2AA[n] AA[2n]

Figure 3.4: Atrial activity model to obtain an atrial activity signal in AF from simulated atrial
fibrillation

In Figure 3.5 we can observe the resulting AA segment. Lastly, in Figure 3.6, the resulting

simulated ECG signal in AF is shown.
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Figure 3.5: Simulated atrial activity signal in AF to create a simulated ECG signal in AF
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Figure 3.6: Simulated ECG signal in atrial fibrillation
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3.3 Gaussian dictionary for VA Representation

The aim of this section is to design a dictionary to represent the ventricular activity signal.

The reason for creating first the VA dictionary is that, at first sight, it seems easier to find a

dictionary to approximate the VA signal than a dictionary to approximate the AA signal. This

is because, in this signal, we are able to find some characteristics that can help us to find some

suitable basis functions. To the contrary, in the AA signal this is very difficult to do.

According to the signal shape of VA, we have decided to check Gaussian functions to see

how they perform approximating it. The results prove that, up to some degree, they are a good

choice.

3.3.1 Gaussian Function

The VA dictionary is composed by a family of gaussian functions:

gγ [n] = Ke

(

−1
2

(n−p
s

)2
)

(γ = (p, s)). (3.5)

where s is the scale factor, p the temporal shift and K a constant.
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Figure 3.7: Gaussian functions with different scales

Note that a scale factor s means that we have s samples from the Gaussian maximum

amplitude until this has fallen by
√

e :

gγ [p + s] = Ke

(

−1
2

(p+s−p
s

)2
)

=
K√
e

= 0.6065K gγ [p] = K (3.6)
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3.3.2 Gaussian Parameters Choice

Let us start to study a VA segment to find the best parameters in our Gaussian dictionary to

represent as well as possible the VA shape.

To represent the QRST complex, we have decided to approximate each of the 4 parts in

which is made up, only with a Gaussian function. Even though we have seen in Figure 3.3 that

the S wave is hidden behind the T-wave, this is an example and the S wave will surely be present

in other cases.

The only parameter we must fix in Eq. (3.5) is the best scale to approximate the Q,R,S

and T-wave, because we have put a temporal resolution of 1 sample, owing to the fact that the

Q,R and S waves are very short in time.

To determine the necessary scales, we have taken the ventricular activity signal generated

(lead V1) and we have studied 3 QRST complexes. We know that it is not enough to characterize

a general QRST complex, because we should have done a thorough study for different leads and

for different patients. Nevertheless, we have considered that for an initial contact with the

problem and to design subsequently the AA dictionary, we have enough with the information

obtained from one patient.

Table 3.1 illustrates the selected scales for Gaussian dictionary to approximate the ventric-

ular activity segment we have chosen (lead V1).

Wave Scales

Q 5

R 6,8

T 51,52

Table 3.1: Scales to represent the chosen segment of the ventricular activity signal (lead V1)

Notice that, in the previous table, there is no scale for the S wave because, as we have

previously explained, in the present case it is hidden behind the T wave. However, we know

that in other leads it might appear but, fortunately, with the same range of scales as the Q and

R waves. So, it will be possible to approximate it too with the ones in Table 3.1.

The suggested idea of representing each peak with only one gaussian succeeds in approxi-

mating quite well the QRST complex using only three gaussians, as we can see in Figure 3.8.

However, we cannot put only these values to represent a ventricular activity segment, be-

cause they change depending on the ECG-lead and also the patient. Therefore, we must in-

troduce a range of values, around the previous, to try to approximate all the leads as much as
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Figure 3.8: QRST(lead V1) approximation with only 3 gaussians (OMP)

possible.

After doing several tests, the appropriate set of scales to represent QRST complexes is: 4,

5, 6, 7, 51, 52, 53, 54.

3.3.3 VA Signal Representation

In Figure 3.9 we can see how our Gaussian dictionary is able to approximate 3 QRST com-

plexes with only 9 gaussians. Finally, we want to obtain this approximation in the VA and AA

separation.
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Figure 3.9: Ventricular activity approximation (lead V1) with 9 coefficients (OMP)

Figure 3.10 shows the recovery capacity of the VA dictionary. We have represented a VA
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segment with 50 coefficients to give us a hint of how our dictionary is able to obtain a very

accurate approximation. As we can observe, we are able to represent it practically with only 50

basis functions.
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Figure 3.10: Ventricular activity approximation (lead V1) with 50 coefficients (OMP)

3.3.4 Discussion

The idea of approximating each wave with a gaussian function has achieved encouraging results.

We can reach two objectives at the same time: a good approximation of the signal and the use

of very few coefficients. As we have previously mentioned, this is really interesting to search

sparse approximations to achieve good signals separation.

In addition, flexibility appears as the most important property of this dictionary. The scale

makes it suitable for different leads and patients.

However, as we will see in Section 3.6, we can still refine it to achieve a better VA and AA

separation.
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3.4 Cosine Packet Dictionary for AA Representation

In this section we design a dictionary to approximate the atrial activity. At first sight, is seems

clear that we will need some sort of sinusoidal functions to approximate it.

Hence we have studied meticulously the Cosine Packet(CP) dictionary [32]. It has some

interesting properties which can give us a good approximation. These ones are the different

scales and frequencies present in the dictionary, which we can tone with only one parameter.

3.4.1 Cosine Packet Function

The cosine packet dictionary is an overcomplete system, which was developed to meet the

computational demands of digital signal processing. It is composed of the standard orthogonal

Fourier dictionary and a variety of Gabor-like elements: sinusoids of various frequencies weighted

by windows of various widths and locations.

We are going to use it from a computing environment called Atomizer [33]. This CP

dictionary depends on two parameters: the length N of the signal to be approximated and the

depth of finest time splitting. This last controls the levels of decomposition (see Figure 3.12).

The functions we have in a time splitting of the Cosine Packet dictionary are:

X(k) =

√

2

M

M−1
∑

n=0

x(n) · cos
(

π

M

(

k − 1

2

) (

n− 1

2

))

k = 1, ..., M M = N,
N

2
,
N

4
, ...,

(3.7)

where x(n) is a smooth window, or bell, M is the length of the time splitting and k is the

frequency index. Each function has a different frequency, which depends on M :

f(k) =
1

2M

(

k − 1

2

)

k = 1, ..., M. (3.8)
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In the next figure we have an example of CP function:

0 100 200 300 400 500

−0.1

−0.05

0

0.05

0.1

0.15

temporal axis

am
pl

itu
de

Figure 3.11: Cosine packet function

Figures 3.12 and 3.13 illustrate the AA dictionary structure:

Figure 3.12: Cosine packet dictionary structure

In the first N columns, we have the first block of the CP dictionary. There, we can find

basis functions with length N and from the first until the N th function the frequency changes

according to Eq.(3.8).

In the next N columns, we have the second block. Inside it, there are two parts, the left

part is made of basis functions with length N
2 and centred at N

4 . The right part has functions

with the same length as the others of this block, but now centred at 3N
4 .

Both blocks fall to depth=1. As the depth grows the levels of decomposition also increase.
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The graphical representation of the dictionary matrix can be seen in Figure 3.13, where the

columns are the waveforms that compose the dictionary (for N=128, depth=3).
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Figure 3.13: Graphical representation of a dictionary formed by CP functions, that have N=128
samples, and with depth=3. The number of base functions is N*(depth+1)=512

3.4.2 Correlation between Dictionaries

As we have previously mentioned, an essential requirement in our objective is to choose two

appropriate dictionaries, one for the VA representation and the other for the AA representation.

But we must guarantee that they will be as uncorrelated as possible to achieve a good sepa-

ration between VA and AA. Otherwise, if the dictionaries contain some basis functions highly

correlated, OMP and BP may select wrongly some atoms. It means that the analysis algorithm

may use some basis functions from one dictionary to represent some parts of the signal, which

should be represented by the other dictionary. This may lead to a wrong VA and AA separation.

Therefore, the first thing that must be checked is what happens with the correlation between

VA and AA dictionary, for different depth values of the CP dictionary.

For our research into CP dictionary, we are going to look at only depth=1,...,5, because

higher values would bring about having functions with the same scale as Gaussian functions

to represent VA and, consequently, we would have unwanted high correlation. Moreover, they
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would not be very useful to represent AA features.

We must reflect on the correlation maximum that we will tolerate to avoid wrong choice of

the atoms by the analysis algorithm (OMP, BP). As we have seen in Section 2.1, we can consider

the maximum correlation as the maximum coherence parameter µ (see Eq. (2.20) and (2.21))

permitted in a redundant dictionary to achieve the optimal approximation, but this condition

is highly pessimistic and it only allows a value of µ too small.

So, we have to do another analysis to decide which limit to use. Our methodology is

based on studying the evolution of the VA and AA SNR, doing the signal separation (shown

in Section 2.2), with respect to the maximum correlation permitted between basis functions of

both dictionaries (see Figure 3.15). For this purpose, we have joined the Gaussian (studied in

the previous section) and the CP dictionary to represent:

- VA (lead V1, sinus rhythm) + AA (lead V1, simulated, in AF)

- VA (lead Vr, sinus rhythm) + AA (lead Vr, simulated, in AF)

both signals try to approximate two real ECG-leads, the V1 and the Vr leads, when the

patient has atrial fibrillation (see Figure 3.14). From now on, we will use the name of lead V1

and lead Vr to refer to the signals we have created to approximate the reality.
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Figure 3.14: Signals to approximate the leads V1 and Vr in atrial fibrillation
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Once we have obtained the VA and AA SNR (see Figure 3.15), we can assert that the limit

value must take place when the SNR starts to misbehave, that is, starting to decrease when

it should increase as the number of coefficients does it. From this moment the effects of the

dictionaries likeness start turning up.

Nevertheless, we cannot fix a limit for all the depth because, as we have checked, it changes

depending on the dictionary we use. In Table 3.2 we have given the maximum correlations for

all depth we can use, depending on the signal, and a general value to apply for all ECG-leads.

Limit lead V1 Limit lead Vr General limit

depth=1 0.4-0.65 0.4 0.4

depth=2 0.6 0.4-0.55 0.5

depth=3 0.5-0.65 0.4 0.5

depth=4 0.4-0.5 0.4 0.5

depth=5 0.5-0.7 0.4-0.8 0.6

Table 3.2: Maximum correlations for each depth

Once we know which are the maximum correlation values that we can allow between both

dictionaries, we must remove the CP functions that cause higher correlation values than these

maximums.

Intuitively, we can think that the problem falls on the first basis functions of each time

splitting. The reason is because there, the frequencies are nearly 0 and the bell window can be

really similar to the gaussians that are present in the VA dictionary. Therefore, we could think
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Figure 3.15: Evolution of the VA and AA SNR doing the signal separation with respect to
the limit of maximum allowed correlation for depth=1 and for the leads V1 and Vr in atrial
fibrillation (OMP, 50 coefficients). The traces are increasing until OMP starts to work wrongly
and then they misbehave
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that, if we cut some of the first frequencies of each time splitting, our AA dictionary would

probably become sufficiently uncorrelated to avoid wrong behaviour of the analysis algorithm.

As we can see in Table 3.3, our intuition was correct and we can find low correlation values,

between both dictionaries, cutting some of the lowest frequencies of each block inside the CP

dictionary structure (see Figure 3.16). Our methodology has consisted of cutting the first basis

function of each time splitting, until we have achieved correlation values below the maximum

tolerated in each case. To do this, we have considered the maximum values of correlation viewed

in Table 3.2.

Figure 3.16: Cosine packet dictionary structure after cutting the first frequencies of each time
splitting for depth=1,...,5. The dark blocks belong to the removed basis functions
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Dictionary Size Cut frequencies Max Correlation

i j k l m n

DCPdepth=1
1408 0 0 0.994771

1 0 0.994771

0 1 0.951928

1 1 0.791709

2 1 0.652552

1 2 0.791709

2 2 0.567807

3 2 0.567807

2 3 0.526735

3 3 0.520095

4 3 0.520095

3 4 0.465735

4 4 0.465735

5 4 0.465735

4 5 0.430738

5 5 0.420536

6 5 0.420536

5 6 0.393798

6 6 0.387322

DCPdepth=2
2112 5 5 0 0.902086

5 5 1 0.771076

5 5 2 0.625646

5 5 3 0.526082

5 5 4 0.460686

DCPdepth=3
2816 5 5 3 0 0.955894

5 5 3 1 0.807877

5 5 3 2 0.606564

5 5 3 3 0.526082

5 5 3 4 0.526082

DCPdepth=4
3520 5 5 3 3 0 0.996226

5 5 3 3 1 0.753548

5 5 3 3 2 0.526082

5 5 3 3 3 0.526082

DCPdepth=5
4224 5 5 3 3 2 0 0.98282

5 5 3 3 2 1 0.591017

Table 3.3: Cut frequency index for maximum allowed correlations
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Finally, we have found which are the frequencies we must cut to achieve low values of

correlation. Nevertheless, we must guarantee that our possible CP dictionaries (different depth)

are able to represent AA after cutting these frequencies. To do this, we have represented an AA

segment for depth=1,...,5 with 50 coefficients in Figure 3.17 (as we have done in Section 3.3).
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(c) DCPdepth=3
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(d) DCPdepth=4
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Figure 3.17: Atrial activity approximations for depth=1,...,5 and with 50 coefficients (OMP)
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We can see that the traces are overlapped. Thus, we can affirm that all the 5 dictionaries

are able to approximate accurately the atrial activity segment without any problem, although

we have cut some basis functions.

3.4.3 VA and AA Signal Separation

Previously, we have done a study about Gaussian and CP dictionary to represent VA and AA

signal respectively. Now, we want to see what we are able to do in terms of VA and AA signal

separation. The methodology we have followed is the one we have explained in Section 2.2.

To decide which depth is the most appropriate to approximate our signals, we are going to

see the VA and AA SNR doing the signal separation for the 5 different depth. The results are

shown in Figures 3.18 and 3.19.
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Figure 3.18: Evolution of the VA and AA SNR doing the signal separation with respect to the
number of coefficients for depth=1,2 and for the leads V1 and Vr in atrial fibrillation (OMP, 50
coefficients)
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Figure 3.19: Evolution of the VA and AA SNR doing the signal separation with respect to the
number of coefficients for depth=3,4,5 and for the leads V1 and Vr in atrial fibrillation (OMP,
50 coefficients)

As we can observe in Figures 3.18 and 3.19, we cannot find one dictionary which best

represents both signals:
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- Even though for lead V1 the best is when we take depth=3, there are not high differences

with the others, except depth=1 which is worse.

- For the lead Vr the best is clearly with depth=1.

Figure 3.20 shows the approximations for V1 and Vr leads with their best dictionary:
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Figure 3.20: VA and AA separation for the leads V1 and Vr with DCPdepth=3
for the first and

DCPdepth=1
for the second, using OMP (50 coefficients)

3.4.4 Discussion

In this section, we have studied the Cosine Packet dictionary to see how it deals with our problem.

As we have established in the previous results, it is not the appropriate one to approximate the

atrial activity signal, when we are doing the signal separation. This is clear if we regard the

Figure 3.20, where the approximations are still far from the original signals. However, there are
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some intervals where there is an interesting representation. That means the frequencies of our

dictionary are correct but the temporal resolution is not enough.

Another interesting point of our study comes from the correlation between Gaussian and

CP dictionary. We already know which frequencies must not be in our AA dictionary to avoid

high values of correlation and, hence, we must cut. The correct ones and the respective scales

are used to build the Gabor dictionary to represent AA signal in the next section.
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3.5 Gabor Dictionary for AA Representation

In this section we want to improve the AA dictionary, giving it higher temporal resolution than

the previous dictionary. This is the way to achieve a better AA approximation.

Hence, we will check the Gabor dictionary, taking advantage of the information about the

frequencies and scales we have obtained in the CP study, because if we use these, we will not

have any problem with the correlation between VA and AA dictionary.

The reason of selecting Gabor functions as another alternative to approximate AA is be-

cause, although there is no clear information from the signal which we can use to design our AA

dictionary, one thing we can bear in mind is that we will need sinusoidal basis functions with

different temporal windows. Consequently, we want to try with Gabor functions because they

have these properties and also the wanted high temporal resolution.

At the end, we want to compare CP and Gabor dictionary, both having the same properties

that they share and taking advantage of their other ones.

3.5.1 Gabor Function

A time and frequency translation invariant Gabor dictionary is constructed by scaling, translat-

ing and modulating a Gaussian window. This last is employed because of its optimal time and

frequency energy concentration [20, 21].

Since our signals are real, we can see a Gabor funcion as (see Figure 3.21):

gγ [n] = Ke

(

−1
2

(n−p
s

)2
)

cos

(

2πkn

N

)

, (3.9)

where N is the signal length, s the scale, p the temporal shift and k
N the normalized

frequency.

The first modification we have introduced is that the cosine will also be translated in time,

because our implementation of OMP makes it necessary to achieve the approximations:

gγ [n] = Ke

(

−1
2

(n−p
s

)2
)

cos

(

2π
k

N
(n− p)

)

. (3.10)

In addition to the Gabor properties, as frequency and scale, we want to introduce also

different phase values in the cosine (∆ϕ). In this way, we will have more precision representing
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the present oscillations in AA signal.

To do this, we have to modify the Gabor function like this:

gγ [n] = K · e
(

−1
2

(n−p
s

)2
)

· cos
(

2π
k

N
(n− p)−∆ϕ

)

γ = (p, k, s, ∆ϕ). (3.11)

As a result of using the following trigonometrical property:

cos(α− β) = cosα · cosβ + sinα · sinβ, (3.12)

we can do the equivalence between Eq.(3.11) and Eq.(3.12) as:

cos

(

2π
k

N
(n− p)−∆ϕ

)

= cos

(

2π
k

N
(n− p)

)

· cos∆ϕ+ sin

(

2π
k

N
(n− p)

)

· sin∆ϕ. (3.13)

Finally, we can see our new basis function as:

gγ [n] = K · e
(

−1
2

(n−p
s

)2
)

·
[

cos

(

2π
k

N
(n− p)

)

· cos∆ϕ + sin

(

2π
k

N
(n− p)

)

· sin∆ϕ

]

.

(3.14)
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3.5.2 Gabor Parameters Choice

Firstly, we want to fix the phase values that we are going to input. As we can see in Figure

3.22, we should be careful with the phase value of the cosine, because we can get to have

identical basis functions in the dictionary but with opposite sign (ϕ = 0 and ϕ = π). This is

absolutely unnecessary, because we want to get a dictionary as small as possible to decrease the

computational complexity.
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Figure 3.22: Sine evolution with different phase values

Therefore, to avoid repeated atoms in our dictionary, the phase values must be located in

the interval ∆ϕ = [0, π). We have taken a discrete uniform distribution between this interval:

p(∆ϕ) =







1
L ∆ϕ = 0, π

L , 2π
L , ...,

(L−1)π
L

0 other

Once we have introduced the phase values and we know which we should put in our dictio-

nary, it is likewise important to decide the other parameters of the Gabor functions: the scales

and the frequencies.

To do that, we will take the knowledge that comes from CP study about frequencies and

scales. It means that we are going to use the same scales and frequencies that we have taken

in all CP dictionaries. So we will construct 5 dictionaries, as we have done in Section 3.4, but

also introducing 16 phase values (L = 16) and a temporal resolution of 1 sample. As we have

already seen in the previous section, we strongly need this temporal resolution.

In the next Tables we show the scales, the minimum frequencies and the number of fre-

quencies we have obtained from CP dictionary to be able to compare both options, taking the

advantages that Gabor provides:



42 Dictionary design

Gabor dictionaries Scales

DG1
(CP depth=1) 206/412

DG2
(CP depth=2) 103/206/412

DG3
(CP depth=3) 52/103/206/412

DG4
(CP depth=4) 26/52/103/206/412

DG5
(CP depth=5) 13/26/52/103/206/412

Table 3.4: Scales to use in Gabor dictionary obtained from CP study

Gabor dictionaries Minimum frequencies for each scale

DG1
(CP depth=1) 0.0078125/0.00390625

DG2
(CP depth=2) 0.009943181/0.0078125/0.00390625

DG3
(CP depth=3) 0.019886363/0.009943181/0.0078125/0.00390625

DG4
(CP depth=4) 0.02840909/0.019886363/0.009943181/0.0078125/0.00390625

DG5
(CP depth=5) 0.034090909/0.02840909/0.019886363/0.009943181/0.0078125/0.00390625

Table 3.5: Minimum frequencies to use in Gabor dictionary obtained from CP study

Gabor dictionaries Number of frequencies for each scale

DG1
(CP depth=1) 347/699

DG2
(CP depth=2) 173/347/699

DG3
(CP depth=3) 85/173/347/699

DG4
(CP depth=4) 42/85/173/347/699

DG5
(CP depth=5) 21/42/85/173/347/699

Table 3.6: Number of frequencies to use in Gabor dictionary obtained from CP study
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The maximum frequency normalized is fmax = 0.5, which is the one that comes from the

Nyquist condition:

Fsampling ≥ 2 · Fmax ←→ fmax =
Fmax

Fsampling
=

1

2
(3.15)

The reason for using the information from the Section 3.4 is because we can profit the

correlation study we have done there. Taking the same scales and frequencies, we will guarantee

that OMP will perform correctly.

From now on, we will use the terminology introduced in the previous Tables to mention all

the different Gabor dictionaries we have studied.

3.5.3 VA and AA Signal Separation

In the same way we have already done in CP case, we are going to separate the VA and AA

signals.

First of all, we would want to compare the signal separation SNR of both possibilities for

AA dictionary, CP and Gabor dictionary. After this, we will be able to decide which is the most

appropriate option.

In Figure 3.23 we have the comparison between both dictionaries, by means of the signal

separation SNR for the leads V1 and Vr. As we can notice, the results are clearly much better

for Gabor dictionary than for CP dictionary (see Table 3.7).

lead V1 Gauss ∪ CP Gauss ∪ Gabor

VA SNR(dB) 2.645 6.589

AA SNR(dB) 1.754 5.737

lead Vr Gauss ∪ CP Gauss ∪ Gabor

VA SNR(dB) 6.061 6.431

AA SNR(dB) 0.867 1.115

Table 3.7: Signal separation SNR comparison with Gaussian functions for the VA dictionary and
two options for the AA dictionary: CP functions and Gabor functions (50 coefficients, OMP)

Although the Gabor results in Figure 3.23 are much interesting than CP results, there are

still better using another Gabor parameters. The best one is DG4
(see Tables 3.4, 3.5, 3.6),

whose signal separation SNR is shown in Table 3.8 and in Figure 3.24. Figure 3.25 illustrates

the VA and AA approximations.
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Figure 3.23: Comparison between CP (left) and Gabor SNR (right) for the leads V1 and Vr,
each one with its best results with CP dictionary (DCPdepth=3

, DCPdepth=1
) and their respective

Gabor dictionary (DG3
, DG1

)

lead V1 Gauss ∪ Gabor

VA SNR(dB) 7.398

AA SNR(dB) 6.327

lead Vr Gauss ∪ Gabor

VA SNR(dB) 6.686

AA SNR(dB) 1.103

Table 3.8: Signal separation SNR with Gaussian functions for the VA dictionary and Gabor
ones for the AA dictionary: DG4

(50 coefficients, OMP)
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Figure 3.24: Signal separation SNR for each signal, leads V1 and Vr, with the best Gabor
dictionary to represent AA, which is DG4
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Figure 3.25: Gabor approximation (signal separation) for each signal, leads V1 and Vr, with the
best Gabor dictionary to represent AA, which is DG4
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3.5.4 Discussion

We have seen that a good approximation of the atrial activity signal can be achieved with Gabor

functions. They give the opportunity to introduce the scales, the frequencies, the phase values

and also, and the most important novelty, the temporal resolution of 1 sample. All these things

become essential to improve the signal separation we have realized in the previous section with

CP dictionary.

As we have already mentioned, the signal separation SNR is really better in this case than

in CP one. We have about 4-5dB more in the lead V1 and 0.3-0.6dB more in the lead Vr. This

is reflected in the approximations (see Figures 3.23, 3.24 and 3.25):

- The VA approximations start to be interesting because there are not many basis functions

destined to the AA representation. Although the R waves are well approximated, they

and the Q and T waves can be improved. One way to do it, with the Q and R waves, is

to use the Generalized Gaussian as we will see in the next Section. For T waves is more

difficult to improve the basis functions to represent them, owing to the different shapes

that they have depending on the lead and the patient.

- The AA approximation is really good, except some parts which are destined for the VA

representation. So, we should clearly improve the VA dictionary to achieve better results.

Thus, we can affirm that Gabor dictionary is definitely the appropriate dictionary to ap-

proximate the atrial activity.
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3.6 Generalized Gaussian Dictionary for VA Representation

In the previous section, we have come to the conclusion that it would be necessary to refine the

approximations of the Q and R waves. In order to do it, we change the Gaussian functions,

from the VA dictionary, for Generalized Gaussian functions. This last modification in our MCD

gives better results in the VA and AA signal separation.

3.6.1 Generalized Gaussian Function

The function we are going to introduce in our VA dictionary, instead of the Gaussian function,

is the Generalized Gaussian(GG) function:

gγ [n] = Ke

(

−
(

|n−p|
α

)β
)

γ = (p, α, β) (3.16)

The newness, with regard to the Gabor function, is the parameter β that will let us to

approximate with more accuracy the Q and R peaks:
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Figure 3.26: Generalized Gaussian functions with different β

In the previous figure we can observe how the GG allows to obtain two well known functions,

changing only the β:

- β = 2: Gaussian function.

- β = 1: Laplacian function.
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3.6.2 Generalized Gaussian Parameters Choice

The methodology we have followed to decide which were the best parameters of the GG to

represent Q and R peaks, as we have previously done designing the Gaussian dictionary, is

totally heuristic.

We have observed in Section 3.5, that the Gaussian functions are not able to approximate

all the Q and R peaks, because they do not have exactly Gaussian shapes and OMP puts in their

places another functions from the AA dictionary. To solve it, we think that the Generalized

Gaussian could improve the VA approximations, because now we pass from one to two degrees

of freedom. Therefore, we will have more accuracy representing both Q and R waves.

In the next table we show the best parameters of our new VA dictionary, that we have

found after several tests:

DGG α β

Q, R 3,4,5,6,7 1.5,1.6,...,2.2

T 49,50,51,52,53,54 2

Table 3.9: Generalized Gaussian parameters (α, β) to improve VA approximation and conse-
quently AA approximation

3.6.3 VA and AA Signal Separation

As we have done in the other cases, we are going to see if this modification is able to achieve

a better signal separation than the previous. The two possibilities that we want to compare

are changing the VA dictionary, not the AA one, however. The first option is composed of the

Gaussian dictionary and the Gabor one for VA and AA signals respectively, and the second

option consists of the Generalized Gaussian dictionary for VA and also the Gabor dictionary

for AA. This last is the DG2
(see Section 3.5), which has given the best results jointly with the

Generalized Gaussian one.

In Figure 3.27 we find the comparison between the two options, in terms of the signal sepa-

ration SNR. We can assert that Generalized Gaussian dictionary is really better than Gaussian

dictionary, because we can find differences about 2dB in both leads, V1 and Vr (see Table 3.10).

This improvement in the SNR is easily observable in Figure 3.28, where we have used a new

segment of 1920 samples, to have a general idea of how our system can manage with the VA

and AA separation.
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Figure 3.27: Comparison between the Gaussian and the Generalized Gaussian SNR (signal
separation) for the leads V1 and Vr

lead V1 Gaussian ∪ Gabor GG ∪ Gabor

VA SNR(dB) 5.834 7.67

AA SNR(dB) 5.157 7.077

lead Vr Gaussian ∪ Gabor GG ∪ Gabor

VA SNR(dB) 7.227 7.706

AA SNR(dB) 1.24 2.022

Table 3.10: Signal separation SNR comparison with Gabor functions for the AA dictionary
(DG2

) and two options for the VA dictionary: Gaussian functions and Generalized Gaussian
functions (50 coefficients, OMP)
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Figure 3.28: VA and AA separation for the leads V1 and Vr with DGG for the first and DG2
for

the second, using OMP (75 coefficients)

3.6.4 Discussion

In summary, we can affirm that Generalized Gaussian has given us more accuracy in our ap-

proximations that has lead up to an increase of the signal separation SNR (see Table 3.10).

Moreover, OMP works much better than in the other cases because the SNR grows generally

always and, consequently, the presence of basis functions in the approximations (artefacts), which

do not belong to these, has decreased (see Figure 3.28).
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3.7 Conclusions

Eventually, we have achieved good approximations of the VA and the AA signals after doing

the signal separation. The use of sparse approximations with a flexible and robust dictionary

has born fruit.

Undoubtedly, there are some parts of the VA approximations that can still be improved.

The T-waves and the few artefacts present in the VA signal are the mean ones. However, we can

say that the error energy introduced in the VA results is pretty low and this allows to obtain

good AA approximations.

As regards the dictionary used, we must say that we have been able to find an overcom-

plete system of many basis functions, that has permitted us to achieve our aim, a good signal

separation. It has been done with the union of two dictionaries generating a Multi-Component

Dictionary:

- VA dictionary: Generalized Gaussian functions

- AA dictionary: Gabor functions

In the next Table we can see the evolution of the different best SNR values that we have

obtained, with 50 coefficients and using OMP, throughout the previous study:

lead V1 Gauss ∪ CP Gauss ∪ Gabor GG ∪ Gabor

VA SNR(dB) 2.645 7.398 7.67

AA SNR(dB) 1.754 6.327 7.077

lead Vr Gauss ∪ CP Gauss ∪ Gabor GG ∪ Gabor

VA SNR(dB) 6.061 6.686 7.706

AA SNR(dB) 0.867 1.103 2.022

Table 3.11: Signal separation SNR evolution of our thorough study (50 coefficients, OMP)

As a result, we can assert that we have followed an increasing evolution and it proves our

dictionary choice, the last one.
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Chapter 4

Experimental Results

4.1 Introduction

Once designed the Multi-component dictionary (MCD), we evaluate two analysis techniques,

separating VA and AA signals. Moreover, we test the best MCD found with different real ECG

signals.

Firstly, we start by checking how Basis Pursuit Denoising (BPDN) performs as a decom-

position algorithm for signal separation. The aim is to compare with the OMP results obtained

in Section 3.4, where the Cosine Packet dictionary has been studied. The reason of taking this

dictionary and not another is because is the smallest one and BPDN takes more computational

complexity than OMP.

Secondly, the overall performance of sparse approximations over redundant dictionaries, for

VA and AA separation, is evaluated. For this purpose, real ECG signals from three patients

in atrial fibrillation have been used, jointly with our best dictionary (GG functions for VA

dictionary and Gabor functions for AA dictionary).

4.2 Basis Pursuit Denoising

Similarly to the OMP based source separation approach used in Chapter 3 to achieve the signal

sepration, we can use Basis Pursuit Denoising to obtain sparse approximations of our original

signal. In order to decide which is the best approach, we compare the source separation results

obtained with the dictionary suggested in Section 3.4. This choice is due to the fact that it

is the smallest dictionary, among all we have studied, and BPDN has a high computational
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complexity. To be able to compare both alternatives, we approximate the signals with the same

number of coefficients as for OMP.

Before continuing, we want to remind that Basis Pursuit Denoisign (BPDN) refers to the

solution of:

arg min
b

1

2
‖f −Db‖22 + γ‖b‖1, (4.1)

where γ is a positive real value employed as a threshold (to limit the maximum l1 norm of

b).

BPDN can be solved using classical Quadratic Programming methods and it turned up to

adapt BP to the approximation case.

As it is shown in Figures 4.1 and 4.2, none of the approximations are successful, because

they do not achieve a good signal separation. Moreover, we cannot say visually which one is

better, because in both alternatives, BPDN and OMP, there are lots of artefacts that hinder a

good signal separation.
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Figure 4.1: VA and AA separation for the leads V1 and Vr with DCPdepth=3
and BPDN (γ = 0.3)

for the first, DCPdepth=1
and BPDN (γ = 0.3) for the second
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Figure 4.2: VA and AA separation for the leads V1 and Vr with DCPdepth=3
and OMP for the

first and DCPdepth=1
and OMP for the second

Therefore, to get an idea of which technique is the most appropriate for our goal, a SNR

study of the approximations has been done (see Table 4.1).

Lead V1 BPDN OMP

VA SNR(dB) 4.07 3.6531

AA SNR(dB) 0.9824 2.6305

Lead Vr BPDN OMP

VA SNR(dB) 7.0176 6.5832

AA SNR(dB) -3.4188 0.3372

Table 4.1: Signal separation SNR comparison between OMP and BPDN

Although the VA SNR are slightly better for BPDN than for OMP, about 0.4dB, there is

not a big difference. Nevertheless, the AA SNR are strongly better for OMP than for BPDN,

with differences about 2-4dB. Even, we can find a negative SNR in the VR case, which means

that the approximation error has more energy than the original signal.

So, owing to the fact that the BPDN results are worse than the OMP ones and, also, its
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computational complexity is really higher than Greedy algorithms, we have dismissed BPDN as

a tool to separate the VA and AA signal. We have only used OMP, which is considered to be

the most appropriate decomposition algorithm for sparse source separation of VA and AA.

4.3 Real ECG

Up to now, we have worked with simulated ECG signals, in order to compare afterwards our

approximations and to give a SNR value. The results with the simulated signals are in Section

3.6, using our best dictionary (GG functions for VA dictionary and Gabor functions for AA

dictionary), the same that we will use in this case.

In this section, results separating real ECG signals in AF are given. We have taken the

ECG signals from three patients with AF and we have separated them, using OMP and 75

coefficients for the sparse decomposition. Due to the fact that the I, II, III and Vf leads are

lineal combinations of the others, we have only tested: the Vr, Vl, V1, V2, V3, V4, V5 and V6

leads.

As it can be observed in the Figures 4.3, 4.4 and 4.5, we have achieved good approximations

doing the VA and AA separation. However, it is really difficult to assert if they are successful

or not. This is because, now, we cannot give a signal separation SNR value by comparing with

the original signals. Indeed, original signals are a priori unknown.

Therefore, we can only give some hints about the quality of the results:

- VA approximation: There are really interesting results approximating the VA signal. This

is because we always obtain a good approximation of the QRST complexes. Nevertheless,

in some leads, we can find small errors in the QRST approximations and, also, some basis

functions from the VA dictionary used to represent some parts of the AA signal. These

last artefacts can be usually found between two QRST complexes, where there should be

only functions from the AA dictionary.

- AA approximation: This is undoubtedly the most difficult to evaluate. Because of its

noisy shape, it is impossible to have any structural reference of the signal, unlike the VA

one. Thus, we have done a study to check if the frequencies in our AA approximations

are inside the theoretical interval: 3Hz - 10Hz [31]. In order to do this, we have calculated

the Power Spectrum Density (PSD), using the Welch’s averaged periodogram method,

with a Hamming window of 426 samples (signal length=1920 samples). Subsequently,
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we have looked for the maximum peaks (see it in the 4th column of Figures 4.3, 4.4 and

4.5). The results are really encouraging. As we can observe in Table 4.2, most of the

found frequencies belong to the 3-10Hz interval. However, we cannot assert that the

approximations are correct. This study is only useful to dismiss the results where the

maximum frequency is below 3Hz or above 10Hz.

Patient 0001 Freq(Hz)

Vr 3.125

Vl 3.906

V1 7.422

V2 7.227

V3 7.422

V4 2.539

V5 4.492

V6 5.469

Patient 0002 Freq(Hz)

Vr 3.906

Vl 4.102

V1 4.102

V2 3.516

V3 3.906

V4 4.102

V5 3.906

V6 2.93

Patient 0003 Freq(Hz)

Vr 2.148

Vl 2.539

V1 2.539

V2 5.078

V3 5.078

V4 3.711

V5 3.125

V6 2.148

Table 4.2: PSD maximums of the AA approximations for the three patients analyzed. In bold

we find the correct frequencies, it means, the ones belonging to the theoretical interval: 3-10 Hz

- Residues: The mean SNR values for the approximations (not signal separation SNR values)

are: 26.2dB, 25.6dB and 23.1dB, for the 1st, 2nd and 3rd patients, respectively. So, it means

that all the energy of the original signal is placed in the VA and AA approximations.



4.3 Real ECG 59

0 500 1000 1500
−2

−1

0

1
0 500 1000 1500

−1

−0.5

0

0.5
0 500 1000 1500

−0.2

−0.1

0

0.1

0.2
0 500 1000 1500

−0.2

−0.1

0

0.1

0.2

ECG signal

0 500 1000 1500
−2

−1

0

1

temporal axis

0 500 1000 1500
−1

−0.5

0

0.50 500 1000 1500
−0.2

−0.1

0

0.1

0.2
0 500 1000 1500

−0.2

−0.1

0

0.1

0.2

VA approximation

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

P
S

D
(W

/H
z)

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1
0 500 1000 1500

−0.04

−0.02

0

0.02

0.04
0 500 1000 1500

−0.04

−0.02

0

0.02

0.04
AA approximation

0 10 20

X: 7.227
Y: 0.0001754

Frequency(Hz)

0 10 20

X: 7.422
Y: 0.0004247

0 10 20

X: 3.906
Y: 2.274e−005

0 10 20

AA PSD

X: 3.125
Y: 3.363e−005

VR

VL

V1

V2

0 500 1000 1500
−1

−0.5

0

0.5

1
0 500 1000 1500

−1

−0.5

0

0.5

1
0 500 1000 1500

−1

−0.5

0

0.5

1
0 500 1000 1500

−1

0

1

ECG signal

0 500 1000 1500
−1

−0.5

0

0.5

1

temporal axis

0 500 1000 1500
−1

−0.5

0

0.5

10 500 1000 1500
−1

−0.5

0

0.5

1
0 500 1000 1500

−1

0

1

VA approximation

0 500 1000 1500
−0.04

−0.02

0

0.02

0.040 500 1000 1500
−0.1

−0.05

0

0.05

0.1
0 500 1000 1500

−0.1

−0.05

0

0.05

0.1
0 500 1000 1500

−0.1

−0.05

0

0.05

0.1
AA approximation

0 10 20

X: 5.469
Y: 2.332e−005

Frequency(Hz)

0 10 20

X: 4.492
Y: 6.946e−005

0 10 20

X: 2.539
Y: 0.0001315

0 10 20

AA PSD

P
S

D
(W

/H
z) X: 7.422

Y: 6.408e−005
V3

V4

V5

V6

Figure 4.3: Signal separation for the real ECG of the patient 0001 (OMP, 75 coefficients). Left:
the separated leads: Vr, Vl, V1, V2, V3, V4, V5 and V6. Middle: VA and AA approximations.
Right: AA PSD. In the first three columns, the x-axis units are samples and y-axis ones are
mV. In this case, we find 7 AF approximations inside the theoretical interval of frequencies



60 Experimental Results

0 500 1000 1500
−2

−1

0

1

2
0 500 1000 1500

−1

−0.5

0

0.5

1
0 500 1000 1500

−0.4

−0.2

0

0.2

0.4
0 500 1000 1500

−0.5

0

0.5
ECG signal

0 500 1000 1500
−2

−1

0

1

2

temporal axis

0 500 1000 1500
−1

−0.5

0

0.5

10 500 1000 1500
−0.4

−0.2

0

0.2

0.4
0 500 1000 1500

−0.5

0

0.5
VA approximation

0 500 1000 1500
−0.2

−0.1

0

0.1

0.20 500 1000 1500
−0.2

−0.1

0

0.1

0.2
0 500 1000 1500

−0.04

−0.02

0

0.02

0.04
0 500 1000 1500

−0.1

−0.05

0

0.05

0.1
AA approximation

0 10 20

X: 3.516
Y: 0.0006821

Frequency(Hz)

0 10 20

X: 4.102
Y: 0.0008841

0 10 20

X: 4.102
Y: 8.356e−005

0 10 20

AA PSD

P
S

D
(W

/H
z)

X: 3.906
Y: 0.0001882

VR

VL

V1

V2

0 500 1000 1500
−1

−0.5

0

0.5

1
0 500 1000 1500

−1

−0.5

0

0.5

1
0 500 1000 1500

−1

0

1

0 500 1000 1500
−2

−1

0

1

2
ECG signal

0 500 1000 1500
−1

−0.5

0

0.5

1

temporal axis

0 500 1000 1500
−1

−0.5

0

0.5

10 500 1000 1500

−1

0

1

0 500 1000 1500
−2

−1

0

1

2
VA approximation

0 500 1000 1500
−0.1

−0.05

0

0.05

0.10 500 1000 1500
−0.1

−0.05

0

0.05

0.1
0 500 1000 1500

−0.2

−0.1

0

0.1

0.2
0 500 1000 1500

−0.2

−0.1

0

0.1

0.2
AA approximation

0 10 20

X: 2.93
Y: 0.0003524

Frequency(Hz)

0 10 20

X: 3.906
Y: 0.0003288

0 10 20

X: 4.102
Y: 0.0005504

0 10 20

X: 3.906
Y: 0.0005794

AA PSD

P
S

D
(W

/H
z)

V3

V4

V5

V6

Figure 4.4: Signal separation for the real ECG of the patient 0002 (OMP, 75 coefficients). Left:
the separated leads: Vr, Vl, V1, V2, V3, V4, V5 and V6. Middle: VA and AA approximations.
Right: AA PSD. In the first three columns, the x-axis units are samples and y-axis ones are
mV. In this case, we find 7 AF approximations inside the theoretical interval of frequencies
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Figure 4.5: Signal separation for the real ECG of the patient 0003 (OMP, 75 coefficients). Left:
the separated leads: Vr, Vl, V1, V2, V3, V4, V5 and V6. Middle: VA and AA approximations.
Right: AA PSD. In the first three columns, the x-axis units are samples and y-axis ones are
mV. In this case, we find 4 AF approximations inside the theoretical interval of frequencies
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4.4 Conclusions

In this chapter different results using the MCD’s studied are given. Firstly, after evaluating two

different analysis algorithms, OMP and BPDN, we conclude that the first is the most appropriate

dictionary, owing to the fact that its approximations and SNR are much better than the BPDN

ones. Lastly, different real ECG signals are separated using the OMP approach. The results

obtained show that there are some artefacts in both approximations, VA and AA, that make

worse the separation. In order to improve it, we propose in the next chapter the use of a priori

knowledge, helping the OMP principle to avoid these artefacts.

Another conclusion is that the number of coefficients is a value really critic because if it

is too high, the approximation starts to have high frequencies destined to represent the residue

(see Figures 4.3, 4.4 and 4.5).



Chapter 5

A priori knowledge

5.1 Introduction

Looking at the results in Chapter 4, we know that they can be improved by taking into account

some information about the signals. Although we have this information, the decomposition

algorithm (OMP) cannot use it. Therefore, in order to exploit this a priori knowledge, we use

an algorithm named Weighted-OMP [25]. The new approach is tested afterwards doing the

separation of simulated ECG signals and real ECG signals.

5.2 Weighted-OMP

As we have previously seen in Chapter 2, MP and OMP iteratively extract vectors, one by one

from the dictionary, while optimizing the signal approximation (in terms of energy). Thus, there

are two steps at each iteration:

- Firstly, an atom gγk
∈ D is choosen (k ≥ 0 indicates the number of the iteration).

- Secondly, an approximant fm ∈ span(gγk
: k ∈ {0, ..., m−1}) and a residual rmf = f −fm

are generated.

The first step can be formulated as:

gγk
= arg max

gγ∈D
C(rkf, gγ). (5.1)
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where C(rkf, gγ) is a similarity measure between the residual at the kth iteration: rkf =

f − fk and the atoms from the dictionary.

Greedy algorithms use the modulus of the scalar product as this measure, i.e. C(rkf, gγ) =

|〈rkf, gγ〉|. However, if we want to introduce some heuristic measure of prior information, we

can change it. Hence, we are going to use Weighted-OMP [25]. In this last, the modulus of the

scalar product is modified by multiplying a weighting factor wγ ∈ [0, 1], which represents the a

priori knowledge and depends on the atom with index i, such that:

C(rkf, gγ) = |〈rkf, gγ〉| · wγ . (5.2)

When wγ=0, it is the same as deleting gγ from the dictionary. In this work, the a priori

knowledge is considered independent of the iteration.

5.3 Weighting Factors Analysis

In this section, we present our weighting factors analysis, for all the basis functions inside our

dictionary. For the choice, we want to make some clarifications about the dictionary and the a

priori knowledge from the ECG signals.

So, we divide the MCD in three parts (see Figure 5.1):

Figure 5.1: Dictionary structure with the 3 kinds of basis functions

- D1: contains the basis functions to approximate the Q, R and S waves,

- D2: contains the basis functions to approximate the T waves,

- D3: contains the basis functions to approximate the atrial fibrillation signal.

In a similar way, we set out our criterion to divide each ECG segment in three areas,

understanding segment as the interval between two consecutive Q peaks (see Figure 5.2):
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- A: must be approximated with functions from D1 and D3, centred in A,

- B: must be approximated with functions from D2 and D3, centred in B,

- C: must be approximated only with functions from D3.
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Figure 5.2: A priori knowledge (Q, R, S, T position and AA intervals) from the ECG signals
and the 3 areas (A, B and C) we establish in the VA signal to design the weights, to use
Weighted-OMP as analysis technique

To determine these areas, we have used the a priori knowledge, which consists of the

positions of the Q, R, S, T waves and the intervals where is only AA.

Once delimited the areas in the ECG signal and the sort of basis functions that can approx-

imate each one, we must establish the weights to help the analysis algorithm to achieve a better

signal separation. According to the criterion presented above for each area, we are going to

introduce a weight equal to 1 for the correct atoms and another weight in [0,1], for the “wrong”

atoms. Figure 5.3 illustrates a block diagram of the selection step in Weighted-OMP. We have

put the same weight for the wrong selected atoms in A and B, wa, and another weight, wb,

for the incorrect ones in C. Also, we have introduced the notation “in” to say that the atom is

inside the interval on the right.

Finally, we are going to do a SNR study of the approximations, obtained after the signal

separation, in terms of these weights, wa and wb. Intuitively, we can think that the best weights

for the wrong selected atoms must be (wa,wb)=(0,0) because, in this way, we avoid having them.

As we can see in Figure 5.4, the intuition was correct. For the lead Vr, there is a wide area

around the (wa,wb)=(0,0) with the maximum SNR, as we have predicted.

However, for the lead V1 (see Figure 5.5), the maximum is not at (wa,wb)=(0,0), it is placed
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Figure 5.3: Block diagram of the selection step in Weighted-OMP. There are two weights for
the incorrect selected atoms: wa and wb, which will help to achieve a better signal separation

in an area around (wa,wb)=(1,0). But the difference in the SNR values between this two points

is really low and we consider this as an outlier. We prefer not to have “wrong” basis functions,

understanding “wrong” functions the ones which are centred in some interval which does not

correspond to them, in the VA approximations and to get a SNR a little bit lower.
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Figure 5.4: Signal separation SNR in terms of the weights (wa,wb) for the lead Vr. There are 5
levels of SNR and the maximum is placed in (0,0). For the study we have used Weighted-OMP
and 50 coefficients.



5.4 Experiments 67

w
b

w
a

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

(a) VA(lead V1)

w
b

w
a

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

(b) AA(lead V1)

Figure 5.5: Signal separation SNR in terms of the weights (wa,wb) for the lead V1. There are 4
levels of SNR and the maximum is placed in (1,0). Although the SNR is higher in (1,0) than in
(0,0), we prefer having the (wa,wb)=(0,0) approximation because we avoid having any artefacts.
For the study we have used Weighted-OMP and 50 coefficients.

In conclusion, the most appropriate weights for our purpose are: (wa,wb)=(0,0).

5.4 Experiments

The results using Weighted-OMP jointly with the a priori knowledge from the ECG signals are

presented in this section. For all the experiments, we have taken the best dictionary we have

found: GG functions for VA dictionary and Gabor functions for AA dictionary (see Section 3.6).

First of all, we have started separating the simulated ECG signals, to obtain the signal sep-

aration SNR that allows to compare with the previous results. To evaluate different amplitudes

of the AA signal, we have introduced a new parameter in Eq. 3.3:

f̂ECG = f̂V A + α · f̂AA (5.3)

where α tunes the AA amplitude (α = 0.5, 1, 1.5).

Figures 5.6, 5.7 and 5.8 show the results for the three values of α. As we can see in Table

5.1, the best results approximating the VA signal are for α = 0.5, because the VA energy is

higher than the AA one. However, the best ones approximating the AA signal are for α = 1.5,

owing to the higher AA amplitude.

Generally, we can affirm that:
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- VA approximations are successful because we have eliminated all the artefacts, in charge

of representing some parts from the AA signal. Moreover, the Q and R peaks have been

improved, although there are still some low errors. With regard to T-waves, we have the

best approximation that we can achieve with the dictionary designed. Nevertheless, it is

not exact, but this is a task really difficult, due to the different shapes depending on the

lead and patient.

- AA approximations suffer the consequences of the poor T-wave approximations. The fact

that some SNR are negative is because AA approximations contain errors, which represent

the residues from the T-wave approximations, and the energy of AA signal is lower than

the error energy.

Lead Vr VA+AA VA+0.5·AA VA+1.5·AA

VA SNR(dB) 10.88 11.06 11.08

AA SNR(dB) -1.05 -6.94 2.61

Lead V1 VA+AA VA+0.5·AA VA+1.5·AA

VA SNR(dB) 8.69 11.13 2.41

AA SNR(dB) 6.81 3.61 4.28

Lead V4 VA+AA VA+0.5·AA VA+1.5·AA

VA SNR(dB) 11.94 12.33 11.66

AA SNR(dB) -0.8 -6.53 2.4

Table 5.1: Signal separation SNR for α = 0.5, 1, 1.5 and for the leads Vr, V1 and V4. We have
used Weighted-OMP ((wa,wb)=(0,0)) and 75 coefficients. In bold the best VA and AA SNR for
each lead

If we compare these results with the ones obtained without using the a priori knowledge,

the VA approximations have become slightly better, about 1dB in terms of SNR, owing to the

fact that now, the artefacts have disappeared. However, AA approximations have remained

approximately equal (see Table 5.2).

lead V1 GG ∪ Gabor (OMP) GG ∪ Gabor (Weighted-OMP)

VA SNR(dB) 7.15 7.967

AA SNR(dB) 0.41 1.06

Table 5.2: Comparison between the signal separation SNR of the best dictionary found (see Sec-
tion 3.6) + OMP and the best dictionary found + Weighted-OMP (using the a priori knowledge,
(wa,wb)=(0,0)). We have used 30 coefficients (2 QRST complexes in the signals and α = 1) for
both cases.
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Figure 5.6: Simulated ECG signal (α=1) separation using the a priori knowledge and Weighted-
OMP (50 coefficients, (wa,wb)=(0,0)). The results are for the leads: Vr, V1 and V4. Left:
simulated ECG signal. Middle: VA approximation (with its SNR). Right: AA approximation
(with its SNR). In all the columns, the x-axis units are samples and y-axis ones are mV
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Figure 5.7: Simulated ECG signal (α=0.5) separation using the a priori knowledge and
Weighted-OMP (50 coefficients, (wa,wb)=(0,0)). The results are for the leads: Vr, V1 and
V4. Left: simulated ECG signal. Middle: VA approximation (with its SNR). Right: AA ap-
proximation (with its SNR). In all the columns, the x-axis units are samples and y-axis ones are
mV
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Figure 5.8: Simulated ECG signal (α=1.5) separation using the a priori knowledge and
Weighted-OMP (50 coefficients, (wa,wb)=(0,0)). The results are for the leads: Vr, V1 and
V4. Left: simulated ECG signal. Middle: VA approximation (with its SNR). Right: AA ap-
proximation (with its SNR). In all the columns, the x-axis units are samples and y-axis ones are
mV
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To give an example of a long ECG signal, we have studied 10 QRST complexes from the

lead V1 (α = 1, Weighted-OMP with ((wa,wb)=(0,0)) and 150 coefficients). The results of the

VA and AA separation are given in Figures 5.9, 5.10 and 5.11.
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Figure 5.9: Simulated ECG lead V1 with 10 QRST complexes. The x-axis units is samples and
y-axis ones is mV
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Figure 5.10: VA approximation after the signal separation of the lead V1, with 10 QRST
complexes. We have used Weighted-OMP (150 coefficients, (wa,wb)=(0,0)). The x-axis units is
samples and y-axis ones is mV
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Figure 5.11: AA approximation after the signal separation of the lead V1, with 10 QRST
complexes. We have used Weighted-OMP (150 coefficients, (wa,wb)=(0,0)). The x-axis units is
samples and y-axis ones is mV
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Furthermore, we have tested the system over real ECG signals. In order to do this, we have

used the same signals from the three patients in AF as in the previous chapter. Figures 5.12,

5.13 and 5.14 reflect that we have achieved the elimination of the artefacts placed in the last

VA approximations.

As occurred in Chapter 4, we can only give some hints about the quality of the results,

because we cannot give a signal separation SNR value by comparing with the original signals:

- VA approximation: As we have already mentioned, we have eliminated the artefacts that

were in the last VA approximations. However, the T-waves approximations continue being

the main problem and, also, the QRS approximations have some errors (see Figures 5.12,

5.13 and 5.14).

- AA approximation: We have done the same study as in the previous chapter to check if

the frequencies in our AA approximations are inside the theoretical interval: 3Hz - 10Hz

[31]. For this purpose, we have calculated the Power Spectrum Density (PSD), in the same

way as in Chapter 4, and we have looked for the maximum peaks. The results are still

really encouraging. As we can observe in Table 5.3, most of the frequencies found belong

to the interval mentioned.

Patient 0001 Freq(Hz)

VR 2.93

VL 2.73

V1 7.422

V2 7.227

V3 7.422

V4 3.125

V5 3.125

V6 7.031

Patient 0002 Freq(Hz)

VR 3.906

VL 4.102

V1 4.102

V2 2.93

V3 4.102

V4 3.906

V5 3.711

V6 3.516

Patient 0003 Freq(Hz)

VR 2.148

VL 3.32

V1 2.539

V2 5.078

V3 5.078

V4 3.32

V5 3.125

V6 3.125

Table 5.3: PSD maximums of the AA approximations, using a priori knowledge, for the three
patients analyzed. In bold we find the correct frequencies (19 correct values/24 values), it
means, the ones belonging to the theoretical interval: 3-10 Hz

- Low residues: The mean SNR values for the approximations (not signal separation SNR

values) are: 25.23dB, 22.27dB and 21.17dB, for the 1st, 2nd and 3rd patients, respectively.

These values are very close to the ones found without using the a priori knowledge (26.2dB,

25.6dB and 23.1dB, for the 1st, 2nd and 3rd patients). So, it means that all the energy of

the original signal is placed in the VA and AA approximations.
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Figure 5.12: Signal separation for the real ECG of the patient 0001 using the a priori knowledge
(Weighted-OMP, (wa,wb)=(0,0), 75 coefficients). Left: the separated leads: Vr, Vl, V1, V2, V3,
V4, V5 and V6. Middle: VA and AA approximations. Right: AA PSD. In the first three
columns, the x-axis units are samples and y-axis ones are mV. In this case, we find 6 AF
approximations inside the theoretical interval of frequencies of 8 approximation
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Figure 5.13: Signal separation for the real ECG of the patient 0002 using the a priori knowledge
(Weighted-OMP, (wa,wb)=(0,0), 75 coefficients). Left: the separated leads: Vr, Vl, V1, V2, V3,
V4, V5 and V6. Middle: VA and AA approximations. Right: AA PSD. In the first three
columns, the x-axis units are samples and y-axis ones are mV. In this case, we find 7 AF
approximations inside the theoretical interval of frequencies of 8 approximations
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Figure 5.14: Signal separation for the real ECG of the patient 0003 using the a priori knowledge
(Weighted-OMP, (wa,wb)=(0,0), 75 coefficients). Left: the separated leads: Vr, Vl, V1, V2, V3,
V4, V5 and V6. Middle: VA and AA approximations. Right: AA PSD. In the first three
columns, the x-axis units are samples and y-axis ones are mV. In this case, we find 6 AF
approximations inside the theoretical interval of frequencies of 8 approximations
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5.5 Conclusions

The use of a priori knowledge when recovering the sparse decomposition for signal separation

is studied in this chapter.

Although we eliminate the artefacts between QRST complexes, there are still errors in the

QRS complex and T-wave approximations, due to the fact that its shape changes depending

on the lead and patient. This fact can be observed simultaneously in the simulated ECG

approximations and in the real ECG approximations.

The conclusions of the simulated ECG signals results (see Figures 5.6, 5.7 and 5.8) are the

following:

- The AA approximations are always better in the lead V1, between 2-10dB, depending on

the studied case (changing α),

- The best AA approximations are for the case: α = 1.5. Furthermore, this fact proves

that our AA dictionary, composed of Gabor functions, is strongly good approximating the

atrial activity signal,

- The fact that some AA SNR are negative, in cases α = 0.5, 1, is due to the VA approxi-

mations errors, which have more energy than the AA estimations.

On the other hand, we can see that the number of frequency peaks inside the theoretical

interval, observed in the AA power spectrum density (PSD) of the real ECG signals approxima-

tions, remains equal, in comparison with the results without using a priori knowledge.

Another conclusion is that the number of coefficients is a value really critic because if it is

too high, the approximation starts to have high frequencies destined to represent the residue.

Figure 5.15 shows how the AA approximation, for the lead Vr of the patient 0003, improves as

the number of coefficients decrease from 75, used in Figure 5.14.

Lastly, we want to compare our best source separation results (method 1), using a priori

knowledge and our best dictionary (see Section 3.6), with the ones obtained by the Beat-to-Beat

QRST cancellation method (method 2). This approach does the QRST cancellation in two

steps. The first is based on a dominant T-wave approach to cancel the T-wave. The second is

based in sinusoids estimations to cancel the QRS complex.

In order to do the comparison, we check both methods with the simulated ECG signals, as

in Figures 5.6, 5.7 and 5.8. The results by Beat-to-Beat QRST cancellation method are given

in Figures 5.16, 5.17 and 5.18.
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The Tables 5.5, 5.4 and 5.6 show that our method achieve 1 better case among 9 cases than

the Beat-to-Beat QRST cancellation method. However, there is not a big difference between

both results (except for α=0.5). We have calculated the average of the difference between the

SNR of both methods, for VA and AA signals, and it has given: 6.5, 2.2 and 1.6dB, for the cases

α = 0.5, 1, 1.5, respectively.

method 1 VA SNR (dB) AA SNR(dB)

Vr 11.06 -6.94

V1 11.13 3.61

V4 12.33 -6.53

method 2 VA SNR (dB) AA SNR(dB)

Vr 16.7 -1.37

V1 11.24 3.61

V4 19.58 0.6

Table 5.4: Comparison between our method and Beat-to-Beat QRST cancellation method. We
study the case of α = 0.5, in simulated ECG signals, and the results are for the leads: Vr, V1
and V4.

method 1 VA SNR (dB) AA SNR(dB)

Vr 10.88 -1.05

V1 8.7 6.81

V4 11.95 -0.8

method 2 VA SNR (dB) AA SNR(dB)

Vr 13.8 1.76

V1 6.34 4.72

V4 16 3.12

Table 5.5: Comparison between our method and Beat-to-Beat QRST cancellation method. We
study the case of α = 1, in simulated ECG signals, and the results are for the leads: Vr, V1 and
V4.

method 1 VA SNR (dB) AA SNR(dB)

Vr 11.08 2.61

V1 2.41 4.28

V4 11.66 2.4

method 2 VA SNR (dB) AA SNR(dB)

Vr 12.2 3.59

V1 2.96 4.86

V4 13.27 3.83

Table 5.6: Comparison between our method and Beat-to-Beat QRST cancellation method. We
study the case of α = 1.5, in simulated ECG signals, and the results are for the leads: Vr, V1
and V4.
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Figure 5.15: AA approximation, afterwards the signal separation, for the lead Vr of the patient
0003 using the a priori knowledge (Weighted-OMP, (wa,wb)=(0,0)) and changing the number
of coefficients. Left: 40 coefficients. Middle: 50 coefficients. Right: 60 coefficients. The x-axis
units are samples and y-axis ones are mV
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Figure 5.16: Simulated ECG signal (α=1) separation using Beat-to-Beat QRST cancellation
method. The results are for the leads: Vr, V1 and V4. Left: simulated ECG signal. Middle: VA
approximation (with its SNR). Right: AA approximation (with its SNR). In all the columns,
the x-axis units are samples and y-axis ones are mV
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Figure 5.17: Simulated ECG signal (α=0.5) separation using Beat-to-Beat QRST cancellation
method. The results are for the leads: Vr, V1 and V4. Left: simulated ECG signal. Middle: VA
approximation (with its SNR). Right: AA approximation (with its SNR). In all the columns,
the x-axis units are samples and y-axis ones are mV
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Figure 5.18: Simulated ECG signal (α=1.5) separation using Beat-to-Beat QRST cancellation
method. The results are for the leads: Vr, V1 and V4. Left: simulated ECG signal. Middle: VA
approximation (with its SNR). Right: AA approximation (with its SNR). In all the columns,
the x-axis units are samples and y-axis ones are mV
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Lastly, we have compared our method with other standard methods: the ABS method

(method 3), Spatiotemporal QRST cancellation method [2] (method 4) and Spatiotemporal

QRST cancellation method using separate QRS and T-waves templates (method 5). In order

to do that, we have also used simulated ECG signals.

The comparison is shown in Table 5.7, but only for α=0.5. In the other two cases, α=1

and 1.5, all the methods mentioned above are unsuccessful. This is due to the fact that, they

need large signals to perform their approaches when atrial activity has high amplitudes.

Therefore, the comparison done is not the appropriate one, because it shows only the case

where our approach is worse and it should be done for longer and different simulated signals.

method 1 VA SNR (dB) AA SNR(dB)

Vr 11.06 -6.94

V1 11.13 3.61

V4 12.33 -6.53

method 3 VA SNR (dB) AA SNR(dB)

Vr 22.2 4.4

V1 18 10.4

V4 22.2 3.2

method 4 VA SNR (dB) AA SNR(dB)

Vr 19.4 1.24

V1 13.25 5.61

V4 20 1.07

method 5 VA SNR (dB) AA SNR(dB)

Vr 23.14 5

V1 18.3 10.6

V4 23 4

Table 5.7: Comparison of our method with ABS method (method 3), Spatiotemporal QRST
cancellation method (method 4) and Spatiotemporal QRST cancellation method using separate
QRS and T-waves templates method (method 5). We study the case of α = 0.5, in simulated
ECG signals, and the results are for the leads: Vr, V1 and V4.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The proper analysis and characterization of atrial fibrillation from electrocardiogram recordings

requires the extraction of the signal components associated with ventricular activity, that is, the

QRST complex. In this work we propose a totally new approach, based on the use of sparse

decompositions over redundant dictionaries, for the ventricular and atrial activity separation.

The design and implementation of our approach has offered us the opportunity to view the

complexity of the VA and AA separation.

Our multi-component dictionary is built by the union of two sub-dictionaries. It has been

concluded that if one wants a successful signal separation, the basis functions from one of the

dictionaries must be as uncorrelated as much as possible with the functions from the other one.

As we have seen in Section 3.4, we cannot take the maximum coherence parameter µ of the

dictionary, as a measure of maximum likeness because it is highly pessimistic and it only allows

a value of µ too small. Therefore, we have established our own criterion to know which is the

appropriate maximum for a good behavior of the analysis algorithm. Then, we have used it to

exclude all the basis functions from the AA dictionary, which have a higher correlation than the

designed value, with the functions from the VA dictionary.

The chosen dictionary to achieve the VA and AA signal separation is made up of Generalized

Gaussian functions and Gabor functions, respectively. It is huge and with lots of redundant

functions (19550 basis functions).

Once designed the MCD, two different analysis algorithms have been tested: Orthogonal

Matching Pursuit (OMP) and Basis Pursuit Denoising (BPDN). Either by the features of the
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ECG signals or by the dictionary designed, the best results have been obtained with OMP. The

comparison between them has shown a wrong behavior in the BPDN approximations. Hence,

we have dismissed the BPDN principle as a tool to separate the VA and AA signals.

The simulated and real ECG signals separations have had encouraging results. However,

the a priori knowledge from the signals (positions of the Q, R, S, T waves and the intervals

where is only AA) can still be used to aid OMP to avoid taking “wrong” atoms. In order to do

this, a new algorithm has been used, named Weighted-OMP, which puts weigths for each basis

function in the MCD. These weights represent the a priori information about the ECG signals.

In conclusion, the main limitation of our project is the approximation of the QRST com-

plexes, owing to its different shapes depending on the lead and patient. This hinders to achieve

a good AA approximation, since there are several artefacts to represent the error generated by

the QRST approximations. Nonetheless, the obtained solution shows really interesting results,

which could be improved as follows.

6.2 Possible Extensions and Future Work

From this project, much further work can be done in the future:

- the refinement of the basis functions to approximate the T-waves, although it seems really

difficult to find some ones able to approximate all sorts of T shapes,

- to give the system some adaptability to the lead in the ECG and to the iteration of the

analysis algorithm, changing the weighting factor depending on the iteration,

- to optimize the number of coefficients used in the decomposition, seeing the maximum of

SNR in terms of the number of coefficients used,

- to do a learning of the Multi-component dictionary created from a wide set of ECG signals

from patients in atrial fibrillation. The consequences will be a reduction of the dictionary

size, selecting the appropriate functions,

- to work on all the leads together, considering the ECG as a NxM signal and continuing

using Greedy algorithms.



Bibliography

[1] V. Fuster, L. E. Ryden, R. W. Asinger, D. S. Cannom, H. J. Crijns, R. L. Frye, J. L.

Halperin, G. N. Kay, W. W. Klein, S. Levy, R. L. McNamara, E. N. Prystowsky, L. S. Wann,

and D. G. Wyse, “ACC/AHA/ESC guidelines for the management of patients with atrial

fibrillation: a report of the American College of Cardiology/American Heart Association

Task Force on Practice Guidelines and the European Society of Cardiology Committee

for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the

Management of Patients With Atrial Fibrillation),” J. Amer. Coll. Cardiol, vol. 38, pp. 1266

i–1266 1xx, 2001.

[2] M. Stridh and L. Sörnmo, “Spatiotemporal QRST cancellation techniques for analysis of

atrial fibrillation.,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 1, pp. 105–

111, Jan, 2001.

[3] J. J. Rieta, F. Castells, C. Sánchez, V. Zarzoso, and J. Millet, “Atrial activity extraction for

atrial fibrillation analysis using blind source separation.,” IEEE Transactions on Biomedical

Engineering, vol. 51, pp. 1176–1186, July 2004.

[4] F. Castells, J. Igual, V. Zarzoso, J. J. Rieta, and J. Millet, “Exploiting spatiotemporal

information for blind atrial activity extraction in atrial arrhythmias.,” in ICA, pp. 18–25,

2004.

[5] F. Castells, C. Mora, J. Millet, J. J. Rieta, C. Sánchez, and J. M. Sanchis, “Multidimen-

sional ICA for the separation of atrial and ventricular activities from single lead ECGs in

paroxysmal atrial fibrillation episodes.,” in ICA, pp. 1229–1236, 2004.

[6] M. Lemay, J.-M. Vesin, Z. Ihara, and L. Kappenberger, “Suppression of ventricular activity

in the surface electrocardiogram of atrial fibrillation.,” in ICA, pp. 1095–1102, 2004.
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