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Abstract

We present a method that exploits an information theoresiméwork to extract optimized audio features using
video information. A simple measure of mutual informatidl) between the resulting audio features and the video
ones allows to detect the active speaker among differerdidates.

Our method involves the optimization of an Ml-based objextiunction. No approximation is introduced to
solve this optimization problem, neither for the estimataf the probability density functions (pdf) of the features
nor for the cost function itself. The pdf are estimated frdm samples using a non-parametric approach. As far
as the optimization process itself is concerned, threeedifft optimization methods (one local and two global)
are compared in this paper. The Differential Evolution aitpon is eventually retained as it outperforms the other
methods.

Two information theoretic optimization criteria are comngeé and their ability to extract audio features specific
to speech is discussed. As a result, our method achievesaiespaetection rate of 100% on our test sequences,
and of 95% on a most commonly used one.

. INTRODUCTION

With the increasing capabilities of nowadays computersh laoiditive and visual modalities of the speech signal
may be used to improve speaker detection, leading to majorawements of the user-friendliness of man-machine
interactions. Let us just consider for example a videocanfee system. The most interactive current solution
requires an audio engineer and a cameraman so that the spgaison can be emphasized both on audio and
video. An intelligent system able to detect the speaker tdr@st on the basis of sound and image information
could focus a moving camera on her/him.

Among the different methods that exploit the informatiomi@ined in each modality, a few are performing the
fusion directly at the feature level. It has been pointedioyf] and [2] for example, that such a fusion can greatly
help the classification task: the richer and the more reptatea the features, the more efficient the classifier.

Some audio-video feature fusion approaches try to direstijuate the synchronism of the two signals [3], [4],
[5]. As suggested in [4], the synchronism is here the peieepffect of the causal relationship between the two
signals. Other methods map first the features onto a subsgaae whis relationship is enhanced and can therefore
be estimated [2], [6], [7]. All the approaches rely on exiplar implicit use of mutual information. An estimation
of the features’ probability density functions (pdf) is tefre required and there are two main approaches that
may be taken: either a parametric or a non-parametric oné¢hdrfirst case, the pdf’'s are assumed to follow a
parametric law. Most of the time, a Gaussian distributiowasisidered, which is not necessarily valid. Fisher in
[2], as well as Butz in [1] and [8], estimate the probabilitgrdity functions directly from the available samples
during the feature extraction process through Parzen wintp

The problem addressed in this paper is the detection of threruspeaker in a given video sequence with two
or more candidates. To this end, the audio features are @giihwith respect to the video features. Following Butz
and Thiran in [1] and [8], we cast our problem in an informattbeoretic framework to optimize the audio features
with respect to the video features. The objective functiobgmptimized is therefore based on mutual information,
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which turns out to be a highly nonlinear optimization prableMoreover, an analytical formulation of the gradient
of the objective function is difficult to obtain without any naanetric approximation of the pdf. For this reason,
it is preferable to have a method which does not require suclaralytical form of the gradient (gradient-free
method). In [2], Fisher and Darell use a second order Tayl@rapmation of the mutual information and the
Parzen estimator to cast the optimization problem into aveomone and to derive a closed form of the gradient.
However, our purpose here is to avoid such an approximatiohta directly solve our optimization problem using
a proper optimization method. Therefore, a local optim@atscheme, namely the Powell's method [9], has been
tried in a first step. To alleviate the limits encountered wiltis optimization method, Evolutionary Algorithms
methods (Genetic Algorithm in Continuous Space [10] anddbdgiitial Evolution [11]) have then been applied and
their performance compared and analyzed.

The paper is organized as follows: first the use of informattoeoty to extract optimized features in general
unimodal, then multimodal, classification problems is pnésé. After that, the chosen representation for the video
and audio signals is described. In the third section, therinétion theoretic optimization approach is applied to
obtain audio features optimized for the specific classificatésk, regardless to the classifier. Different optimization
criteria based on mutual information are defined. The fourth @gposes the optimization problem as well as the
local and the global optimization methods used to solve @m@arison and analysis of the results obtained with
each of the three methods are given. The last part of the pajads dith the experiments and discusses the different
optimization criteria used in the feature extraction, thdity of the method to produce audio features specific to
speech, and finally, the performance of the method as a spdatexstor.

Il. THEORETICAL FRAMEWORK
A. Information theoretic feature extraction

In the present work, the detection of the current speakerninaadio-visual sequence is understood as a
classification problem.
Following [12] and [1], a general unimodal classificatiorkiesformulated as a first order Markov chain process:

O —— § 1)

_ X — F — e
feature feature X estimation S classification 0,
generation extraction

where O, S, X, Fx and S, are random variables (r.v.) . The four first ones stand respdytior the possible
classes (defined over the q@p), the physical signal, the observed data, and the featuracted from the initial
feature space, while the two latest are the signal estinfabed F'y, defined ovef2g, and the class estimated from
S. Notice that, as pointed out by the Markov Chain of Eq. (1),pghgsical signals itself is not directly observable
but through measuremenfs. It must therefore be estimated from these measuremgnts from some features
extracted fromX, so as to finally being able to estimate the class of this phAygibenomenom. Ultimately, the
goal in such a classification process is obviously to minintiee probability of assigning the wrong class to the
signal. That is, to minimize the classification error probapiPr = P(O # 0) associated to the Markov Chain
of Eq. (2).

This error probability depends of course on the classifier amdt ability to deal with the problem at hand,
but it also depends on all the processing steps leading ftot O. In particular, it depends on the estimation
process leading fron$ to S and thus on the feature extraction step. The Markov chain of(Bqclearly shows
that whatever the classifier, its performance will be poohd featureF'y extracted fromX is bad, resulting in a
poor estimation ofS.

Using Fano’s inequality, it is possible to relate the pradligtof committing an error when estimating the discrete
rv. S from another r.v.Fx to the conditional entropyd (S|Fx) [13]:

H(S|Fx)—1 H(S)—I(S,Fx)—1

P> =
log [Q2s] log [©2s]

: )

where H(S) and I(S, F'x) stand respectively for the Shannon’s entropy $fand for the Shannon’s mutual
information between the random variablesand Fx, and |Qg| is the cardinality ofS.

The inequality (2) does not allow to directly minimize theagrprobability Pg. It indicates however that an
efficient minimization of Pr is conditioned by an efficient minimization d?. (called here the estimation error
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probability) which is itself conditioned by the minimizati of the right hand side of the inequality (2). The
minimization of this term implies considering the procesading to the extracted featu#€y, as stated before.
This way, the error made in the previous process steps (Egemeration and extraction) are taken into account as
well and constraints that might improve these stages arednted. Whatever the classifier used, its input would
therefore be fed in with the most significant features from ¢lzessification task point of view.

Notice that the estimation of a r.v. from another r.v., suchtlae estimation ofS from Fx can be viewed
as a feature extraction step, where the objective is to &xfram the initial r.v. the information specific to the
classification task to be achieved [12], [1]. Then, the objecis to minimize the conditional entropsf (S|Fx)
which corresponds to the information that is present iand not present iy, thus possibly missing for obtaining
a good estimat® of O from S. If the mapping is deterministic, this conditional entrdpgs its minimal possible
value.

B. Extension of the information theoretic feature extractio the multimodal case

Butz et al. in [1] have shown that the previous line of reasoning holda multimodal case, where two signals
have the same physical origin and share some common inflamat

In particular, in the case of a speaker detection problerdicaand video signals are jointly emitted during the
speech production process and these two modalities canduetasonstrain the feature extraction step, as it will
now be shown.

Let O be a binary random variable which models the membershipgdspheaker” or "non-speaker” class with
respect to an audio-visual source modelled by the randomblarS, defined onQ2s. Notice that the probability
for any prototype to belong to each class is the same, andualedo 1/|Q2o|, where |Qo| is the cardinality of
O. The bimodal sources' is not directly accessible but yields two observed signéldifferent physical nature:
the audio and video signald and V. For each of those signals, the unimodal classification pteEading from
the measurementsl - respectivelyV - to an estimateD; - respectivelyO, - of the class, can be described
through a first order Markov chain (Fig. 1.(a)), as previousdgatibed. Two classification error probabilities with
the corresponding two lower bounds can then be derived foh édarkov chain. By performing a fusion at the
decision or at the classification level, a unique estintatef the class can possibly be obtained at the end of each
unimodal signal process.

However, such an approach would not take advantage of tleirdinant information offered by the bimodal
nature of the sourc&. Indeed, as mentioned by Fisher and coworkers in [2], the tveasurementsi and V
are each one affected by independent interfering soureastedd hereV, and Ny. The measurements coming
from these sources account here for noise since they do ma&iooany information shared by both modalities.
The classification process is then described through two Bayeasetworks as shown on Fig. 1.(b). To get a
good estimationS of the source (and then a good estimationof the class), the classification process should
include a step where featurds, and Fy, are extracted fromA and V' respectively. This feature extraction step
should try to recover the information present in each magalihich originates from the common sourSewhile
discarding the noise coming from the interfering sourdesand Ny,. Obviously, such goal can only be reached by
considering both modalities all together. The resultingaoted features specifically describe the common source
and are therefore related by their joint probabilityF'4, Fy/) [1]. Thus, an estimate of the feature related to one
modality can be inferred from the other modality. Now, givémat such feature$’s and Fy can be extracted,
this results in carrying out a multimodal classification mes described by two first order Markov chains, as
shown on Fig. 1.(c), where the transition probabilites ¥y — Fy and F,, — F4 are obtained by joint
probability estimation (since(Ey |Fa) = p(Fy, Fa)/p(Fa), andp(Fa|Fy) = p(Fa, Fy/)/p(Fy)). Notice that the
estimates of the source associated to each chain are intgx&d or VA, to stress that these estimates have been
obtained using information present in both modalities, antcast with the previous case (Fig. 1.(a)). Applying the
framework described in Sec. lI-A for a unimodal classificamocess to these Markov chains, two estimation error
probabilities P, and P., as well as two corresponding lower bounds can be defined:

Pel,z :P(gAV,VA # S)? (3)

H(S) —I(S,Fya)—1
log |25 ' )

Fe, ,>
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Fig. 1. (a) Graphical representation of the Markov chains modeling tleeuttimodal classification process associated to each modality;
(b) Graphical representation of the Bayesian networks modeling the hiwooglal classification process associated to each modality; (c)
Graphical representation of the related Markov chains modeling the mua#huatassification process.

From the data processing inequality for Markov chain [13§ tbllowing inequalities can be stated:
I(Fa, Fv) > I(S, Fy), (5)
and in a similar way, for the second Markov chain:
I(Fy,Fa) > 1(S, Fa). (6)
As a result, the bounds on the error probabilities can be wmeedk [1]:
H(S) — I(Fa, Fy) — 1

P, > , 7

log Qs (7)

p, 5 H(S) TPy, Fa) —1 .
log [

Since the probability densities df4 and F4, respectivelyfy, and Fy, are both estimated from the same data
sequenced, respectivelyV/, it is possible to introduce the following approximatiod$F ., Fi/) ~ I(EF4, Fy) ~
I(Fy, Fy). Therefore, lower bounds on the estimation error probadslinvolving the mutual information between
the extracted features can be defined:

H(S)—I(Fa,Fy)—1

P> : 9

! log [Q5] ®)

P> H(S)—I(Fa, Fy)—1 (10)
log [Q5]

Because of the symmetry property of mutual information, bloeinds of Egs. (9) and (10) are equivalent and a
joint lower boundP,, ., can finally be defined:

H(S) — I(Fa, Fy) —1
log [Q2s] '

P{ehez} Z (11)
The cardinality|Q2s| of S is supposed to remain fixed during the optimization. ConsetlyeH (S) remains
constant:H (S) = log |Q2g| so that Eq. (11) becomes:

I(FA,F\/)—FI

P >1-
fees) log |2

(12)

Minimizing the lower bound o, ., comes then eventually to maximizing the mutual informabtetween the
extracted feature$’y and Fy, corresponding to each modality. The feature sets resultimg the maximization of
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the MI involved in these equations are expected to compaetberibe the relationship between the two modalities.
The extraction stage produces therefore optimized features

However for this last statement to be true, not only the muhfarmation I(F4, Fy/) between features extracted
from each modality must be increased, but also the conditiemtropiesH (Fy |F4) and H(F4|Fy) must be
minimized. Indeed, if the entropies increase, they redbheecinter-feature dependencies. Or in other words, the
information related to the noise interferend¥€g and Ny would be considered in the newly defined features rather
than the information coming from the common sour€eDividing Eq. (11) by the joint entropyd (F4, Fy), a
feature efficiency coefficient [1] can be defined:

I(Fy, Fy)
H(Fy, Fy)

Sincel(Fa, Fy) = H(Fa)+ H(Fy)— H(F4, Fy), maximizinge(F4, Fy) still minimizes the lower bound on the
error probability defined in Eq. (8) while constraining infeature independencies. In other words, the extracted
featuresF4 and Fy, will tend to specifically capture the information related e tcommon origin ofA and V,
discarding the unrelated interference information corfitagn N4 and Ny.

Applying this framework to extract features, the bound améistimation error probability is minimized. However,
there is no guarantee that this bound is reached during @ssifitation process: this depends on the choice of
a suitable classifier. Previous works in the domain have shibah measuring the synchrony between the audio
and video measurements is a good way of classifying themigmating from an audio-visual source or not [6],
[5], [4]. In [4] in particular, the authors interpret syndmy as the degree of mutual information between audio
and video signals. Mutual information shows also good perémce in detecting synchronized audio-video sources
such as speakers [2], [8], [3]. Moreover, the feature opittibn pre-processing also indicates Ml-based classifier
as a good choice. For these reasons, the chosen classifiestsdnghe evaluation of the MI between candidates
audio and video features. The features that exhibit the $atykt are classified as "speaker”, while the other one
are labeled as "non-speaker”, only one "speaker” clasd labieg authorized per estimation.

Notice that such a classifier also present the advantage iigftise information at the classification level in a
straightforward way, resulting in a unique class estinratin

The presented framework combines therefore both featwedlesion (for the feature optimization) and classifier-
level fusion between the two modalities.

e(Fa, Fy) = e [0,1]. (13)

[1l. SIGNAL REPRESENTATION
A. Video representation

When applying this feature extraction framework in the eantof speaker detection, the first decision to be
made is to choose a representation for the signals.

It has been shown in [8] that the audio signal is more reladetthe pixel intensity changes than to the raw pixel
intensities themselves. Physiologic evidences point betrhotion in the mouth region as a visual evidence for
speech. Therefore, the chosen video features are the estimfithe optical flow in the mouth region. In order to
have a local pixel-based representation of these videariemstthe Horn and Schunck’s gradient-based algorithm
[14] has been chosen. The method is implemented in a two-femple forward difference scheme so that the
temporal resolution is large enough to capture complex andkty varying mouth motions. First, a median pre-
filtering is used on the raw intensity images to reduce theent@gel. Due to the small sample size and the high
dimensionality of the video features, we may have difficsliie estimating the pdf (needed in mutual information
computation). Thus, only the magnitude of the optical flow dmel gign of the vertical component are kept.

The optical flow is computed between each two consecutive Baer a region ofV x M pixels including the
lips and the chin of each candidate. These regions are rdfesras mouth regions. Speakers are observed over a
sequence of” frames resulting if" — 1 video feature vectord; (¢t = 1,...,T7 — 1) where each element of these
vectors is an observation of the random variableThese vectors are normalized for the subsequent optiroizati
(see [15] for details). This approach implicitly consideng tobservation to be identically independent distributed
(i.i.d), which is obviously a simplification of the real worlthdeed, the neighboring pixels are correlated. This
simplification is somehow compensated by estimating the ptif the Parzen window approach [16] (see below).



ITS TECHNICAL REPORT NO. 2005.018 6

B. Audio representation

The audio signal also needs to be represented in a tractabjleThies representation should describe salient
aspects of the speech signal, while being robust to vanatio speaker or acquisition conditions. Mel-cepstrum
analysis is one of the methods that fits best these requirenaeat as such, is widely used in speech-processing
research [17], [18]. Finally, the speech signal is repre=itiais a set of” — 1 vectorsC;, each containing® mel-
cepstrum coefficient§C(i)},—1 . p with ¢t = 1,...,T — 1 (the first coefficient has been discarded as it pertains
to the energy).

-----

IV. EXTRACTION OF OPTIMIZED SPEECH AUDIO FEATURES
A. Audio feature optimization

In principle, the information theoretic feature extractidiscussed in Sec. Il can now be used for audio and
video featurest’y, and V. However, ovelT' — 1 frames, the dimensionality of the audio features is stifl ligh to
be efficiently tractable. Consequently, the one-dimensi¢lia) audio featured’s (&), associated to the random
variable F'4 are built as the following linear combination of ttie¢ Mel-Frequency Cepstral Coefficients (MFCCs):
P
FA,t(&) =

(2

ad) - Cy(i) vt=1,...,T—1, (14)
1

where the weightsi(i) are chosen such th@il a(i) =1landd(i) >0 Vi = 1,...,P. Thus, the set of
P - (T — 1) parameters is reduced to- (7' — 1) valuesF, ,(&). The minimization of the estimation error given
by Eq. (8) will lead to the optimized vectat. This optimization therefore requires the availability otjoint
probability density function (pdf) as well as of the mardidastributions of the r.v.Fy andV'. These distributions
are obviously unknown. To avoid any restrictive assumptibey are estimated using Parzen windowing:

Fw) =S hly—yio) Vyeoy, (15)
=1

where h is a kernel function whose variance is controlled by the petero, n is the sample size, ang an
observation of the r.vY. A 2D Gaussian kernel of medp 4,u1-]7 and diagonal covariance matrix di@g;ov ),
G(pa, v,o4,0v), is chosen in our case for its widespread validity. The vasaa 4 andoy are estimated from
the audio and video data respectively, in a robust way, asrithesl in [19]:

4 /5 median lyi — D
3n 0.6745 ’

where? denotes the median of the data points. Since the video datiréhe same during the optimization of the
audio data, the value fary, remains constant for a given set of video features, whijlewill adapt to the audio
features during the optimization process.

Using the Parzen window to estimate the densities in a noampetric way yields a better estimate than histogram-
based approaches, given the small number of samples at sposdil " — 1 for the random variable associated
with the audio features).

(16)

B. Optimization criteria

As exposed in Sec. Il, minimizing the lower bound on the edimnaerror is equivalent to maximizing the
efficiency coefficient considering the audio and video featureer a mouth region. The set of weights to be
optimized with respect to the Efficiency Coefficient CriteridblQC) are defined as:

G =arg max{I(V, Fa(@)/H(Fa (@)}
—arg mas{e(V, Fa (@)} (17)

Note that in our case the normalization term for the mutufdrimation involves only the audio feature entropy
since the video features remain constant during the opditioiz process.
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To verify the necessity of normalizing the mutual inforneaitiby the entropy during the optimizatioBCC will
be compared with a "simple” Mutual Information CriterioMIC). The set of weights to be optimized is then
defined as:
Qopt = argmax{I(V, Fa(d))}. (18)

Finally, a more constraining criterion is introduced, whitdkes into account a pair of mouth regions. This
criterion, referred to asAECC, is the squared difference between the efficiency coefficieniputed in each
mouth region (referred to a&/; and M,). This way, the differences between the marginal densitiebe video
features in each region are taken into account. Moreovdy, @me optimization is performed for two mouths. If
VM and VM: denote the random variables associated to regidnsand M, respectively, then the optimization
problem becomes:

opt =axgmax {[e(V M, Fa (@) —e(V, Fa(@)]} (19)

V. OPTIMIZATION METHOD
A. Definition of the optimization problem

We saw that the extraction of optimized audio features wapect to our classification task requires to find the
real-valued vectory € R”, that minimizes the chosen objective functig(). This objective function is defined
as the negative value of one of the optimization criteria @efim Eqgs. (17), (18), or (19). Moreover, to restrain
the set of possible solutions, thié weighting coefficient§«; };—1,.. p must observe the following conditions:

0<d@) <1 VYi=1,2,...,P, (20)

P

> a() =1. (21)

=1
This optimization problem is highly nonlinear and gradiéneie. Indeed, an analytical formulation of the gradient
of the objective function is difficult to obtain due to the ukm form of the pdf of the extracted audio features. In
[2], Fisher and Darell use a second order Taylor approximatiothe mutual information and the Parzen estimator
to cast the optimization problem into a convex one and tovddtie gradient in an analytical way. However, our
purpose here is to avoid such an approximation and to dyrestilve our optimization problem using a proper
optimization method.

Optimization methods can be classified as either local orajlobhe first category includes steepest gradient
descent and gradient descent-based methods such as th#sPdinextion set method. They mainly rely on the
use of an exact or estimated formulation of the gradient efdbst function to find an optimum. They present the
advantage to be fast and easy to use but are very likely tdadfagach the global optimum of the cost function if
the latter is not convex.

The second category refers to algorithms which aim at findieggibbally best solution, in the possible presence
of multiple local minima. We find in this category stochastimaeuristic methods such as Simulated Annealing
(SA) [20], Tabu Search (TS) [21], or Evolutionary Algorithms (EAShese have proven their ability to approach
the global optimum of highly nonlinear problems, possityadigh computational cost. Both SA and TS are more
dedicated to solve combinatorial problems. EAs, which idel@Genetic Algorithms (GAs), look more suitable for
our problem. Such optimization procedures, first introducgdtblland in 1962 [22], are based on natural evolution
principles: starting from an initial candidaf@pulationof chromosomegor sets of parameters to be optimized),
operators mimicking the biological ones @bssoverandmutationare used tgelectandreproducefittest solutions,
the fitness of a solution being given by a scoring function.i&aly, mutation enable the algorithm to explore new
regions of the search space by randomly altering some ogeales(components) of some chromosomes in the
population. On the other hand, crossover reinforce priacesses by recombining parent-chromosomes so as to
produce fittest offsprings.

Although the underlying principles are relatively simpl&As algorithms have proven to be robust and powerful
search tools, owing to their remarkable flexibility and addjiity to a given task [23]. As a matter of fact, their
tuning relies on a proper selection of only a few paramet&resawhich make them very attractive and easy-to-use.
Furthermore, EAs do not try to provide an exact match but anapmeation of the optimal solution within an
acceptable tolerance, which improve their effectiveness.
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B. Local Optimization: Powell's direction set method

In a first set of experiments, we have used the deterministicels direction set method [9]. This optimization
algorithm is well-suited for problems where no analyticatrhulation of the gradient is available. It finds the
minimum of a multidimensional cost function by solving seqaes of one-dimensional minimizations (using for
example the one-dimensional Brent's optimization methaldhg N linearly independent, mutually conjugate set
of directions. This method belongs however to the categotgazl optimization methods: if the surface of the cost
function is not smooth and exhibits several local optima, ability of the algorithm to reach the global optimum
relies on a judicious initial guess of the solution.

Indeed, our MI-based objective functions ar@riori non-convex and are very likely to present rugged surfaces.
To limit the risk of getting trapped in a local minimum, it i®mmon to smooth the cost function. A trade-
off has to be find however between smoothness and loss of iatamso there is still no guarantee of finding
the global optimum. The objective functions require themaation of the pdf: using the non-parametric Parzen
windowing approach, we do not only obtain fine estimates ofdis&ributions with a small number of samples,
but also smoother objective functions than what could beeetgal with histograms. The smoothness of the density
estimates and thus the smoothness of the objective fuiscigooontrolled by the parameter (see Sec. I1V). This
parameter must therefore be carefully chosen: if it is toalsnthe objective functions are likely to be highly
irregular, with a negative impact on the optimization algon. On the other hand, if it is too large, the loss of
information and in particular, the loss of discriminatioatlveen the densities can be dramatic and may lead to a
wrong solution. Therefore we have introduced an adaptiversehfor the estimation of the audio feature density
function, in whicho is varied at each iteration (Eq. (16)). Roughly speaking, giv@othing parameter evolves
as follow: at the beginning of the optimization, the audiatfees are scattered in the space and the smoothing
parameter is thus large. Then, as the optimization proceghdssample tends toward a unimodal distribution and
the smoothing parameter decreases. Therefore, the optiomizaroblem is solved using a multi-resolution scheme.
Such an approach has been shown to perform better in the tavite@ptimization problems involving mutual
information, notably, in image registration problems ($a&eexample [24]).

Combining both smoothing and different initial trials, witained good results, showing that our framework was
able to extract audio features specific to speech. The mutfmhiation measured thereafter between the extracted
audio features and the video features of different moutloregindicated the current speaking mouth in simple
audio-video sequences [25].

However, the solutions found by this method were stronglgetielent on the initial conditions, showing that
the objective function still exhibited too many local op#inirherefore the method was not performing at its best
level. To ensure the global optimum to be reached, an exivausial of all initial points should be performed; an
approach which is, obviously, unfeasible. Consequentbjobal optimization strategy turned out to be preferable.
Moreover, to be efficient, this global optimization methoauwsld fulfill the following requirements:

1) Efficiency for highly nonlinear problems without requirirtge cost function to be differentiable or even
continuous over the search space;

2) Efficiency with objective functions that present a flat, rowglor surface;

3) Ability to deal with real-valued parameters;

4) Ability to handle the two constraints defined by Eqgs. (20, idldhe most efficient way;

C. Global optimization: Genetic Algorithm in Continuous 8p4GACS)

An evolutionary approach such as genetic algorithm (GAWams the two first demands previously defined while
presenting flexibility and simplicity of use in a challengingntext. Conventional GAs however have difficulties
to handle the third and fourth requirements because thegdenthe solutions under the form of quantized and
binarized representations (tlmaromosomes Hence, working with real-valued parameters requirestamiél bits
in chromosome representation to improve the precisionreaging the computational cost. Moreover, the crossover
is likely to produce out-of-range values. Thus a validityt tissrequired, decreasing the efficiency of the process.
Finally, possible links between different solution paraengtare ignored during crossover, slowing down once again
the convergence process [26].

The genetic algorithm in the continuous space (GACS), an sidarof the original GA scheme first described
in [10] and [27], alleviates these limitations by using tlealrvalued parameter vectors instead of bit strings of
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chromosomes. This floating point representation presentstiti®us advantage of retaining the proximity between
two points in both the representation and the problem spddes final requirement4{") still has to be fulfilled,
namely efficient handling of the constraints defined by Egs. &21) (21).

The adaptation of GACS developed in [28] and [29], relatesgtteetic operators to the constraints on the solution
parameters. It also speeds up the convergence of the &lgobiy requiring the solution domain to be convex (the
acceptance domajnThis domain is problem-dependent and has to be defined aegty.dAt generationt + 1,

a mutated vectofy;. 1 (with £ = 1,..., N) is then generated from a chromosonig, selected from the old
population at generatioty by performing the following addition:

Ap1,5(1) = Ay (i) + e, (22)

wheree, the increment, is a zero-mean Gaussian perturbation whiapplied to one elemeritof the chromosome
vector that will mutate, with randomly selected in the sét, ..., P}. This scheme has shown to be more efficient
in our case than mutating all the elements of the given chemme vector at once.

For the mutation to be effective, that is, to eventually lea@mprovement in the future populations by permitting
the exploration of new regions of the search space, the n@ei@f the Gaussian perturbation must be adequately
chosen. A suitable value can be defined based on the accemtamaen for each element (i.€0, 1] in our case,
as indicated by Eq. (20)), as a certain fraction of this raige that it is necessary to check if the mutated gene
still belongs to its acceptance domain. If it is not the cdke, mutation is rejected. The role of crossover is to
reinforce the prior successes by merging the good charsiitsrof two chromosomes using a linear combination
of candidates. To ensure that the recombined chromosgmg,, belongs to the above-defined acceptance domain,
the crossover operator is defined as follow:

A1k (8) = A+ Gy () + (1= A) - d e, (8), (23)
where d,; ,,, anda,, refer to two parent chromosome vectors at generatjoh and: are randomly selected in
the set{1,..., P}. Since\ remains fix for each crossover operation, the search spacenisex. Then the new

chromosome vectodi; ;1 1, iS guaranteed to be valid i, ;,, andd, , are valid as well.

Finally, to ensure that the constraint defined by Eqg. (21) is&adi, all the chromosomes of the new generation
are normalized. This impliede factothat each gene of each chromosome (excluding the replidsstone) in
the new population is finally modified at the end of the iteration

The specific evolution strategy implemented for the applicataddressed here is an extension of the scheme

given in [28] and [29]. It is presented in Fig. (2) and can be suamzed as follow:

1) Generate an initial population &f chromosomes (wittv odd number) within the convex acceptance domain.
Instead of randomly distribute the initial chromosome wextin the search space, they are regularly placed
in the acceptance domain according to a user-defined numbmrasttization levels) [30].

2) Rank the chromosomes according to the evaluation (fitrfags}ion, given by one of Egs. (17), (18), (19).
Reproduction is performed by keeping unchanged the bestarrthe next generation.

3) The remaining chromosomes then compete in pairs. Locatcpampetitions for crossover are performed
between a mutated and a crossovered chromosome of the ymeyémeration. Crossover, using Eq. (23) is
then applied to the winners of these local competitionsl yfNi— 1) /2 new chromosomes are generated and
included in the next generation. Contrary to global contjmetj these local competitions allow the algorithm
to preserve genetic diversity in the succeeding genemtion

4) Complete the next generation by mutation of the best keomosomeé N — 1)/2 times, using Eq. (22).
These chromosomes combined W{tN — 1) /2 new chromosomes produced by crossover and the best ranked
chromosome form théV chromosomes for the next generation. If the new chromosanesot lie in the
acceptance domain, reject the mutation.

5) Normalize the new parameters vectors such that the suineofeéctor elements equals 1.

6) A stagnation of the best (reproduced) chromosome overtaicenumber of generations (typically 10 in our
case) may indicate that the algorithm has reached a loa&rexyin. To avoid such a situation, all chromosomes
but the best one are in this case reset to random values.

7) Steps 2 to 6 are reiterated until the pre-defined maximum eumbgenerations has been reached.

This evolution strategy is guaranteed not to diverge sineebisst chromosome is retained for the succeeding

generations. Thus the GACS behaves at least like a randorohsparcess in a bounded search space. Note that
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Old population pest REPRODUCTION New population
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Fig. 2. Population renewal policy in GACS: reproduction, mutations andsaver (based on [29]).

unlike conventional optimization methods where the deswas cost function over successive iterations can be used
as the criterion to terminate the process, it is more diffitulassess the convergence in GACS since the stagnation
in the cost function does not necessarily mean that the optins reached. Good results have been obtained using
GACS. In particular, the optima reached were quite bettem thase obtained with Powell's method. However, the
choice of an appropriate value for the parameters, espedla number of generations and the variance of the
Gaussian perturbation still is a weak point. The latter hasetoelatively high for the algorithm not to get stucked
in local minima (i.e. to efficiently explore the search spaddédwever, the highest the variance, the more likely
a mutated parameter to fall outside the acceptance domaira result, the number of rejected mutations is too
high for the population to preserve its diversity along tlemerations. Therefore, the mutation operator is not much
more efficient with a high perturbation variance than with aamone. On some runs, only crossover maintains
the evolution process active. Moreover, our solutions haewen to be sometimes very close to the boundaries of
the search space. However, it is unlikely to approach thentbaries of the acceptance domain. As a result, a lost
of the population diversity is observed which caused a patite difference between optima reached from one run
to another.

What is needed is a scheme where the mutations applied atefemsome parameters, and larger for others,
allowing a better exploration of all the search space, iticlg the region close to the boundaries, the perturbations
need to adapt to the population evolution.

D. Differential Evolution (DE)

To overcome the problems encountered with GACS, the DifteakBvolution approach (DE) introduced in 1997
by Storn and Price [11] has been used. As an evolutionary ithgorit presents the same advantages than GACS
and operates according to the same general scenario. Theliference between the two methods lies in the way
the perturbation is generated. Rather than applying a getion generated by aa priori defined distribution as
in the case of GACS, the perturbation in DE corresponds to ifferehce of chromosomes (rather calleglctorsin
this context) randomly selected from the population. Thiy,vilae distribution of the perturbation is determined by
the distribution of the vectors themselves. Since thisithistion depends primarily on the response of the population
vectors to the objective function topography, the biasé®dluced by DE in the random walk towards the solution
match those implicit in the function it is optimizing [31}a lother words, the requirement for an efficient mutation
scheme is more closely met: the generated increments mevexikting vectors with both suitable displacement
value and direction for the given generation.

The exact algorithm we used is based on the so-c@lEftand/1/binalgorithm [31]. Its pseudo-code, including
the modifications for handling the constraints, is given ogokithm 1. Let us describe here more in detail the
different steps of the DE algorithm. An initial populatiof & vectors is first generated to lie within the convex
acceptance domain, as in the case of GACS optimization,\bglidg the search space @ predefined quantization
levels [30]. A perturbed vectaﬁ707i, i=1,...,N is then generated as a counterpart for each vegtgy of the
current populationVg, whereG refers to the current generation. This perturbed vectorhdd wector, results form
the linear combination of three parent vectols ,,, dg ,, dg,r, randomly picked up in the populatioN; with
r1 # ro # r3 # i (these conditions ensure the DE mutation to be effectiverasido simplify towards a classical
crossover scheme [31]). The user-defined crossover protyabliR controls the number of child vector element
indices subject to perturbatio? random numbers belonging {0, 1] are generated (i.e. one for each element
of the vector under consideration); each time one of thesdam number is inferior thaW R the corresponding
vector element index is subject to a perturbation. Thergatfte child vector differs from its parent by at least one



ITS TECHNICAL REPORT NO. 2005.018 11

element C'R = 0) and at most, by all of its element6§’R = 1). Lines 2 to 11 of the Algorithm 1 sum up these
operations.

Both the perturbed and the original populations are evatiay the objective function and pair competitions are
performed between child and parent vectors (so the populaize remains constant). At the end of one iteration,
a new population eventually emerges, composed by the winwfeeach local competition. The decision process is
described in lines 8 to 11 of the algorithm.

The constraints defined in Eqgs. (20, 21) still hold. Therefore, \hlidity of each vector of the perturbed, or
child, population has to be verified before starting the dexiprocess. If the elementof a child vectori does
not belong to the acceptance domain, it is replaced by therheaveen its pre-mutation value and the bound that
is violated [31] (lines 12 to 19 of the algorithm, whesé®) (j) and o")(j) refer respectively to the lowest and
highest bounds defined for th#&" parameter - that is) and 1 in our case). This scheme is more efficient than
the simple rejection adopted with GACS. Indeed, it allows $gnaptotically approach the bounds, thus covering
efficiently the whole search space. To handle the secondramms(Eq. 21), a simple normalization is performed
on each child vector, as it was done with GACS (lines 20-21hefalgorithm).

A good introduction to DE as well as some rules to tune therpatars in an adequate way can be found in
[32] and [31].
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Algorithm 1: DE/rand/1/bin with modification for handling the constrairgiven by Egs. (20, 21). Based on
[31]

Input: P,Gae, N > 4, F (scaling factor)e [0,2],CR € [0,1],at) ah,

Initialize: initialization of the population;

i=1{1,2,...,N},j={1,2,...,P}, G =0;

1 while G < Gz do
2 fori=1,...,N do
3 Mutate and recombine:
4 randomly seleciy,ra,r3 € {1,2,..., N}, S.tory # ro # r3 # i;
5 Jrand € {1,2,..., P}, randomly selected once eath
6 for j=1,...,P do
7 s=rand([0,1))
8 if s<CRV j = jJrang then
9 | G, (0) = Gan, () + F - (G (7) — Ao (7))
10 else
1 | Ae1,:0) = daad)
12 Check validity:
13 if @&,z(j) < al)(j) then
14 | Gy, () = (@) + @) /2
15 else
16 if af,;(j) > a™(j) then
17 | Gl i() = (Aaa(i) +ald(j)) /2
18 else
19 L @ 11 (7)
20 Normalize:
- = P -
21 O‘;,G+1 = O/G-H,i/ 2 k=1 O/G+1,i(k3)
22 Select:
23 if f(&lcﬂ,i) < f(dg,i) then
24 | et = Aga,
25 else
26 L AG+1,i = AG,i
7 | G=G+1

Both the generation of the perturbation increment usingpihygulation itself instead of a predefined probability
density and the handling of the out-of-range values allogv@E algorithm to achieve outstanding performance in
the context of our problem.

E. Comparison of the optimization methods

The performances of the three different optimization methade compared, while using them to minimize
the objective function corresponding ECC (Eq. (17)). For these tests, a simple audio-video sequemnodving
a single speaker - thus a single mouth region - has been usdchnfe of this test sequence is shown, as an
example, on Fig. 3. More details about the sequence are givehei next section, where the main results on
speaker detection are presented (this one-speaker segpeggents the same characteristic than the two-speaker
ones presented hereinafter).

For both GACS and DE algorithms, different tests have firstnbperformed so as to tune the parameters
properly. Notice that the implementation of the DE algaritithas been based on Storn’s public domain version
software [33]. As far as concerned GACS, a choic&)of 5 quantization levels (resulting in a population of 125
chromosomes) combined witt00 generations and a perturbation variancdixed to 0.1, gave good results. DE
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Fig. 3. Frame example of the test sequence used to perform the deawpdretween the different optimization methods. The white
rectangular box delimites the extracted mouth region.

algorithm achieved good performance with= 5 quantization levels500 generations, a scaling factéf = 0.5
and a crossover probability' R equals tol.

Once determined these optimal parameters, different rams been performed with GACS and DE algorithms,
whereas different initial conditions.€. different initial solution guesses) have been tried for Bles method.
Table | summarizes the results obtained with each methodio@&ly, much better minimization is obtained using
the global optimization schemes instead of the local onev@g). A finer analysis of the results in Tab. | reveals
that DE reaches the best solution and in a more stable wagethdhe standard deviation of the solutions is much
smaller in the case of DE than in the case of the other two nasthgiving us more confidence in the results.

As another feature of this better behavior of the DE algarmitivith respect to Powell’s, it can be observed on
Fig. 4 that the weight values obtained at the end of each rumsnare scattered in the parameter space with the
latter. This indicates two things. First, the objective fumatis highly irregular and exhibit plenty of local minima.
Secondly, the values close to the global optimum are clustiereéhe solution space. These two characteristics of
the cost function make Powell’'s method inadequate.

While the high variation of the solutions found with Powglhethod is not a surprise (as it is very sensitive
to initial conditions), the instability of GACS solution esms intriguing. However, this is less surprising when we
analyze the evolution of the algorithm towards the solutittve degeneration of the population combined with
the less systematic exploration of the solution space (#aihethe boundaries) make GACS solutions to be very
different from run to run. On Figs. 4.(a) and 4.(b), the eviolutof GACS and DE over different runs has been
plotted.

Another issue in using GACS and DE algorithms is the stopjgiiigrion. One simple way consists in running
the algorithm for ara priori defined number of iterations. However, the number of iteretioeeded to reach a good
approximation of the global minimum depends on the data &edirtherent randomness of the algorithm. Thus
this approach is unsteady. A more suitable criterion shdngldbased on the analysis of the algorithm’s evolution
towards the global optimum. One may choose to stop if, duaimgimber of iterations, the solution is not improved
significantly. Even from this perspective, DE seems more coevd: from Figs. 4.(a) and 4.(b), it is clear that
GACS exhibits long generations with no changes in the smiytpossibly followed by slight improvements. This
means that it is very hard to find a suitable stopping critef@mGACS, as we may always get an improvement
after a long period of stagnation of the solution. So an eatynination has the chance to leave the solution far
from the best achievable one.

Definitely, the behavior of DE is preferable as we have steepanges in the current solution and an early stop
is not so dramatic from the perspective of the quality of tbkitson. All these considerations justify our choice of
optimization algorithm for all subsequent experiments: wit use DE in its form given by Fig. 1 for our study
of different speaker detection criteria.

VI. AUDIOVISUAL SPEAKER DETECTION RESULTS
A. Experimental protocol

A number of experiments have been performed on a home-grataset containing five audio-video sequences
of duration 4s (labeled, 2, ...,5), each shot in PAL standard (25 frames/second (fps), 48kelzs sound). In



ITS TECHNICAL REPORT NO. 2005.018 14

Best Value| Mean Value| Standard Deviation
Powell -0.0213 -0.0183 0.0047
GACS -0.0695 -0.0619 0.0052
DE -0.0788 -0.0774 0.0017
TABLE |

VALUES OF THE OBJECTIVE FUNCTION CORRESPONDING TBECCFOR DIFFERENT RUNS USINGPOWELL'S, GACS,AND DE
APPROACHES ALL THE RUNS WERE PERFORMED UNDER THE SAME CONDITIONEXCEPT FORPOWELL WHERE DIFFERENT INITIAL
CONDITIONS WERE TRIED ON THE SAME AUDIO-VIDEO SEQUENCE

Alpha weights obtained on speaker mouth region for different initial conditions (Seq. 1)
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Fig. 4. Values of the MFCCs linear combination obtained on a given segqusith Powell's optimization algorithm with different initial
guesses (top) and different runs of DE (bottom). The continuous bneects the mean values of the weights obtained.
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Evolution of the cost function for different runs of GACS on Seq. 1 under the same conditions
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Fig. 5. Evolution of the cost functiorECC for different runs obtained with GACS (top) and DE (bottom) on a givedie-video sequence.

each sequence, two individuals are present. Both of themefegred to as "speakers”, since any of them may have
utter the recorded audio. Note, however, that only one islkipg at a time. These sequences are of increasing
complexity, the fifth being the most challenging with the rspeaking individual moving randomly his head and
lips.

First, each mouth region is manually extracted from each ef 180 frames of a sequence, resulting in two
regions of N x M pixels, whereN and M vary between 22 and 33 pixels, depending on speakers’ deasdics
and acquisition conditions. Thus the video feature set (vislemple) is composed of th€ x M x 99 values of
the optical flow norm at each pixel location.

From the audio signal, 12 mel-cepstrum coefficients are coagpusing 23.22ms Hamming windows [17], [18].

Considering each mouth region and its associated videaristthe MFCCs are projected on a hew 1D subspace
as defined in Sec. IV. As a result of the optimization, two setweifjhts are obtained (one for each mouth region).
They give the optimal linear combination of mel-cepstrumfficients with respect to the optimization criterion
(either ECC or MIC). Let us denote then@?j’@lf and O_Z?\Z, where the indices\/; and M, indicate whether these
weights result from the optimization performed on the firstutoregion or on the second one respectively. Two
corresponding audio feature sets derive from these weigfist EXIZ and Fj’;’; :

Two pairs of mutual information values can then be evalubts/een these audio features and the video features
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Fig. 6. Typical frame extracted from the test sequences. White rdetadglimite the extracted mouth regions. (a) Frame extracted from
sequence 5; (b) frame extracted from the third sequence.

Sequence 1 2 3 4 5
Alyic | 7354 % | 76.18 % | 91.67 % | 69.64 % | 52.13 %
Algcc | 76.00 % | 76.73 % | 90.93 % | 76.29 % | 69.72 %

TABLE I
NORMALIZED DIFFERENCE OF MUTUAL INFORMATION MEASURED IN EAGi MOUTH REGION FOR EACH OF THE FIVE TEST SEQUENCES
CONSIDERING THE AUDIO FEATURES EXTRACTED WITH OPTIMIZATI® CRITERIONMIC ORECC, ON THE SPEAKING MOUTH REGION

in each mouth region. I¥3;, denote the video features of the first mouth region &g those of the second one,
the two pairs of mutual information are given by:

{I(VMUFZI;Z) ) I(VszFzIEl)}’ (24)
{IVar, FL ) 5 I(Vin, F )Y (25)

First, a comparison of botMIC and ECC criteria is performed. As a resulECC turned out to be indeed more
discriminative tharMIC. Therefore, ECC only is then used to analyze the ability of the method to extspecific
audio features and to perform speaker detection. Finallydibcussion of the results leads to the definition of the
more efficient criterionA ECC' given by Eq. (19) whose performances are presented and destus

B. Comparison of optimization criteria MIC and ECC

The initial hypothesis is thdECC is more efficient that the simplevliC and the first set of experiments aims
at testing this hypothesis. Therefore, the knowledge of tivea mouth region is introduced priori so that the
optimization is only performed on this region, with each o bptimization criteria successively. Using the resgltin
audio feature sets, the normalized difference of mutuarmation between the speaking mouth region and the
non-speaking one for each of the five test sequences is neeadable 1l presents the resull&{;;c and Algceo
refer to the normalized difference of mutual information asered between the speaking and the non-speaking
mouth regions when using optimization criteribii C andECC respectively). Two observations can be made from
these results. Firstly, the mutual information is alwaysatgein the active mouth region, regardless the optimizatio
criterion used, confirming that our scheme permits the deteaf the current speaker. Secondly, we see that in 4
cases out of 5, th&CC criterion led to larger difference between Ml in the two i@gs. This indicates that using
the ECC criterion gives rise to more discriminative features. Gangently, normalizing the mutual information
by the entropy during the optimization leads to extract mgpecific information than using simply the mutual
information alone, as stated in sec. IV.

C. Performances using ECC

The first set of experiments leads to the conclusion B@C is a more suitable as an optimization criterion
for active speaker detection. This is why in the following wél focus only on its use and analyze in detail its
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Sequence 1 2 3 4 5
Al 76.00 % | 76.73 % | 90.93 % | 76.29 % | 69.72 %
Aln, 36.09% | -11.66 | 71.65 % | -0.66% | -17.28 %

TABLE llI
NORMALIZED DIFFERENCE OF MUTUAL INFORMATION MEASURED BETWEN THE M; AND M2 MOUTH REGIONS WITH THE AUDIO
FEATURES OBTAINED WITH OPTIMIZATION ON MOUTH REGIONSM7 (Ias,) AND M2 (Iaz,). THE OPTIMIZATION CRITERION USED IN
BOTH CASE ISECC.

properties. The purpose of the experiments described hacedssess the ability of our algorithm to extract audio
features specific to speech and to perform speaker detectiog these features.

The capacity of the proposed method to act as a speaker detestwown first. In contrast with the experiments
described in Sec. VI-B, nona priori knowledge of the active speaker is assumed. Then the techuigscribed
in sec. VI-A is applied: the optimization is performed on lead the mouth regionsi{/; and A5) and the mutual
information between two pairs of audio and video featureséasured as stated by Eqgs. (24, 25). If the approach is
correct, the highest Ml value should be measured betweenide® features of the speaking mouth and the audio
features resulting from the optimization on the active &pealhe values of MI computed as described above are
plotted in Fig. 7. We note that for all sequences (including thallenging seq. 5), the Ml measured on mouth
M, with &,,; optimized on this same region is always strikingly greatemt all the other 3. Indeed, in all these
sequences); is the speaking mouth, which giva$0% of correct detections. Therefore the proposed method
performs well as a speaker detector.

Another issue necessary to investigate is the specificityheffeatures extracted from audio with respect to
video. For this, the difference between the normalized m@luinformation computed on mouth regions and the
corresponding audio is measured as follow:

. o t
maxe 1,2} (L (Vi aFAZ;{ )) — mine 93 (1 (Var,, A]i{ )
AI]Ml = opt ’ (26)
maxze{l 2} (Vi FAM1 )
max; (I(Var,, )) min, (I(Var,, F F )
AI]\/[2 — 6{172} Mo 6{1 2} AI\/I , (27)

maXiE{l,Q}( (Var,, ' AM ))

The results are listed in Table IIl. It can be seen that,, > A, and Aly, > 0 for all the sequences. On
the other handA1I,,, is sometimes negative. In other words, when the audio featused for the measurement
of mutual information have been obtained on the non-spgakiouth region, the difference of Ml is sometimes
favoring the non-speaking mouth (sequences 2, 4 and 5). So whmizing on the non-speaking region, the
features extracted cannot (and are not expected to) reflgctimaerlying relationship between audio and video.
This result also appeared on Fig. 7, since the mutual infoonatheasured betweeW,,, and F,, is always
smaller than the one measured betwé&p and Fa,, . Therefore the audio features thus extracted are specific to
speech.

D. Results obtained with ECC

Two optimizations were performed previously to decide whidhie current speaker. Now, the two optimizations
will be combined in a single one, which aims at maximizing tliecrepancy between the two mouth regions. For
this, the AECC, given by Eq. (19), will be used. The result of the optimizatisra vectord,,; which generates
a single audio feature vector. It is expected to maximizeeiditer the mutual information with the video features
of the active mouth region. This new detection approach has lested on the same five test sequences than
before. Results are summarized in Table V. The normalizéfdrdnce of mutual information is always in favor of
the active speaker.e. the correct speaking mouth region is always indicated. #/$® interesting to note that the
difference of mutual information is here greater than whaswbtained with the previol&CC optimization scheme
(Tab. II). This stresses the benefit of using the video contdated to each mouth region during the optimization.

To validate the results obtained with this simplési’C'C' detection scheme, experiments on a sequence of the
CUAVE speech corpus [34] have been performed. This is a spéattependent corpus of multiple speakers with
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Mutual information in each mouth region for the 5 sequences (opt. crit. ECC)
0. T T T

-Moulhl Fa, ‘
-Mouth Fa,,
I:lMoulhl Fa,, N
[ Jmouthz Fa,,

0.

@
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Mutual Information
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Fig. 7. Mutual information measured between the or M, mouth region features and the audio features obtained with optimization on
mouth regionM; or M, (Eqs (24, 25). The normalized difference of mutual information betwihe best value found and the best value
found in the opposite mouth is indicated.

Sequence 1 2 3 4 5
Al 84.23% | 86.27% | 95.55% | 80.9% | 76.15%

TABLE IV
NORMALIZED DIFFERENCE OF MUTUAL INFORMATION MEASURED BETWEN THE SPEAKING AND THE NONSPEAKING MOUTH
REGIONS WITH THE AUDIO FEATURES OBTAINED USINGAECC AS OBJECTIVE FUNCTION TESTS HAVE BEEN PERFORMED ON THE
FIVE TEST SEQUENCES DESCRIBED IISEC. VI-A.

audio-video sequences of either single or two speakerdidrséquence considered (referred taya® in [34]), a
male and a female speakers are present.

The first 22 seconds of the clip have been used, where one pgreakssat a time. These first seconds present
challenging properties, making the detection task unghsyteft speaker in the sequence often moves his lips so as
to formulate without sounding the words. Since the frame dditdhese sequences 39fps, we have considerezk
long temporal windows instead of 4s as in the previous tddis analysis window has been shifted each second
over the whole sequence, so that 21 optimizations and mirtie@ation measures have eventually been achieved
(optimization criterion is stillA ECC'). To compare the results with the one of Nock et col. [3], tame evaluation
protocol has been used: the output of our detector has baepazed with the groundtruth for the central frame of
each detection window. This gives 3 wrong detection pointsod21. Notice however that evaluating the detection
at the middle points of the analysis window somehow implied the detection requires information on the future
state to perform well. This is not the case for the proposedcatktlf the detection is rather evaluated at the last
frame of each analysis windows, only one false detectionuscout of the 21 evaluation points (95% of good
detections).

VII. CONCLUSIONS

We have presented a method that exploits the common conftespieech audio and video signals to detect the
active speaker among different candidates. This methodthsdaformation theoretic framework exposed in [1] to
derive optimized audio features with respect to the videesoiNo assumption is made about the distributions of
the features. They are rather estimated from the samplesedver, no approximation of the Ml-based objective
functions is used but the optimization is performed in aightfiorward manner using a global method. A comparison
of the performance of three optimization methods (one la@cal two global) has been carried out, showing that
the intrinsic properties of the Differential Evolution akifbm make it the best choice for our problem.

A study of two optimization criteria that can be used in thiformation theoretic framework has been carried
out. Results have shown that the most performing criterimam(ely, ECC) is able to extract audio features that
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are specifically related to the speaker video features. Usitlg these extracted features, the algorithm performs
detection of the current speaker with 100% of good detestiam 5 test sequences. Only two potential speakers
are present in these test sequences but the detection mietludeing ECC can easily be extended to sequences
containing more speaker candidates.

To optimize the detection in the case of two-people sequgrecthird optimization criterionA ECC) has finally
been introduced and tested on the same test sequence séiras Dhis criterion aimed at simplifying the detection
scheme, as well as improving the audio feature specificityaking advantage of the video information related to
both mouth regions.

Finally a number of tests have been carried out on a sequertbe GUAVE database [34] to assess and compare
the performance of th& EC'C-based method to the state-of-the-art. Results are cofgai@ those obtained by
Nock et al. in [3] for this particular sequence. Future worll wiclude performing an extensive comparison of the
proposed method with other published results, using thelevBWAVE corpus.
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