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Abstract

This chapter discusses the problem of coding images using very redundant
libraries of waveforms, also referred to as dictionaries. We start with a
discussion of the shortcomings of classical approaches based on orthonormal
bases. More specifically, we show why these redundant dictionaries provide
an interesting alternative for image representation. We then introduce
a special dictionary of 2-D primitives called anisotropic refinement atoms
that are well suited for representing edge-dominated images. Using a simple
greedy algorithm, we design an image coder that performs very well at low
bit rate. We finally discuss its performance and particular features such as
geometric adaptativity and rate scalability.

8.1 Introduction

Image compression has been key in enabling what already seems to be two
of the major success stories of the digital era: rich media experience over
the internet and digital photography. What are the technologies laying
behind such industry flagships and, more importantly, what are the future
of these technologies are some of the central questions of this chapter.

We begin with a quick review of the state of the art. Then, identifying
some weaknesses of the actual systems together with new requirements from
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2 Chapter 8

applications, we depict how novel algorithms based on redundant libraries
could lead to new breakthroughs.

8.1.1 A quick glance at digital image compression

Modern image compression algorithms, most notably JPEG, have been de-
signed following the transform coding paradigm. Data is considered as the
output symbols xn of a random source X, which can have a complicated
probability density function. In order to reduce redundancy between sym-
bols, one seeks a new representation of the source by applying a suitable
linear transformation T . The new symbols Y = T ·X will then be quan-
tized and entropy coded. Very often a scalar quantizer will be applied to the
transform coefficients yn. It is a standard result in data compression that,
in order to maximize the performance a such a system, the transform T
should be chosen so that it yields uncorrelated coefficients. In this regards,
the optimal transform is thus the Karhunen-Loeve Transform (KLT). It is
one of the beauty of transform coding that such a simple and complete
analysis is possible. It also leads us to a few important comments about
the whole methodology. First, the KLT is a data-dependent and complex
transform. Using it in practice is at least difficult, usually impossible as it
would require to send the basis that represents T to the decoder for each
source. Very often, one seeks a linear transform that performs close to the
KLT and this is one of the reasons why the DCT was chosen in JPEG.
Second, the optimality of the transform coding principle (KLT plus scalar
quantizer) can only be ensured for simple models (e.g., gaussian cyclosta-
tionary). In practice, for natural data, this kind of modelling is far from
truth. Finally, the role of the transform in this chain is relegated to its
role of providing uncorrelated coefficients for feeding the scalar quantizer.
Nothing about the main structures of the signal and the suitability of the
transform to catch them is ever used.

Based on these observations the research community started to consider
other alternatives:

• Replacing scalar quantization by Vector Quantization (VQ), which
can be seen as a way to overcome the limits of transform coding
while also putting more emphasis on the content of the signal.

• Searching and studying new transforms, better suited to represent
the content of the signal.

• Completely replacing transform coding by other techniques.

Out of the many interesting techniques that have emerged based on
these interrogations, wavelet based techniques have had the largest impact.
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Indeed, these last few years, image compression has been largely dominated
by the use of wavelet based transform coding techniques. Many popular
compression algorithms use wavelets at their core (SPIHT, EBCOT) and
the overall success of this methodology resulted in the actual JPEG2000
standard for image compression [1]. As it was quickly realized, there is
more to wavelets than their simple use as a decorrelating transform. On
the conceptual point of view, we see three main reasons for their success:
(i) fast algorithms based on filter banks or on the lifting scheme, (ii) nice
mathematical properties, and (iii) smart adaptive coding of the coefficients.

Efficient algorithms are, of course, of paramount importance when put-
ting a novel technique to practice, but the overall power of wavelets for im-
age compression really lies in the second and third items. The mathematical
properties of wavelets have been well studied in the fields of Computational
Harmonic Analysis (CHA) and Non-Linear Approximation Theory. Gen-
erally, the central question that both theories try to answer (at least in
connection with data compression) is: given a signal, how many wavelet
coefficients do I need to represent it up to a given approximation error?
There is a wealth of mathematical results that precisely relate the decay of
the approximation error with the smoothness of the original signal, when N
coefficients are used. Modelling a signal as a piecewise smooth function, it
can be shown that wavelets offer the best rate of non-linear approximation.
By this we mean that approximating functions that are locally Hölder α
with discontinuities, by their N biggest wavelet coefficients, one obtains an
approximation error in the order of N−α and that this is an optimal result
(see [2, 3] and references therein). The key to this result is that wavelet
bases yield very sparse representations of such signals, mainly because their
vanishing moments kill polynomial parts, while their multiresolution be-
havior allows to localize discontinuities with few non-negligible elements.
Now, practically speaking, the real question should be formulated in terms
of bits: how many bits do I need to represent my data up to a given distor-
tion? The link between both questions is not really trivial: it has to take
into account both quantization and coding strategies. But very efficient
wavelet coding schemes exist, and many of them actually use the structure
of non-negligible wavelet coefficients accross subbands.

8.1.2 Limits of current image representation methods

While the situation described above prevails in one dimension, it gets much
more problematic for signals with two or more dimensions, mainly because
of the importance of geometry. Indeed, an image can still be modeled as
a piecewise smooth 2-D signal with singularities, but the latter are not
point like anymore. Multi-dimensional singularities may be highly orga-
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nized along embedded submanifolds and this is exactly what happens at
image contours for example. Figure 8.1 shows that wavelets are inefficient
at representing contours because they cannot deal with the geometrical
regularity of the contours themselves. This is mainly due to the isotropic
refinement implemented by wavelet basis: the dyadic scaling factor is ap-
plied in all directions, where clearly it should be fine along the direction
of the local gradient and coarse in the orthogonal direction in order to ef-
ficiently localize the singularity in a sparse way. This is the reason why
other types of signal representation, like redundant transforms, certainly
represent the core of new breakthroughs in image coding, beyond the per-
formance of orthogonal wavelet transforms.

(a) 6 coefficients (b) 15 coefficients (c) 25 coefficients

Figure 8.1: Inadequacy of isotropic refinement for representing contours in im-
ages. The number of wavelets intersecting the singularity is roughly doubled
when the resolution increases.

8.2 Redundant expansions

8.2.1 Benefits of redundant transforms

In order to efficiently represent contours, beyond the performance of wavelet
decompositions, anisotropy is clearly desirable in the coding scheme. Sev-
eral authors have explored the rate-distortion characteristics of anisotropic
systems for representing edge-dominated images [4, 5]. These preliminary
studies show that for images that are smooth away from a smooth edge
(typically a C2 rectifiable curve), a rate-distortion (R-D) behavior of the
form

D(R) ³ log R

R2
(8.1)
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can be reached. Comparing this with the associated wavelet R-D behavior,
i.e., D(R) ³ R−1, one clearly sees how the use of a geometry-adapted
system of representation can boost coding expectations. It is important to
realize here that it is really the anisotropic scaling of the basis functions
that allows for such performances. Simply using an anisotropic basis with
multiple orientations but a fixed isotropic scaling law would not provide
such results (though it may improve visual quality for instance).

Candes and Donoho [6] have recently proposed a construction called the
curvelet transform which aims at solving the lack of flexibility of wavelets
in higher dimensions. Basically curvelets satisfy an anisotropic scaling law
that is adapted to representing smooth curves in images. Curvelet tight
frames have been shown to achieve a much better non-linear approximation
rate than wavelets for images that are smooth away from a C2 edge. Very
interesting results have been reported for statistical estimation and denois-
ing [7] and efficient filter bank implementations have been designed [8].
On the coding side, curvelets satisfy the localization properties that lead
to (8.1) and there is thus hope to find efficient compression schemes based
on the curvelet transform, even though such results have not yet been re-
ported.

8.2.2 Non-Linear Algorithms

A wealth of algorithms

Clearly, another way to tackle the problem of higher dimensional data
representation would be to turn to non-linear algorithms. The interested
reader searching a way through the literature might feel as if he/she had
suddenly opened Pandora’s box! Various algorithms exist, and they all
differ in philosophy. Before moving to the particular case of interest in
this chapter, we thus provide a basic roadmap through some of the most
successful techniques.

• Wavelet footprints [9]: for piecewise polynomial signals, group to-
gether significant wavelets of pre-defined singularities into a footprint
dictionary. The algorithm locates singularities and then selects the
best footprints in the dictionary. In 1-D, it reaches the near optimal
bound. In 2-D, situation gets complicated by the problem of chaining
these footprints together along contours.

• Wedgeprints [10]: weds wavelets and wedgelets [11] by grouping wavelet
coefficients into wedgeprints in the wavelet domain. One advantage
is that all is computed based on the wavelet coefficients : they are
sorted in a tree like manner according to their behavior as smooth,
wedgeprints or textures. Markov trees help ensuring that particular
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grouping of coefficients do make sense (i.e., they represent smooth
edges). It reaches the near optimal bound in 2-D.

• Bandelets [12]: the image is processed so as to find its edges. The
wavelet transform is then warped along the geometry in order to
provide a sparse expansion. It reaches the near optimal bound for all
smooth edges.

Highly non-linear approximations

Another interesting way of achieving sparsity for low bit rate image coding
is to turn to very redundant systems. In particular, we will now focus on
the use of highly non-linear approximations in redundant dictionaries of
functions.

Highly non-linear approximation theory is mainly concerned with the
following question : given a collection D of elements of norm one in a
Banach space1 H, find an exact N -sparse representation of any signal s :

s =
N−1∑

k=0

ckgk . (8.2)

The equality in (8.2) may not need to be reached, in which case a N -
term approximant s̃N is found :

s̃N =
N−1∑

k=0

ckgk, ‖s− s̃N‖ ≤ ε(N) , (8.3)

for some approximation error ε. Such an approximant is sometimes called
(ε,N)-sparse.

The collection D is often called a dictionary and its elements are called
atoms. There is no particular requirements concerning the dictionary, ex-
cept that it should span H, and there is no prescription on how to compute
the coefficients ck in eq. (8.2). The main advantage of this class of tech-
niques is the complete freedom in designing the dictionary, which can then
be efficiently tailored to closely match signal structures.

Our ultimate goal would be to find the best, that is the sparsest, possible
representation of the signal. In other words, we would like to solve the
following problem :

minimize ‖c‖0 subject to s =
K−1∑

k=0

ckgγk
,

1A Banach space is a complete vector space B with a norm ‖v‖, for more information
please refer to [13].
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where ‖c‖0 is the number of nonzero entries in the sequence {ck}. If the
dictionary is well adapted to the signal, there are high hopes that this kind
of representation exists, and would actually be sparser than a nonlinear
wavelet-based approximation. The problem of finding a sparse expansion
of a signal in a generic dictionary D leads to a daunting NP hard com-
binatorial optimization problem. This is however not true anymore for
particular classes of dictionaries. Recently, constructive results were ob-
tained by considering incoherent dictionaries [14, 15, 16], i.e. collections of
vectors that are not too far from an orthogonal basis. These results impose
very strict constraints on the dictionary, but yield a striking improvement :
they allow to solve the original NP hard combinatorial problem by linear
programming. As we will now see, this rigidity can be relaxed when we turn
to the problem of finding sufficiently good N -term approximants, instead
of exact solutions to eq. (8.2).

In order to overcome this limitation, Chen, Donoho and Saunders [17]
proposed to solve the following slightly different problem :

minimize ‖c‖1 subject to s =
K−1∑

k=0

ckgγk
.

Minimizing the `1 norm helps finding a sparse approximation, because it
prevents diffusing the energy of the signal over a lot of coefficients. While
keeping the essential property of the original problem, this subtle modifi-
cation leads to a tremendous change in the very nature of the optimization
challenge. Indeed, this `1 problem, called Basis Pursuit or BP, is a much
simpler problem, that can be efficiently solved by Linear Programming
using, for example, interior point methods.

Constructive approximation results for redundant dictionaries however
do not abound, contrary to the wavelet case. Nevertheless, recent efforts
pave the way towards efficient and provably good nonlinear algorithms that
could lead to potential breakthroughs in multi-dimensional data compres-
sion. For illustration purposes, let us briefly comment on the state of the
art.

Recently, many authors focused on incoherent dictionaries, or, equiva-
lently, dictionaries whose coherence µ is smaller than a sufficiently small
constant C (i.e., µ < C), whereas the coherence of a dictionary D is defined
as :

µ = sup
i,j
i 6=j

|〈gi, gj〉| . (8.4)

Coherence is another possible measure of the redundancy of the dictionary
and eq. (8.4) shows that D is not too far from an orthogonal basis when its
coherence is sufficiently small (although it may be highly overcomplete).
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Let us first concentrate on a dictionary D that is given by the union of
two orthogonal bases in RN , i.e., D = {ψi} ∪ {φj}, 1 6 i, j 6 N . Building
on early results of Donoho and Huo [14], Elad and Bruckstein have shown
a particularly striking and promising result [15]: if D is the concatenated
dictionary described above with coherence µ and s ∈ RN is any signal with
a sufficiently sparse representation :

s =
∑

i

cigi with ‖c‖0 <

√
2− 0.5

µ
, (8.5)

then this representation is the unique sparsest expansion of s in D and
can be exactly recovered by Basis Pursuit. In other words, we can replace
the original NP-hard combinatorial optimization problem of finding the
sparsest representation of s by the much simpler `1 problem. These results
have been extended to arbitrary dictionaries by Gribonval and Nielsen [16],
who showed that the bound in eq. ( (8.5)) can be refined to :

‖c‖0 <
1
2
(
1 +

1
µ

)
.

So far the results obtained are not constructive. They essentially tell us
that, if a sufficiently sparse solution exists in a sufficiently incoherent dictio-
nary, it can be found by solving the `1 optimization problem. Practically,
given a signal, one does not know whether such a solution can be found
and the only possibility at hand would be to run Basis Pursuit and check
a posteriori that the algorithm finds a sufficiently sparse solution. These
results also impose very strict constraints on the dictionary, i.e., sufficient
incoherence. But this has to be understood as a mathematical artifice to
tackle a difficult problem : managing dependencies between atoms in order
to prove exact recovery of a unique sparsest approximation. When instead
ones wants to find sufficiently good N -term approximants, such a rigid-
ity may be relaxed as shown in practice by the class of greedy algorithms
described hereafter.

Greedy algorithms: Matching Pursuit

Greedy algorithms iteratively construct an approximant by selecting the
element of the dictionary that best matches the signal at each iteration.
The pure greedy algorithm is known as Matching Pursuit [18]. Assuming
that all atoms in D have norm one, we initialize the algorithm by setting
R0 = s and we first decompose the signal as

R0 = 〈gγ0 , R0〉gγ0 + R1 .
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Clearly gγ0 is orthogonal to R1 and we thus have

‖R0‖2 = |〈gγ0 , R0〉|2 + ‖R1‖2 .

If we want to minimize the energy of the residual R1 we must maximize
the projection |〈gγ0 , R0〉|. At the next step, we simply apply the same
procedure to R1, which yields

R1 = 〈gγ1 , R1〉gγ1 + R2 ,

where gγ1 maximizes |〈gγ1 , R1〉|. Iterating this procedure, we thus obtain
an approximant after M steps:

s =
M−1∑
m=0

〈gγm
, Rm〉gγm

+ RM ,

where the norm of the residual (approximation error) satisifies

‖RM‖2 = ‖s‖2 −
M−1∑
m=0

|〈gγm , Rm〉|2 .

Some variations around this algorithm are possible. An example is given
by the weak greedy algorithm [19], which consists in modifying the atom
selection rule by allowing to choose a slightly suboptimal candidate:

|〈Rm, gγm〉| > tm sup
g∈D

|〈Rm, g〉| , tm 6 1 .

It is sometimes convenient to rephrase Matching Pursuit in a more general
way, as a two-step algorithm. The first step is a selection procedure that,
given the residual Rm at iteration m, will select the appropriate element
of D :

gγm = S(Rm,D) ,

where S is a particular selection operator. The second step simply updates
the residual :

Rm+1 = U(Rm, gγm).

One can easily show that Matching Pursuit converges [20] and even con-
verges exponentially in the strong topology in finite dimension (see [18] for
a proof). Unfortunately this is not true in general in infinite dimension,
even though this property holds for particular dictionaries [21]. However,
DeVore and Temlyakov [19] constructed a dictionary for which even a good
signal, i.e., a sum of two dictionary elements, has a very bad rate of approx-
imation: ‖s− sM‖ > CM−1/2. In this case a very sparse representation of
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the signal exists, but the algorithm dramatically fails to recover it! Notice
though, that this again does in no way rule out the existence of particular
classes of very good dictionaries.

A clear drawback of the pure greedy algorithm is that the expansion of
s on the linear span of the selected atoms is not the best possible one, since
it is not an orthogonal projection. Orthogonal Matching Pursuit [22, 23]
solves this problem by recursively orthogonalizing the set of selected atoms
using a Gram-Schmidt procedure. The best M -term approximation on the
set of selected atoms is thus computed and the algorithm can be shown to
converge in a finite number of steps, but at the expense of a much bigger
computational complexity.

In the same time, greedy algorithms offer constructive procedures for
computing highly non-linear N -term approximations. Although the math-
ematical analysis of their approximation properties is complicated by their
nonlinear nature, interesting results are emerging (see for example [24, 25,
26, 27]). Let us briefly illustrate one of them :

Theorem 1 Let D be a dictionary in a finite or infinite dimensional Hilbert
space and let µ : maxk 6=l |〈gk, gl〉| be its coherence. For any finite index set
I of size card(I) = m < (1+1/µ)/2 and any s =

∑
k∈I ckgk ∈ span(gk, k ∈

I), Matching Pursuit :

1. picks up only “correct” atoms at each step (∀n, kn ∈ I);

2. converges exponentially

‖fn − f‖2 ≤ ((1− 1/m)(1 + µ))n ‖f‖2.

The meaning of this theorem is the following. Take a dictionary for which
interactions among atoms are small enough (low coherence) and a signal
that is a superposition of atoms from a subset {gk, k ∈ I} of the dictionary.
In this case Matching Pursuit will only select those correct atoms, and no
other. The algorithm thus exactly identifies the elements of the signal.
Moreover, since Matching Pursuit is looping in a finite dimensional subset,
it will converge exponentially to f . The interested reader will find in [25, 27]
similar results for the case when the signal is not an exact superposition
of atoms, but when it can be well approximated by such a superposition.
In this case again, Matching Pursuit can identify those correct atoms and
produce N -term approximants that are close to the optimal approximation.

The choice of a particular algorithm generally consists in trading off
complexity and optimality, or more generally efficiency. The image com-
pression scheme presented in this chapter proposes to use Matching Pursuit
as a suboptimal algorithm to obtain a sparse signal expansion, yet an effi-
cient way to produce a progressive low bit-rate image representation with a
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Figure 8.2: Block diagram of the Matching Pursuit image coder.

controlled complexity. Matching Pursuit, as already stressed before, itera-
tively chooses the best matching terms in a dictionary. Despite its possible
numerical complexity in the signal representation, it is very easy to im-
plement. Moreover, since there is almost no constraint on the dictionary
itself, Matching Pursuit clearly stands as a natural candidate to imple-
ment an efficient coding scheme based on anisotropic refinement, and such
a construction is detailed in the next section.

8.3 Matching Pursuit Image Coding

8.3.1 A Scalable Image Encoder

Overview

The benefits of redundant expansions in terms of approximation rate have
been discussed in the first part of this chapter. The second part now de-
scribes an algorithm that builds on the previous results and integrates
non-linear expansions over an anisotropically refined dictionary, in a scal-
able Matching Pursuit image encoder. The advantages offered by both
the greedy expansion, and the structured dictionary are used to provide
flexibility in image representation.

The encoder can be represented as in Figure 8.2. The input image
is compared to a redundant library of functions, using a Matching Pur-
suit algorithm. Iteratively, the index of the function that best matches
the (residual) signal is sent to an entropy coding stage. The correspond-
ing coefficient is quantized, and eventually entropy coded. The output of
the entropy coder block forms the compressed image bitstream. The de-
coder performs inverse entropy coding, inverse quantization, and finally
reconstructs the compressed image by summing the dictionary functions,
multiplied by their respective coefficients.

Clearly, the transform only represents one single stage in the compres-
sion chain. In order to take benefit of the improved approximation rate of-
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fered by redundant signal expansions, the quantization and entropy coding
stage have also to be carefully designed. All the blocks of the compression
algorithm have to be adapted to the specific characteristics of Matching
Pursuit expansions. It is important to note that the real benefits of redun-
dant transforms in image compression, can only be appreciated when all
the blocks of the image encoder are fully optimized.

Alternative image representation methods based on Matching Pursuit,
have been proposed in the literature. One of the first papers that proposed
to use Matching Pursuit for representing images is [28]. This first work does
however not propose a coder implementation, and the dictionary is differ-
ent than the one proposed in this chapter. Matching Pursuit has been used
for coding the motion estimation error in video sequences [29], in a block-
based implementation. This coder, contrarily to the one proposed below,
makes use of sub-blocks, which, in a sense, limits the efficiency of the ex-
pansion. In the same time, it has been designed to code the residual error of
motion estimation, which presents very different characteristics than edge-
dominated natural images. The coder presented in the remainder takes
benefit of the properties of both redundant expansions, and anisotropic
functions, to offer efficient and flexible compression of natural images.

Matching Pursuit Search

One of the well-known drawbacks of Matching Pursuit is the complexity of
the search algorithm. The computations to find the best atom in the dic-
tionary have to be repeated at each iteration. The complexity problem can
be alleviated in replacing full search methods, by optimization techniques,
such as implementations based on Tree Pursuit [30]. Although such meth-
ods greatly speed up the search, they often sacrifice in the quality of the ap-
proximation. They sometimes get trapped in local minima, and may choose
sub-optimal atoms, which do not truly maximize the projection coefficient
|〈gγ |Rf〉|. Other solutions can be found in efficient implementations of the
Matching Pursuit algorithm, in taking benefit from the structure of the
signal and the dictionary. The dictionary can for example be decomposed
in incoherent blocks, and the search can thus be performed independently
in each incoherent block, without penalty.

The actual implementation of the MP image encoder described here,
still performs a full search over the complete dictionary, but computes all
the projections in the Fourier domain [31]. This tremendously reduces the
number of computations, in the particular case of our dictionary built on
anisotropic refinement of rotated atoms. The number of multiplications in
this case only depends on the number of scales and rotations in the dictio-
nary, and does not depend any more on the number of atom translations.
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The Matching Pursuit search in the Fourier domain allows to decrease the
number of computations, possibly however at the expense of an increase in
memory resources.

Generating functions of the dictionary

As presented in the previous section, a structured dictionary is built by
applying geometric transformations to a generating mother function g. The
dictionary is built by varying the parameters of a basis function, in order to
generate an overcomplete set of functions spanning the input image space.
The choice of the generating function, g, is driven by the idea of efficiently
approximating contour-like singularities in 2-D. To achieve this goal, the
atom is a smooth low resolution function in the direction of the contour,
and behaves like a wavelet in the orthogonal (singular) direction. In other
words, the dictionary is composed of atoms that are built on Gaussian
functions along one direction and on second derivative of Gaussian functions
in the orthogonal direction, that is :

g(~p) =
2√
3π

(4 x2 − 2) exp(−(x2 + y2)) , (8.6)

where ~p = [x, y] is the vector of the image coordinates, and ||g|| = 1.
The choice of the Gaussian envelope is motivated by the optimal joint
spatial and frequency localization of this kernel. The second derivative
occurring in the oscillatory component is a trade-off between the number of
vanishing moments used to filter out smooth polynomial parts and ringing-
like artifacts that may occur after strong quantization. It is also motivated
by the presence of second derivative-like filtering in the early stages of the
human visual system [32].

The generating function described above is however not able to effi-
ciently represent the low frequency characteristics of the image at low rates.
There are two main options to capture these features: (i) to perform a low-
pass filter of the image and send a quantized and downsampled image or (ii)
to use an additional dictionary capable of representing the low frequency
components. This second approach has also the advantage of introduc-
ing more natural artifacts at very low bit rate, since it tends to naturally
distribute the available bits between the low and high frequencies of the
image. A second subpart of the proposed dictionary is therefore formed by
Gaussian functions, in order to keep the optimal joint space-frequency lo-
calization. The second generating function of our dictionary can be written
as :

g(~p) =
1√
π

exp(−(x2 + y2)) , (8.7)
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where the Gaussian has been multiplied by a constant in order to have
||g(~p)|| = 1.

Anisotropy and orientation

Anisotropic refinement and orientation is eventually obtained by applying
meaningful geometric transformations to the generating functions of unit L2

norm, g, described here-above. These transformations can be represented
by a family of unitary operators U(γ), and the dictionary is thus expressed
as :

D = {U(γ)g, γ ∈ Γ} , (8.8)

for a given set of indexes Γ. Basically this set must contain three types of
operations :

• Translations ~b, to move the atom all over the image.

• Rotations θ, to locally orient the atom along contours.

• Anisotropic scaling ~a = (a1, a2), to adapt to contour smoothness.

A possible action of U(γ) on the generating atom g is thus given by :

U(γ)g = U(~b, θ)D(a1, a2)g (8.9)

where U is a representation of the Euclidean group,

U(~b, θ)g(~p) = g
(
r−θ(~p−~b)

)
, (8.10)

rθ is a rotation matrix, and D acts as an anisotropic dilation operator :

D(a1, a2)g(~p) =
1√
a1a2

g
( x

a1
,

y

a2

)
. (8.11)

It is easy to prove that such a dictionary is overcomplete using the fact that,
under the restrictive condition a1 = a2, one gets 2-D continuous wavelets
as defined in [33]. It is also worth stressing that, avoiding rotations, the
parameter space is a group studied by Bernier and Taylor [34]. The ad-
vantage of such a parametrization is that the full dictionary is invariant
under translation and rotation. Most importantly, it is also invariant un-
der isotropic scaling, e.g. a1 = a2. These properties will be exploited for
spatial transcoding in the next sections.



Image coding using redundant dictionaries 15

Dictionary

Since the structured dictionary is built by applying geometric transforma-
tions to a generating mother function g, the atoms are therefore indexed by
a string γ composed of five parameters: translation ~b, anisotropic scaling ~a
and rotation θ. Any atom in our dictionary can finally be expressed in the
following form :

gγ =
2√
3π

(4 g1
2 − 2) exp(−(g1

2 + g2
2)) , (8.12)

with

g1 =
cos(θ) (x− b1) + sin(θ) (y − b2)

a1
, (8.13)

and

g2 =
cos(θ) (y − b2)− sin(θ) (x− b1)

a2
. (8.14)

For practical implementations, all parameters in the dictionary must be
discretized. For the Anisotropic Refinement (AR) Atoms sub-dictionary,
the translation parameters can take any positive integer value smaller than
the image dimensions. The rotation parameter varies by increments of π

18 ,
to ensure the overcompleteness of the dictionary. The scaling parameters
are uniformly distributed on a logarithmic scale from one up to an eighth of
the size of the image, with a resolution of one third of octave. The maximum
scale has been chosen so that at least 99 % of the atom energy lies within the
signal space when it is centered in the image. Experimentally, it has been
found that this scale and rotation discretization choice represents a good
compromise between the size of the dictionary, and the efficiency of the
representation. One can choose a finer resolution for scale and rotation,
getting generally more accuracy in the initial approximations. There is
however a price to pay in terms of atom coding and search complexity.
Finally, atoms are chosen to be always smaller along the second derivative of
the Gaussian function than along the Gaussian itself, thus maximizing the
similarity of the dictionary elements with edges in images. This limitation
allows to limit the size of the dictionary.

For the Gaussian (low frequency) sub-dictionary, the translation param-
eters vary exactly in the same way as for the AR atoms, but the scaling is
isotropic and varies from min(W,H)

32 to min(W,H)
4 on a logarithmic scale with

a resolution of one third of octave (W and H are image width and height
respectively). The minimum scale of these atoms has been chosen to have
a controlled overlap with the AR functions, i.e., large enough to ensure a
good coverage of the signal space, but small enough to avoid destructive
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interactions between the low-pass and the band-pass dictionary. This over-
lap has been designed so that less than 50% of the energy of the Gaussians
lies in the frequency band taken by the AR fuctions. The biggest scale for
these Gaussian atoms has been chosen so that at least 50% of the atom
energy lies within the signal space when centered in the image. Lastly, due
to isotropy, rotations are obviously useless for this kind of atoms. Sample
atoms are shown in Fig. 8.3.

(a) (b) (c) (d)

Figure 8.3: Sample anisotropic atom with a rotation of 5×π
18

radians and scales
of 4 and 8 (a), Sample Gaussian function (b), and their respective transforms (c)
and (d).

Coding Stage

Compact signal representations also necessitate an efficient entropy coding
stage, to remove statistical redundancy left in the signal representation.
This stage is crucial in overcomplete signal expansions, since the dictio-
nary is inherently more redundant than in the case of common orthogonal
transforms. Optimal coding in redundant expansions is however still an
open research problem, that is made non-trivial by the large number of
parameters in the case of image coding.

Efficient coding of Matching Pursuit parameters has been proposed
in [29] for example, with a smart scanning of atom positions within im-
age blocks. The coder presented in this section aims at producing fully
scalable image streams. Such a requirement truly limits the options in
the entropy coding stage, since the atom order is given by the magnitude
of their coefficients, as discussed in the previous paragraph. The scalable
encoder therefore implements an adaptive arithmetic coding, with indepen-
dent contexts for position, scale, rotation and coefficient parameters. The
core of the arithmetic coder is based on [35], with the probability update
method from [36]. As the distribution of the atom parameters (e.g., posi-
tions or scales) is dependent on the image to be coded, the entropy coder
first initializes the symbol probabilities to a uniform distribution. The en-
coded parameters are then sent in their natural order, which results in a
progressive stream, that can eventually be cut at any point to generate rate
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scalable streams.
Recall finally that flexibility is the main motivation for choosing this

kind of arithmetic coder. It can be imagined that more efficient coders
could for example try to estimate the parameters distribution in order to
optimally distribute the bits. Alternatively, grouping atoms according to
their position parameters might also increase the compression ratio when
combined with differential coding. Similar methods could be applied to
rotation or scale indexes. However, the generated stream would not be
progressive anymore, and scalability would only be attained in this case by
stream manipulations, and more generally transcoding.

Coefficient Quantization

One of the crucial points in the Matching Pursuit encoder is the coefficient
quantization stage. Since coefficients computed by the Matching Pursuit
search take real values, quantization is a mandatory operation in order
to limit the coding rate. Redundant signal expansions present the advan-
tage that quantization error on one coefficient may be mitigated by later
Matching Pursuit iterations, when the quantization is performed in the
loop [37]. The encoder presented in this section however uses a different
approach, that performs quantization a posteriori. In this case, the sig-
nal expansion does not depend on the quantization, and hence the coding
rate. A posteriori quantization and coding allow for one single expansion
to be encoded at different target rates. This is particularly interesting in
scalable applications, which represent the main target for the image coder
under consideration here. Since the distortion penalty incurred by a pos-
teriori quantization is moreover generally negligible [38], this design choice
is justified by an increased flexibility in image representation.

The proposed coder uses a quantization method specifically adapted
to the Matching Pursuit expansion characteristics, the a posteriori rate
optimized exponential quantization. It takes benefit from the fact that the
Matching Pursuit coefficient energy is upper-bounded by an exponential
curve, decaying with the coefficient order. The quantization algorithm
strongly relies on this property, and the exponential upper-bound directly
determines the quantization range of the coefficient magnitude, while the
coefficient sign is reported on a separate bit. The number of quantization
steps is then computed as the solution of a rate-distortion optimization
problem [38].

Recall that the coefficient cγn represents the scalar product 〈gγn ,Rnf〉.
It can be shown that its norm is upper-bounded by an exponential func-
tion [39], which can be written as

|cγn | ≤ (1− α2 β2)
n
2 ‖f‖ . (8.15)
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where ‖f‖ is the energy of the signal to code, β is a constant depending on
the construction of the dictionary, and α is a sub-optimality factor depend-
ing on the Matching Pursuit implementation (for a full search algorithm
as the one used in this paper, α = 1). The coefficient upper-bound thus
depends on both the energy of the input function and the construction of
the dictionary. Since the coefficients can obviously not bring more energy
than the residual function, the norm of the coefficient is strongly related to
the residual energy decay curve.

Choosing the exponential upper-bound from Eq. (8.15) as the limit of
the quantization range, it remains to be determined the number of bits
to be spent on each coefficient. The rate-distortion optimization problem
shows that the number of quantization levels have also to follow a decaying
exponential law, given by :

nj =

√
‖f‖2 (1− β2)j log 2

6 λ
, (8.16)

where nj is the number of quantization levels for coefficient cj , and λ is the
Lagrangian multiplier which drives the size of the bit-stream [38].

In practice, the exponential upper-bound and the optimal bit distri-
bution given by Eq. (8.16) are often difficult to compute, particularly in
the practical case of large dictionaries. To overcome these limitations, the
quantizer uses a suboptimal but very efficient algorithm based on the pre-
vious optimal results. The key idea lies in a dynamic computation of the
redundancy factor β from the quantized data. Since this information is also
available at the decoder, this one is able to perform the inverse quantization
without any additional side information.

In summary, the coefficients quantization stage is implemented as fol-
lows. The coefficients are first re-ordered, and sorted in the decreasing
order of their magnitude (this operation might be necessary since the MP
algorithm does not guarantee a strict decay of the coefficient energy). Let
then Q[ck], k = 1, . . . j − 1 denote the quantized counterparts of the j − 1
first coefficients. Due to the rapid decay of the magnitude, coefficient cj

is very likely to be smaller than Q[cj−1]. It can thus be quantized in the
range [0, Q[cj−1]]. The number of quantization levels at step j is theoreti-
cally driven by the redundancy factor as given by Eq. (8.16). The adaptive
quantization uses an estimate of the redundancy factor to compute the
number of quantization levels as :

nj = (1− β̃ 2
j−1)

1
2 nj−1 . (8.17)
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The estimate of the redundancy factor ν̃ is recursively updated, as :.

β̃j =

√
1−

(
Q[cj ]
‖f‖

)2/j

. (8.18)

Finally, the quantization range is given by the quantized coefficient
Q[cj ].

Rate Control

The quantization algorithm presented above is completely determined by
the choice of n0, the number of bits for the first coefficient, and a positive
value of N , the number of atoms in the signal expansion. When the bit-
stream has to conform to a given bit budget, the quantization scheme
parameters n0 and N can be computed as follows. First, β is estimated
with Eq. (8.18) by training the dictionary on a large set of signals (e.g.,
images), encoded with the adaptive quantization algorithm. The estimation
quite rapidly tends to the asymptotic value of the redundancy factor. The
estimation of β is then used to compute λ as a function of the given bit
budget Rb which has to satisfy :

Rb =
N−1∑

j=0

log2 nj +
N−1∑

j=0

aj

=
N−1∑

j=0

log2 (1− β2)
j
2 + N log2 n0 + N A , (8.19)

where aj represents the number of bits necessary to code the parameters of
atom gγj (i.e., positions, scales and rotation indexes), and A = E[aj ] repre-
sents the average index size. From Eq. (8.16), the value of λ determines the
number of bits of the first coefficient n0. Under the reasonable condition
that the encoder does not code atoms whose coefficients are not quantized
(i.e., nj < 2) , the number of atoms to be coded, N is finally determined
by the condition (1−β2)

N−1
2 n0 ≤ 2. The adaptive quantization algorithm

is then completely determined, and generally yields bit rates very close to
the bit budget.

8.3.2 Experimental Results

Benefits of anisotropy

Anisotropy and rotation represent the core of the design of our coder. To
show the benefits of anisotropic refinement, our dictionary has been com-
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pared to four different dictionaries, in terms of the quality of the MP ex-
pansion. The first dictionary uses the real part of oriented Gabor atoms
generated by translation (~b), rotation (θ) and isotropic scaling (a) of a
modulated Gaussian function :

U
(
a, θ,~b

)
g(~x) =

1
a

g
(
a−1r−θ(~x−~b)

)
, (8.20)

with
g(~x) = ei ~ω0·~xe−‖~x‖

2/2 . (8.21)

The next dictionary is an affine Weyl-Heisenberg dictionary [40] built by
translation, dilation and modulation of the Gabor generating atom of Eq. (8.21) :

U
(
a, ~ω,~b

)
g(~x) =

1
a

ei~ω·(~x−~b)g
(
a−1(~x−~b)

)
, (8.22)

where again, as we are dealing with real signals, only the real part is used.
The other two dictionaries are simply built on orthogonal wavelet bases.
Figure 8.4 shows the reconstructed quality as a function of the number of
iterations in the MP expansion using different types of dictionaries. In this
figure, the comparison is performed with respect to the number of terms
in the expansion, in order to emphasize the approximation properties (the
behavior of the coding rate is discussed below). Clearly, overcompleteness
and anisotropic refinement allow to outperform the other dictionaries, in
terms of approximation rate, which corresponds to the results presented
in [4, 5]. As expected, the orthogonal bases offer the lowest approximation
rates due to the fact that these kinds of bases cannot deal with the smooth-
ness of edges. We can thus deduce that redundancy in a carefully designed
dictionary provides sparser signal representations. This comparison shows,
as well, that the use of rotation is also of interest since the oriented Gabor
dictionary gives better results than the modulated one. It is worth notic-
ing that rotation and anisotropic scaling are true 2-D transformations: the
use of non-separable dictionaries is clearly beneficial to efficiently approxi-
mate 2-D objects. Separable transforms, although they may enable faster
implementations, are unable to cope with the geometry of edges.

It is interesting now to analyze the penalty of anisotropy on the coding
rate. In our coder, the addition of anisotropy induces the cost of coding an
additional scaling parameter for each atom. To highlight the coding penalty
due to anisotropic refinement, the image has also been coded with the same
dictionary, built on isotropic atoms, all other parameters staying identical
to the proposed scheme. Figure 8.5 illustrates the quality of the MP en-
coding of Lena, as a function of the coding rate, with both dictionaries. To
perform the comparison, the isotropic and the anisotropic dictionaries are
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Figure 8.4: Comparison of the MP approximation rate for Lena (128 × 128 pix-
els), using five different dictionaries (anisotropic scaling, Gabor wavelets, Weyl-
Heisenberg dictionary, an orthogonal Haar wavelet basis and a biorthogonal
Daubechies 9/7 basis, with 5 levels of decomposition).

generated with the same generating function and with the same discretiza-
tion of the parameters (3 scales per octave and an angle resolution of 10
degrees). The anisotropy however implies the coding of one additional scale
parameter. It is shown that the dictionary based on anisotropic refinement
provides superior coding performance, even with longer atom indexes. The
penalty due to the coding cost of one additional scale parameter, is largely
compensated by a better approximation rate. Anisotropic refinement is
thus clearly an advantage in MP image coding.

Coding performance

The objective of this section is to emphasize the potential of redundant ex-
pansions low rate compression of natural images, even though the Match-
ing Pursuit encoder is not fully optimized yet, as it has been discussed in
Sec. 8.3.1.

Figure 8.6 presents a comparison between images compressed with Match-
ing Pursuit, and respectively JPEG-20002. It can be seen that the PSNR
rating is in favor of JPEG-2000, which is not completely surprising since a
lot of research efforts are being put in optimizing the encoding in JPEG-

2All results have been generated with the Java implementation available at
http://jj2000.epfl.ch/, with default settings



22 Chapter 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
18

19

20

21

22

23

24

25

26

27

28

P
S

N
R

 (
dB

)

MP with anisotropic atoms
MP with isotropic atoms

bpp 

Figure 8.5: Comparison of the rate distortion characteristic of a decomposi-
tion using a dictionary built on anisotropic refinement, and a dictionary with-
out anisotropic refinement. The basis functions are the same for isotropic and
anisotropic functions, with the same angle discretization (allowing 18 different
angles) and with spatial translation resolution of one pixel.

2000 like schemes. Interestingly, however, the image encoded with Match-
ing Pursuit is visually more pleasant than the JPEG-2000 version. The
coding artifacts are quite different, and the degradations due to Matching
Pursuit are less annoying to the Human Visual System, than the ringing due
to wavelet coding at low rate. The detailed view of the hat, as illustrated in
Figure 8.7, confirms this impression. It can be seen that the JPEG-2000 en-
coder introduces quite a lot of ringing, while the MP encoder concentrates
its effort on providing a good approximation of the geometrical components
of the hat structure. JPEG-2000 has difficulties to approximate the 2-D
oriented contours, which are generally the most predominant components
of natural images. And this is clearly one of the most important advan-
tages of the Matching Pursuit coder built on anisotropic refinement, which
is really efficient to code edge-like features.

To be complete, Figure 8.8 shows the rate-distortion performance of
the Matching Pursuit encoder for common test images, at low to medium
bit rates. It can be seen that Matching Pursuit provides better PSNR
rating than JPEG-2000 at low coding rates. However, the gap between
both coding schemes rapidly decreases when the bit rate increases, as ex-
pected. Matching Pursuit and overcomplete expansions are especially effi-
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(a) MP, 31.0610dB (b) JPEG-2000, 31.9285 dB

Figure 8.6: Lena (512 x 512) encoded at 0.16bpp.

(a) MP (b) JPEG-2000

Figure 8.7: Detail view, Lena (512 x 512) encoded at 0.16bpp.

cient for low bit rate coding. They very rapidly capture the most impor-
tant components of the image, but Matching Pursuit then suffers from its
greedy characteristic when the rate increases. It has to be noted also that
the bitstream header penalizes JPEG-2000 compared to Matching Pursuit,
where the syntactic information is truly minimal (at most a few bits). This
penalty becomes particularly important at very low bit rate.

The performance of the proposed coder is also compared to the SPIHT
encoder [41], which introduces a minimal syntactic overhead. SPIHT al-
most always outperforms the proposed coder on the complete range of
coding rate, and tends to perform similarly to JPEG-2000 for high rates.
However, the stream generated by the SPIHT encoder does in general not
provide scalability, while MP and JPEG-2000 offer increased flexibility for
stream adaptation.



24 Chapter 8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
16

18

20

22

24

26

28

30

Rate (bpp)

P
S

N
R

 (
dB

)

MP
JPEG2000
SPIHT

Cameraman, 256 x 256

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
20

22

24

26

28

30

32

34

Rate (bpp)

P
S

N
R

 (
d

B
)

MP
SPIHT
JPEG2000

Lena, 512 x 512

Figure 8.8: Distortion-rate performance for JPEG-2000, SPIHT and the proposed
MP coder, for common test images.

Finally, the proposed encoder performs reasonably well in terms of rate-
distortion performance, especially at low rates. The distortion is in general
visually less annoying in the Matching Pursuit coding algorithm. The arti-
facts introduced by Matching Pursuit (basically a simplification or refinable
sketch of the image) are indeed less annoying for the human observer than
the ringing introduced by the wavelets in JPEG-2000. When the rate in-
creases, the saturation of the quality can be explained by the limitations of
redundant transforms for high rate approximations. Hybrid coding schemes
could provide helpful solutions for high rate coding.

8.3.3 Extension to color images

The Matching Pursuit encoder presented here-above can be extended to
code color images, using similar principle. Instead of performing indepen-
dent iterations in each color channel, a vector search algorithm can be
implemented in a color image encoder. This is equivalent to using a dic-
tionary of P vector atoms of the form { ~gγ = [gγ , gγ , gγ ]}γ∈Γ. In practice
though, each channel is evaluated with one single component of the vec-
tor atom, whose global energy is given by adding together its respective
contribution in each channel. MP then naturally chooses the vector atom,
or equivalently the vector component gγ , with the highest energy. Hence
the component of the dictionary chosen at each Matching Pursuit iteration
satisfies:

max
γn

√
〈Rnf1, gγn〉2 + 〈Rnf2, gγn〉2 + 〈Rnf3, gγn〉2, (8.23)
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where Rnf i, i = 1, 2, 3 represents the signal residual in each of the color
channels. Note that this is slightly different than the algorithm introduced
in [42], where the sup norm of all projections is maximized :

max
i

sup
D
|〈Rnf i, gγn

〉| .

All signal components f i are then jointly approximated through an expan-
sion of the from :

f i =
+∞∑
n=0

〈Rnf i, gγn
〉gγn

, ∀i = 1, 2, 3.

Note that channel energy is conserved, and that the following Parseval-like
equality is verified :

‖f i‖2 =
+∞∑
n=0

|〈Rnf i, gγn
〉|2, ∀i = 1, 2, 3.

The search for the atom with the highest global energy necessitates
the computation of the three scalar products ci

n = 〈Rnf i, gγn〉, i = 1, 2, 3,
for each atom gγn , and for each iteration of the Matching Pursuit expan-
sion. The number of scalar products can be reduced by first identifying the
color channel with the highest residual energy, and then performing the
atom search in this channel only. Once the best atom has been identified,
its contribution in the other two channels is also computed and encoded.
The reduced complexity algorithm obviously performs in a suboptimal way
compared to the maximization of the global energy, but in most of the
cases the quality of the approximation does only suffer a minimal penalty
(Fig. 8.9 is an example of a Matching Pursuit performed in the most ener-
getic channel).

An important parameter of the color encoder is the choice of color space.
Interestingly, experiments show that the MP coder tends to prefer highly
correlated channels. This can be explained by the fact that atom indexes
carry higher coding costs than coefficients. Using correlated channels basi-
cally means that the same structures are found, and thus the loss of using
only one index for all channels is minimized. The choice of the RGB color
space thus seems very natural. This can also be highlighted by the fol-
lowing experiments. The coefficients [c1

n, c2
n, c3

n] of the MP decomposition
can be represented in a cube, where the three axes respectively correspond
to the red, green and blue components (see Fig. 8.10(a)). It can be seen
that the MP coefficients are interestingly distributed along the diagonal of
the color cube, or equivalently that the contribution of MP atoms is very
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(a) YUV most energetic (b) RGB most energetic

Figure 8.9: Japanese woman coded with 1500 MP atoms, using the most energetic
channel search strategy in YUV color space 8.9(a) and in RGB color space 8.9(b).
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Figure 8.10: Distribution of the MP coefficients, when MP is performed in the
RGB or YUV color space.

similar in the three color channels. This very nice property is a real ad-
vantage in overcomplete expansions, where the coding cost is mainly due
to the atom indexes. On the contrary, the distribution of MP coefficients,
resulting from the image decomposition in the YUV color space, does not
seem to present any obvious structure (see Fig. 8.10(b)). In addition, the
YUV color space has been shown to give quite annoying color distortions
for some particular images (see Fig. 8.9 for example).

Due to the structure of the coefficient distribution, centered around the
diagonal of the RGB cube, efficient color quantization does not anymore
consist in coding the raw values of the R, G and B components, but instead
in coding the following parameters: the projection of the coefficients on the
diagonal, the distance of the coefficients to the diagonal and the direction
where it is located. This is equivalent to coding the Matching Pursuit coef-
ficients in an HSV color space, where V (Value) becomes the projection of
RGB coefficients on the diagonal of the cube, S (Saturation) is the distance
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Figure 8.11: Histograms of the MP coefficients when represented in HSV coordi-
nates.

of the coefficient to the diagonal and H (Hue) is the direction perpendicu-
lar to the diagonal, where the RGB coefficient is located. The HSV values
of the MP coefficients present the following characteristics distributions.
The Value distribution is Laplacian, centered in zero (see Fig. 8.11(c)),
Saturation presents an exponential distribution (see Fig. 8.11(b)), and a
Laplacian-like distribution with two peaks can be observed for Hue val-
ues 8.11(a). Finally, once the HSV coefficients have been calculated from
the available RGB coefficients, the quantization of the parameters is per-
formed as follows:

• the Value is exponentially quantized with the quantizer explained
before ([38]). The number that will be given as input to the arith-
metic coder will be Nj(l)−Quant(V ), where Nj(l) is the number of
quantization levels that are used for coefficient l.

• Hue and Saturation are uniformly quantized.

Finally coefficients and indexes are entropy coded, along the same tech-
nique used herebefore for grayscale images. Compression performances of
this algorithm are illustrated on Figure 8.12, where a comparison with
JPEG-2000 is also provided. It can be seen that MP advantageously com-
pares to JPEG-2000, and even performs better at low bit rates. This can



28 Chapter 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
13

14

15

16

17

18

19

20

21

22

23

bpp

P
S

N
R

JPEG 2000
MP

Figure 8.12: PSNR comparison between JPEG-2000 and MP. The PSNR has
been computed in the CIELAB color space.

be explained by the property of MP to immediately capture most of the
signal features in a very few iterations and across channels. Note that the
PSNR values have been computed in the Lab color space, in order to match
the Human Visual System perception.

8.3.4 High adaptivity

Importance of adaptivity

As outlined in the previous section, one of the main advantages of the MP
coder is to provide highly flexible streams at no additional cost. This is
very interesting in nowadays visual applications involving transmission and
storage, like database browsing or pervasive image and video communica-
tions. We call adaptivity the possibility for partial decoding of a stream, to
fulfill decoding constraints given in terms of rate, spatial resolution or com-
plexity. The challenge in scalable coding is to build a stream decodable at
different resolutions without any significant loss in quality by comparison
to non-adaptive streams. In other words, adaptive coding is efficient if the
stream does not contain data redundant to any of the target resolutions.

In image coding, adaptivity generally comprises rate (or SNR-) adaptiv-
ity and spatial adaptivity. On the one hand, the most efficient rate adap-
tivity is attained with progressive or embedded bitstreams, which ensure
that the most important part of the information is available, independently
of the number of bits used by the decoder [43, 44]. In order to enable easy
rate adaptation, the most important components of the signals should be
placed near the beginning of the stream. The encoding format has also to
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guarantee that the bitstream can be decoded, even when truncated. On the
other hand, efficient adaptive coding schemes, like JPEG-2000 or the coder
proposed in [45] are generally based on subband decompositions, which
provide intrinsic multiresolution representations. However, spatial adap-
tivity is generally limited to octave-based representations, and different
resolutions can only be obtained after non-trivial transcoding operations.

Multidimensional and geometry-based coding methods can advanta-
geously provide high flexibility in the stream representation and manip-
ulation. In this section, we will emphasize the intrinsic spatial and rate
adaptivity of the bitstreams created with our MP image coder. First, due
to the geometrical structure of the proposed dictionary, the stream can
easily and efficiently be decoded at any spatial resolution. Second, the em-
bedded bitstream generated by the Matching Pursuit coder can be adapted
to any rate constraints, while the receiver is guaranteed to always get the
most energetic components of the MP representation. Most importantly,
Matching Pursuit streams offer the advantage of decoupling spatial and
rate adaptivity, that can be performed independently. Adaptive decoding
is now discussed in more details in the remainder of the section.

Spatial adaptivity

Due to the structured nature of our dictionary, the Matching Pursuit stream
provides inherent spatial adaptivity. The group law of the similitude group
of R2 indeed applies [33] and allows for invariance with respect to isotropic
scaling of α, rotation of Θ and translation of ~β. Let us remind the reader
that the dictionary is built by acting on a mother function with a set of
operators realizing various geometric transformations (see equations (8.8)-
(8.9)). When considering only isotropic dilations, i.e. a1 = a2 in (8.9),
this set forms a group : the similitude group of the 2-D plane. Therefore,
when the compressed image f̂ is submitted to any combination of these
transforms (denoted here by the group element η), the indexes of the MP
stream can simply be transformed with help of the group law :

U(η)f̂ =
N−1∑
n=0

〈gγn |Rnf〉 U(η)gγn =
N−1∑
n=0

〈gγn |Rnf〉 U(η ◦ γn)g . (8.24)

In the above expression γn = (~an, θn,~bn) represents the parameter
strings of the atom encoded at iteration n, with scaling ~an, rotation θn and
translation ~bn, and η = (α, Θ, ~β) represents the geometric transformation
that is applied to the set of atoms. The decoder can apply the transforma-
tions to the encoded bitstream simply by modifying the parameter strings
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of the unit-norm atoms, according to the group law of similitude, where
(
~a, θ,~b

) ◦ (
α, Θ, ~β

)
=

(
α · ~a, θ + Θ,~b + α · rΘ

~β
)
. (8.25)

In other words, if ηα = (α, 0, 0) denotes the isotropic scaling by a factor
α, the bitstream of an image of size W ×H, after entropy decoding, can be
used to build an image at any resolution αW × αH simply by multiplying
positions and scales by the scaling factor α (from Eq. (8.25) and (8.9)).
The coefficients have also to be scaled with the same factor to preserve
the energy of the different components. The quantization error on the
coefficient will therefore also vary proportionally to the scaling factor, but
the absolute error on pixel values will remain almost unchanged, since the
atom support also varies. Finally, the scaled image is obtained by :

U(ηα)f̂ = α

N−1∑
n=0

cγngηα◦γn . (8.26)

The modified atoms gηα◦γn
are simply given by Eq. (8.12) to (8.14), where

~b and ~a are respectively replaced by α ~b and α ~a. It is worth noting that
the scaling factor α can take any positive real value, as long as the scaling
is isotropic. Atoms that become too small after transcoding are discarded.
This allows for further bit rate reduction, and avoids aliasing effects when
α < 1. The smallest atoms generally represent high frequency details in
the image, and are located towards the end of the stream. The MP encoder
initially sorts atoms along their decreasing order of magnitude, and scaling
does not change this original arrangement.

Finally, scaling operations are quite close to image editing applications.
The main difference is in the use of the scaling property. Scaling will be
used at a server, within intermediate network nodes, or directly at the
client in transcoding operations, while it could be used in the authoring
tool for editing. Even in editing, the geometry-based expansion provides
an important advantage over conventional downsampling or interpolation
functions, since there is no need for designing efficient filters. Other image
editing manipulations, such as rotation of the image, or zoom in a region
of interest, can easily be implemented following the same principles.

The simple spatial adaption procedure is illustrated in Fig. 8.13, where
the encoded image of size 256×256 has been re-scaled with irrational factors√

1
2 and

√
2. The smallest atoms have been discarded in the down-scaled

image, without impairing the reconstruction quality. The up-scaled image
provides a quite good quality, even if very high-frequency characteristics
are obviously missing since they are absent from the initial (compressed)
bit-stream. Table 8.1 shows rate-distortion performance for spatial resiz-
ing of the 256× 256 Lena image compressed at 0.3 bpp with the proposed
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Figure 8.13: Lena image of size 256 × 256 encoded with MP at 0.3bpp (center),

and decoded with scaling factors of
√

1
2

(left) and
√

2 (right).

Matching Pursuit coder, and JPEG-2000. It presents the PSNR values
of the resized image, as well as the rate after transcoding. It also shows
the PSNR values for encoding directly at the target spatial resolutions, for
equivalent rates. The PSNR values have been computed with reference
to the original 512 × 512 pixel Lena image, successively downsampled to
256 × 256 and 128 × 128 pixel resolutions. This is only one possibility
for computing the low resolution reference images and other more com-
plex techniques, involving for example filtering and interpolation, could be
adopted. The choice of such a low resolution reference image was done in
order not to favour one algorithm or the other. If a Daubechies 9/7 filter
had bee chosen, JPEG would have given better results. On the contrary,
if a Gaussian filter had been chosen, MP would have given better results.
Note that the transcoding operations for JPEG-2000 are kept very simple
for the sake of fairness; the high frequency subbands are simply discarded
to get the lowest resolution images.

Table 8.1 clearly shows that our scheme offers results competitive with
respect to state-of-the-art coders like JPEG-2000 for octave-based down-
sizing. In addition it allows for non-dyadic spatial resizing, as well as easy
up-scaling. The quality of the down-scaled images are quite similar, but
the JPEG-2000 transcoded image rate is largely superior to the MP stream
one. The scaling operation does not significantly affect the quality of the
image reconstruction from MP streams. Even in the up-scaling scenario,
the transcoded image provides a very good approximation of the encoding
at the target (higher) resolution. In the JPEG-2000 scenario however, the
adaptation of the bitstream has a quite big impact on the quality of the
reconstruction, compared to an encoding at the target resolution. Note
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Encoder 128x128 256x256 512x512
Matching Pursuit PSNR 27.34 30.26 27.5

Rate [bpp] 0.8 0.3 0.08
PSNR w/o tr. 27.4 30.26 27.89

JPEG-2000 PSNR 27.18 29.99 -
Rate [bpp] 1.03 0.3 -

PSNR w/o tr. 33.75 29.99 -

Table 8.1: Comparison of spatial adaptivity of the MP encoder and JPEG-2000.
PSNR values are compared to quality obtained without transcoding (w/o tr.).

however that the PSNR value is highly dependent on the choice of the ref-
erence images, which in this case are simply downsampled from the original
version.

Rate scalability

Matching Pursuit offers an intrinsic multiresolution advantage, which can
be efficiently exploited for rate adaptivity. The coefficients are by nature
exponentially decreasing so that the stream can simply be truncated at any
point to provide a SNR-adaptive bitstream, while ensuring that the most
energetic atoms are kept. The simplest possible rate adaption algorithm
that uses the progressive nature of the Matching Pursuit stream works as
follows. Assume an image has been encoded at a high target bit-rate Rb,
using the rate controller described in Sec. 8.3.1. The encoded stream is
then restricted to lower bit budgets rk, k = 0, . . . , K by simply dropping
the bits rk + 1 to Rb. This simple rate-adption, or filtering operation is
equivalent to dropping the last iterations in the MP expansion, focusing on
the highest energy atoms.

Figure 8.14 illustrates the rate adaptivity performance of the MP en-
coder. Images have been encoded with MP at a rate of 0.17 bpp and
truncated to lower rates rk. For comparison, the bitstream has also been
encoded directly at the different target rates rk, as described in Sec. 8.3.1.
It can be seen that there is a very small loss in PSNR with respect to the
optimal MP stream at the same rate. This loss is due to the fact that
the rate truncation simply results in dropping iterations, without using the
optimal quantizer settings imposed by rates rk as proposed in Sec. 8.3.1.
The quantization parameters are not optimal anymore with respect to the
truncation rate, but the penalty is quite low away from very low coding
rates. The loss in performance is larger for images that are easier to code,
since the decay of the coefficients is faster. Nevertheless, both optimal and
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Figure 8.14: Rate-distortion characteristics for MP encoding of the 256×256 Bar-
bara and Cameraman images at 0.17 bpp, and truncation/decoding at different
(smaller) bit rates.

truncated rate-distortion curves are quite close, which shows that a simple
rate adaption method, though quite basic, is very efficient.

Finally, rate scalability is also almost automatic for the color image
stream. Fig. 8.15 shows the effects of truncating the MP expansion at
different number of coefficients. It can be observed again that the MP
algorithm will first describe the main objects in a sketchy way (keeping the
colors) and then it will refine the details.

8.4 Discussions and conclusions

8.4.1 Discussions

The results presented in this chapter show that redundant expansions over
dictionaries of non-separable functions may represent the core of new break-
throughs in image compression. Anisotropic refinement and orientation of
dictionary functions allow for very good approximation rates, due to their
ability to capture two-dimensional patterns, especially edges, in natural
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(a) 50 coefficients (b) 150 coeffi-
cients

(c) 500 coefficients

Figure 8.15: Matching Pursuit bitstream of sail image decoded after 50, 150 and
500 coefficients.

images. In addition, multidimensional representations may generate less
annoying artifacts than wavelet or DCT transforms, that introduce ringing
or blocking artifacts at low rates.

Matching Pursuit is however just one (sub-optimal) method that al-
lows to solve the NP-hard problem of finding the best signal expansion in
an overcomplete dictionary. It provides a computationally tractable solu-
tion with a very simple decoder implementation, and has the advantage
to generate a scalable and progressive bitstream. Due to its greedy na-
ture, Matching Pursuit however presents some limitations at high rate. An
hybrid scheme could help in high bit rate coding, and provide a simple
solution to the limitations of Matching Pursuit.

Finally, the image encoder presented in this chapter mainly aims at il-
lustrating the potential of redundant expansions in image compression. It
has been designed in order to provide scalable streams, and this require-
ment limits the encoding options that could be proposed, and thus possibly
the compression efficiency. It is clear that the proposed Matching Pursuit
encoder is not fully optimized, and that numerous research problems re-
mains to be solved, before one can really judge the benefit of redundant
transforms in image compression. The approximation rate has been proven
to be better than the rate offered in the orthogonal transform case, but the
statistics of coefficients in subband coding, for example, present a large ad-
vantage in terms of compression. It is thus too early to claim that Matching
Pursuit image coding is the next breakthrough in terms of compression, but
it already presents an very interesting alternative, with competitive qual-
ity performance and increased flexibility. The current coding scheme of
the MP coefficients is not optimal, contrarily to the very efficient coding
of wavelet coefficients in JPEG-2000. The advantage of the multidimen-
sional decomposition in terms of approximation rate, is thus significantly
reduced under a rate-distortion viewpoint. The design of better coding
scheme, carefully adapted to the characteristics of the Matching Pursuit
representation, however represents a challenging research problem.
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8.4.2 Extensions and future work

One of the striking advantages of using a library of parameterized atoms is
that the reconstructed image becomes parameterized itself: it is described
by a list of geometrical features, together with coefficients indicating the
”strength” of each term. This list can be manipulated, as explained in Sec-
tion 8.3.4. But these features can be used to perform many other different
tasks. For example, these features can be thought of as a description of
the image and can thus be used for recognition or classification. The de-
scription could also be easily manipulated or altered to encrypt the image
or to insert an invisible signature.

The ideas of using redundant expansions to code visual information
could be further extended to video signals. In this case, the coder can
follow two main design strategies, one based on motion estimation, the
other based on temporal transform. In the first case, a Matching Pursuit
encoder can be used to code the residue from the motion estimation stage.
The characteristics of this residue are however quite different than the
features present in natural images. The dictionary need to be adapted
to this mainly high frequency motion noise. In the scenario where the
coding is based on a temporal transform, Matching Pursuit could work
with a dictionary of three-dimensional atoms, where the third dimension
represent the temporal component. In this case, atoms live in a block of
frames, and the encoder works very similarly to the image encoder.
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