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Abstract— This paper presents an unequal error protection scheme for
atomic image bitstreams. An atomic stream is the encoded version of a
digital image, which is represented as a sum of bi-dimensional functions,
as typically generated by Matching Pursuit encoders. The atomic struc-
ture of the compressed image presents an enormous advantage in terms of
flexibility, since any atom of the stream can receive a different treatment,
like a finely adapted protection against error. We take benefit from this
property to propose a joint source and channel coding algorithm, that
finely adapts the channel rate to the relative importance of the bitstream
components. A fast search algorithm determines the distortion-optimal
rate allocation for given bit budget and channel loss parameters. We
further extend the algorithm to differentiated protection of region of
interests. Simulation results show that the unequal error protection is
quite efficient, even in very adverse conditions, and it clearly outperforms
simple FEC schemes.

I. I NTRODUCTION

The problem of image transmission over error-prone channels can
generally only be efficiently addressed by joint source and channel
coding approaches, where source rate is traded against channel
protection to optimize the end-to-end average image quality. The
separation principle enounced by Shannon indeed does not hold
in practical applications with delay or complexity constraints, and
optimal approaches are inevitably based on joint compression and
protection strategies.

Since images are non-stationary by nature, most of the coding
schemes produce coded representations with non-equivalent elements.
Some parts of the bitstream become thus more important than others,
which naturally yields to the concept of unequal error protection.
Unequal error protection has been widely studied in the recent
years (see for example [1]–[3]), and researchers have proposed
optimal channel coding strategies for different, generally scalable,
compression schemes based on orthogonal transforms.

This paper proposes to investigate methods for unequal error
protection of streams built on atomic expansions of image signals,
in particular those generated by Matching Pursuit coders. Coding
approaches that use redundant signal representations have recently
gained interest in the research community. In addition to an improved
approximation rate, they present interesting properties in terms of
flexibility, sparsity and scalable nature of the signal representation.
The strategy proposed in this paper proposes to take benefit from
the flexibility of Matching Pursuit streams, and to derive an optimal
channel rate allocation, finely adapted to the importance of the
independent bitstream elements. An end-to-end quality optimization
problem is derived, and a fast search algorithm is proposed, that
jointly optimizes the number of Matching Pursuit elements to be
transmitted, along with their respective channel protection, in order
to provide the minimal distortion at decoder. Interestingly enough,
the proposed coding strategy may be seen as a form of Multiple
Description Coding, similar, for example, to the scheme proposed
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in [4], where each data packet can be perceived as a different de-
scription of the image signal. The proposed unequal error protection
strategy is shown to outperform basic error resiliency schemes, and
offers graceful degradations of the image quality, even in very adverse
channel conditions.

The differentiated protection method is further extended to the var-
ious regions of the image. Common unequal error protection mainly
targets an optimal reconstruction quality. The same framework can
however be applied to give different priorities to atoms, depending
on whether they belong to a particular region of interest, or to a
predefined sub-stream. Experiments show that high priority regions
can be efficiently recovered, even in the case of very bad channels.

The paper is organized as follows. Sec. II briefly presents the
source coding scheme used in this paper, which is based on a
Matching Pursuit algorithm. The joint source and channel coding
scheme is presented in Sec. III-A, that describes the related channel
rate optimization problem, and a fast algorithm that find the optimal
rate allocation. Sec. IV presents simulation results that highlight
the performance of the optimized unequal error protection strategy.
Sec. V proposes an extension of unequal error protection to differen-
tiated protection of regions of interest, and Sec. VI finally concludes
the paper.

II. M ATCHING PURSUIT IMAGE CODING

Recent studies have shown the potential of novel representation
methods, that target the efficient approximation of natural images,
generally dominated by edge-like characteristics [5], [6]. Algorithms
based on redundant expansions have also been shown to provide
very good approximation properties. In the same time, they present
numerous advantages in terms of flexibility and adaptivity [7], even
if there is often a price to pay in terms of encoding complexity. In
contrast to orthogonal transforms, overcomplete expansions of signals
are indeed not unique. The number of feasible decompositions is
infinite, and finding the best solution under a given criteria is in
general a NP-complete problem. Matching Pursuit (MP) is one of
the sub-optimal approaches that greedily approximates the solution to
this complex problem. It iteratively decomposes any functionf in the
Hilbert spaceH in a possibly redundant dictionary of functions called
atoms[8]. Let D = {gγ}γ∈Γ be such a dictionary with‖gγ‖ = 1
and Γ represents the set of possible indices. The functionf is first
decomposed as follows :

f = 〈gγ0 |f〉 gγ0 +Rf , (1)

where〈gγ0 |f〉 gγ0 represents the projection off onto gγ0 andRf
is a residual component. Since all elements inD have by definition
a unit norm, it is easy to see from eq. (1) thatgγ0 is orthogonal to
Rf , and this leads to

‖f‖2 = |〈gγ0 |f〉|2 + ‖Rf‖2 . (2)

To minimize ‖Rf‖, one must choosegγ0 such that the projection
coefficient |〈gγ0 |f〉| is maximum. The pursuit is carried out by
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applying iteratively the same strategy to the residual component. After
M iterations, one has the following decomposition forf :

f =

M−1∑
n=0

〈gγn |Rnf〉gγn +RMf , (3)

whereRM is the residual of theM th step withR0f = f . Similarly,
the energy‖f‖2 is decomposed into :

‖f‖2 =

M−1∑
n=0

|〈gγn |Rnf〉|2 + ‖RMf‖2 . (4)

The approximation error decay rate in Matching Pursuit has been
shown to be bounded by an exponential. In other words, the decay
of the residue norm is faster than an exponential decay curve whose
rate depends on the dictionary only. There exists a decay parameter
λ > 0 such that for allM ≥ 0

‖RMf‖ ≤ 2−λM‖f‖ . (5)

The decay rate can be written as

2−λ = (1− α2 β2)
1
2 , (6)

where β is the redundancy factor andα ∈ (0, 1] is driven by the
search strategy.

The image coder used in this paper is similar to the MP coder
presented in [7]. The dictionary of atomsgγ is built on anisotropic
refinement of wavelet-like functions. Quantization and arithmetic
coding are then applied to the coefficients and atom parameters. Note
that the resulting MP bitstream presents very interesting properties
that can be exploited in the joint source and channel coding scheme.
First, following eq. (5), the stream is progressive. Second, atoms are
totally independent, which allows to avoid error propagation within
the bitstream. Finally, the order of the atoms is irrelevant, and the
decoder can reconstruct the decoded image regardless of the atom
numbers.

III. U NEQUAL ERRORPROTECTION

A. Joint source and channel coding

In practical applications with limited delay, and non-stationary
channels, minimal end-to-end distortion can only be attained with
proper joint source and channel coding. In the presence of channel
loss, the encoder thus needs to trade-off source rate against channel
protection, in order to optimize the end-to-end quality. Under a fixed
bit budget constraint, the sender may choose to send only a subset
of the atoms generated by the Matching Pursuit encoder, and rather
to protect them with efficient channel coding.

The end-to-end distortion is then composed of the source distortion
‖RMf‖2, that is driven by the numberM of encoded atoms, and the
distortion generated by the potential loss of atoms. In other words,
the average total distortion can be written as:

D = ‖RMf‖2 +

M−1∑
n=0

‖cn‖2 pn , (7)

where cn = 〈gγn |Rnf〉 is the atom coefficient, andpn represents
the probability of loosing the atomgγn . From eq. (4), the distortion
can further be expressed as:

D = ‖|f‖|2 +

M−1∑
n=0

‖cn‖2 (pn − 1) . (8)

Note that, without loss of generality, the quantization error has
been neglected for the sake of clarity. On the one hand, the error in
a priori quantization schemes is included in the source rate distortion

‖RMf‖2. On the other hand, optimal a posteriori quantization
schemes induce the same quantization error for any coefficient [9],
which can easily be factored in eq. (8).
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Fig. 1. Unequal Error Protection Scheme.

The progressive Matching Pursuit bitstream is segmented inN
packets ofS coded atoms, as illustrated in Figure 1. Without loss
of generality, we assume that all Matching Pursuit atoms are coded
with the same number of bits1. The atoms, sorted along the decreasing
magnitude of their coefficients, are distributed according to a simple
round robin strategy in the packets, along the successive columns of
the packet block illustrated in Figure 1. In other words, atoms are
initially put into the first packet, until the second packet becomes
available for MP atoms. The atoms are then fed alternatively into
the first and second packets, until the third packet becomes available.
The process continues until all atoms are packetized. As illustrated
in Figure 1, Forward Error Correction (FEC) is applied column-wise
across the N-packet block, using a systematic code, like a Reed-
Solomon code. In columni, ki atoms are protected with a channel
rate ki

N
. Since all atoms do not have the same importance, unequal

error protection is naturally applied to the series of atoms, in order to
increase the chance to recover the most important atoms. Note that
the unequal error protection scheme used in this work is similar to
the method proposed in [4] in the context of Multiple Description
Coding.

Recall that a FEC code with channel rateki
N

is able to recover up to
N −ki erasures. IfN −ki packets at maximum are lost, the channel
protection is able to recover theki Matching Pursuit atoms in column
i. We consider here a packet erasure channel, that can be modelled by
the widely accepted Gilbert model. It is a simple two-state Markov
chain allowing to capture the first order correlation of the loss process.
The loss probability on the channel is denotedπ, and the average
size of burst of losses is represented byα. For a given packet loss
probability and average burst length on the transmission channel, the
loss probabilitypn of losing the atomn is therefore directly driven
by the channel rate chosen for this atom (see Appendix A or [10] for
details). In order to guarantee optimal quality, the channel rate has
to be finely adapted to the atom importance in the Matching Pursuit
expansion. The optimization of the joint source and channel coding
strategy is presented in the next section.

B. Optimization Problem

The joint source and channel coding problem becomes equivalent
to jointly optimizing the number of atoms, and the channel rate for
each of these atoms, under a fixed bit budget. In other words, with
the average distortion from eq. (8), and the packetization scheme

1This assumption has been verified in a first approximation on several MP
bitstreams.
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proposed here-above, the optimization problem can be written as:

min
{ki}

D = max
{ki}

S∑
i=1

ki∑
n=1

‖cKi+n‖2 (1− pKi+n(ki)) , (9)

under the bit budget constraint
∑S

i=1 ki ≤ NS. The cumulative
valueKi =

∑i−1
j=1 kj represents the number of atoms that has been

packetized in the firstki−1 columns of the matrix presented in Fig. 1
(with K1 = 0). The channel rate allocation is further defined as
~kj = [kj

1 .. kj
S ], and the corresponding energy in the reconstructed

image is written as:

E(~kj) =

S∑
i=1

k
j
i∑

n=1

‖c
K

j
i +n

‖2 (1− p
K

j
i +n

(kj
i )) . (10)

C. Fast Search Algorithm

In order to solve the channel rate optimization problem, a fast
search algorithm is proposed, that takes benefit of the progressive
nature of the Matching Pursuit bitstream. The search algorithm is
illustrated in Algorithm 1.

Algorithm 1 Fast search algorithm

k0
i ← N, ∀i ∈ [1..S]

j ← 0
repeat

j ← j + 1
Ij =

{
ι | ((ι = 1) or (kj−1

ι−1 < kj−1
ι )) and (kj−1

ι > 1)
}

E(~kj) ← E(~kj−1)
for all ι ∈ Ij do

κi ← kj−1
i ,∀i 6= ι

κι ← kj−1
ι

if E(~κ) > E(~kj) then
kj ← κ
E(~kj) ← E(~κ)

end if
end for

until E(~kj) = E(~kj−1)

1 S

k(i)

i

N

1

k j

i1 i2

Fig. 2. Representation of the solutionkj in the iterative search strategy.
Ij = {1, i1, i2}.

The fast search algorithm iteratively looks for the best channel rate
allocation, starting from the initial allocationk0

i = N, ∀i ∈ [1..S].
Since the bitstream is progressive,kj

i can only be non-decreasing
with the column orderi, as represented in Figure 1. At each iteration
j of the search algorithm, the allocation~kj that maximizes the energy
E(~kj) is retained. The possible candidates at iterationj are limited to
the subset of channel rate allocations~κ that are equal to the solution
~kj−1, except for the columni = ι, where kj

ι becomes equal to
kj−1

ι −1. The columnsι in which the rate allocation differ are either
the first column (ι = 1), or the columns that represent a change
in the channel rate, i.e.,kj−1

ι−1 < kj−1
ι , under the condition that

kι > 1. The strategy is illustrated in Figure 2, where the solution

at iterationj + 1 can only be different from~kj in i equal to1, i1
or i2. Each time the channel rate is decreased in one column, the
least significant atom of the stream is simply dropped, to keep the
bit budget constant. The search algorithm stops when none of the
candidates at iterationj + 1 improves the average energyE(~kj).
Finally, it can be noted that the computation of the average energy
E(~κ) is quite fast, since at mostN atoms change their respective
contribution between successive iterations of the search algorithm.

IV. SIMULATION RESULTS

This section presents simulation results of the optimal joint source
and channel coding strategy proposed here-above. Figure 3(a) il-
lustrates the channel rate allocation for the different atoms of the
Matching Pursuit stream, in different channel conditions. The total
rate is set to10 packets of120 atoms (i.e., approximately half a
MTU), which corresponds to a bit budget of 45 kbits. As expected,
the channel rate increases with the atom order, and larger FEC
protection is applied for the most important atoms. The channel rate
also decreases when the packet loss ratioπ increases, since obviously
more protection is needed when transmission conditions worsen.
Figure 3(b) shows the influence of the channel average burst length
α on the average channel rate allocation. For low loss ratios, the
protection is more important for very bursty channel loss processes.
Due to the limit of FEC in bursty loss conditions, the channel rate
however increases for bursty channel conditions, at high loss rates.
Since loss often cannot be recovered in these conditions, the optimal
joint source and channel coding prefers to increase the number of
atoms to be sent, in order to augment the benefit due to correctly
received packets.

Figure 4(a) illustrates the influence of the packet size on the
performance of the coding strategy. For a fixed total bit budget, small
packets allow for larger FEC blocks (i.e., larger values ofN ), and
thus for better error resilience at low and medium values of the packet
loss ratioπ. For very high loss ratios however, the bursty nature of
the loss process highlights the limits of FEC protection, even for
large FEC blocks.

The performance of the Unequal Error Protection strategy is finally
compared to the behavior of a simple Equal Error Protection (EEP)
method in Figure 4(b). The EEP simply consists in distributing the
atoms in the different packets following a round-robin strategy, in
order to balance the importance of the packets. FEC packets are then
added to the data packets, depending on the channel characteristics.
In contrary to the UEP strategy, packets are either data packets,
or FEC packets, which limits the possibility to finely adapt the
channel rate to the atom importance, in EEP. As expected, the UEP
strategy outperforms the EEP scheme for all packet loss ratesπ.
More surprisingly, it can be seen also that the EEP strategy is in
general very inefficient. It is slightly better than a strategy without
any channel coding only for medium loss rates.

Figure 5 proposes visual comparisons of the decoded images in
both UEP and EEP joint source and channel coding strategies. If only
one loss affects the bitstream transmission, both schemes behaves
similarly since the coding strategy forπ = 0.1 allows for recovering
the packet erasure. However, when two packet losses affect the
transmission, EEP can recover only one lost packet, or even none
of them when the channel protection has been underestimated. It can
be seen however that even in these very adverse conditions, the UEP
scheme is able to recover most of the bitstream energy. The decoded
image stays of very good quality, even in the very poor conditions
where two packets out of10 are lost, while the expected loss ratio
was actually smaller (i.e.,π = 0.01).
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10
−4

10
−3

10
−2

10
−1

4.44

4.46

4.48

4.5

4.52

4.54

4.56

4.58

4.6

4.62

4.64
x 10

9

π

A
ve

ra
ge

 E
ne

rg
y

S = 240
S = 120
S = 80

(a) N S = 45kbits

10
−4

10
−3

10
−2

10
−1

2.5

3

3.5

4

4.5

x 10
9

π

A
ve

ra
ge

 E
ne

rg
y

UEP
EEP
no FEC

(b) N = 10, S = 120

Fig. 4. Average EnergyEm versus packet loss ratioπ, for (a) different packet size, and (b) different protection strategies (α = 2).

V. D IFFERENTIATED PROTECTION

A. Extension of the JSCC problem

Due to the flexibility of the atomic streams, that are built on a
series of independently decodable atoms, the joint source and channel
coding problem described in Sec. III can be further extended to
differentiated protection scenarios. Atoms can therefore be allocated
different priority levels, depending on their meaning to the stream,
and not only their energy in the stream reconstruction.

The optimization problem is slightly modified to take distribute
channel rate based on the atom importance, in a generic sense, and
eq. (9) simply becomes :

min
{ki}

D̃ = max
{ki}

S∑
i=1

ki∑
n=1

Ω(gγKi+n) (1− pKi+n(ki)) , (11)

where Ω(gγn) is the importance, or the priority of atomn in the
stream reconstruction. Such a weighting function directly drives the
probability for recovering a given atom, i.e., that it participates to
the decoded images. Examples of weighting functions are presented
below.

B. Examples

Two examples of differentiated protection are briefly described
here. Atoms can receive different priorities, typically if they belong

to a particular region of the image, or to a particular substream of
the full atomic representation.

Different regions of interest can be generated based on the position
of the atom in the image, for example. Figure 6 (a) presents such a
scenario. Typically, the coefficients of atoms whose position is located
in the face of Lena are simply weighted by a factorω. The order of
importance is thus altered, and the solution of Eq. (11) now favors
the recovery of the face of Lena, even with very poor transmission
conditions (66% of loss).

The atomic stream can also be the composition of two substreams,
like an image and a text, for example. In this case, priority is given to
the text, andΩ(gγm) = K, with {gγm} is the substream representing
the text, andK is chosen at least as large as the most energetic atom
in the other substream. As shown in Figure 6 (b), such a strategy
allows for the recovery of the priority substream (i.e., the ’EPFL’
logo on the bottom right of the image), even with very high loss
probabilities.

Note that many other, more complex, weighting functionsΩ(gγn)
could be proposed, but that is beyond the scope of this paper, that is
rather to show that atomic streams allow for efficient, and simple
differentiated protection strategies. It represents an advantage on
coding schemes like JPEG-2000 for example, where the definition
of regions of interest is certainly less flexible.
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(a) UEP,π = 0.1, one loss. (b) UEP,π = 0.1, two losses. (c) UEP,π = 0.01, two losses.

(d) EEP,π = 0.1, one loss. (e) EEP,π = 0.1, two losses. (f) EEP, π = 0.01, two losses.

Fig. 5. Decoded image for different loss patterns, for different coding strategies (N = 10, total bit budget of 45 kbits).

(a) UEP, ROIs. (b) UEP, substreams.

Fig. 6. Decoded image after 6 lost packets, for differentiated protection of (a) regions of interest (ω = 1e4) and (b) substreams (π = 0.1, α = 2, total bit
budget of 40 kbits, loss of 6 out of 9 packets).

VI. CONCLUSIONS

Joint source and channel coding of bitstreams built on atomic
image representations has been discussed in this paper. Such ap-
proaches jointly optimize the number of atoms to be coded for a
given bit budget constraint, and their respective channel protection
that depends on the atom importance, and the channel state. An
Unequal Error Protection algorithm has been proposed as a solution
to a channel rate allocation optimization problem. It has been shown

to outperform basic channel coding strategies, and to offer graceful
degradation of image quality, even in very poor channel conditions.
The flexibility offered by streams composed of independent atoms
has also been advantageously used to implement a differentiated
protection of regions of interest, or substreams.
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APPENDIX A
FEC PERFORMANCE

The probability of FEC recovery is simply given by the probability
to have less thanN − k + 1 losses in a block ofN packets.

First, assume that any packet takes a binary value0 or 1, where a0
is for a correctly received packet, and, a1 means the packet has been
lost or equivalently represents an error. We further assume that the
loss process matches a renewal error process. That is, the lengths of
consecutive inter-error intervals (also called gaps) are assumed to be
independently and uniformly distributed. Following the development
of [11], let p(i) further denote the probability that a gap length is
i− 1, i.e., p(i) = Pr(0i−11|1), where0i−1 is a shorthand fori− 1
successive 0’s. Similarly, letP (i) denote the probability that at least
i− 1 0’s follow a given error, i.e.,P (i) = Pr(0i−1|1).

Order is irrelevant because of the independence among gap lengths
of a renewal process. The events1 0i−1 and 0i−11 are therefore
equiprobable. From this property, the probabilityR(m, n) thatm−1
errors occur in the nextn−1 packets following an error can be easily
computed by recurrence [11]. Thus,

R(m, n) =





P (n), for m = 1 andn ≥ 1,
n−m+1∑

i=1

p(i) R(m− 1, n− i), for 2 ≤ m ≤ n.
(12)

Let q(i) denote the probability that a burst is of lengthi− 1 and,
Q(i) the probability that at leasti − 1 1’s follow a zero. These
probabilities are given by the loss process or can even be deduced
from the above variables. The dual ofR(m, n), namelyS(m, n),
represents the probability to havem−1 0’s in the nextn−1 packets
following a 0. This probability is obtained by recurrence from :

S(m, n) =





Q(n), for m = 1 andn ≥ 1,
n−m+1∑

i=1

q(i) S(m− 1, n− i), for 2 ≤ m ≤ n.
(13)

The packet loss ratepn after FEC recovery is now easy to compute.
Two cases are considered with respect to the state of the last data
packet of a FEC block. Its loss or its presence directly drives the loss
process into the next FEC block. By the renewal process properties,
pn is thus computed by :

pn =
π

k

k∑

i=1

i R(i, k)

N−k∑

j=bN−k+1−ic
R(j + 1, N − k + 1)

+
1− π

k

k−1∑

i=1

(k − i) S(i, k)

k−1−i∑

j=0

S(j + 1, N − k + 1),

(14)

where the notationbxc represents the positive part ofx and π
represents the global packet loss ratio.

0
1-q

1

p

q

1-p

Fig. 7. Two-state Markov chain: Gilbert model.

Finally, assume that the channel loss process can be character-
ized by the Gilbert model [12]–[15]. It is a two-state Markovian
model [16] with geometrically distributed residence times (see Fig-
ure 7), where states 0 and 1 correspond respectively to the correct
reception and loss of a packet. The transition ratesp andq between
the states control the lengths of the error bursts. The global packet
loss ratioπ corresponds in this case to the stationary probability to

be in the loss state:π = p
p+q

. The average error burst lengthα is
given by the average residence time in the loss state:α = 1

q
.

The loss probability after FEC recoverypn is easily computed in
this case. It obviously depends on both the model parametersp andq,
and the FEC parametersk andN . Indeed, for a Gilbert loss process,
the following relations hold :

p(i) =

{
1− q, if i = 1
q (1− p)i−2 p, otherwise,

P (i) =

{
1, if i = 1
q (1− p)i−2, otherwise,

q(i) =

{
1− p, if i = 1
p (1− q)i−2 q, otherwise,

Q(i) =

{
1, if i = 1
p (1− q)i−2, otherwise.

The probabilitiesR(m, n) and S(m, n) can be computed by
recurrence from Eqs. (12) and (13) respectively. The packet loss ratio
pn is then computed from Eq. (14).
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