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Abstract

Latent Semantic Indexing (LSI) is a well established and effective framework for conceptual informa-
tion retrieval. In traditional implementations of LSI the semantic structure of the collection is projected
into the k-dimensional space derived from a rank-k approximation of the original term-by-document ma-
trix. This paper discusses a new way to implement the LSI methodology, based on polynomial filtering.
The new framework does not rely on any matrix decomposition and therefore its computational cost and
storage requirements are low relative to traditional implementations of LSI. Additionally, it can be used
as an effective information filtering technique when updating LSI models based on user feedback.
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1 Introduction

The vast amount of electronic information that is available today requires effective techniques for accessing

relevant information from it. The methodologies developed in information retrieval aim at devising effective

means to extract relevant documents in a collection when a user query is given. Typically, information is

retrieved by literally matching terms among a user’s query and all available documents. However, information

retrieval techniques based on exact literal matching may be inaccurate due to the problems of word usage. It

is common that a set of different words is used to express the same concept (synonymy). On the other hand,

a word may have several different meanings (polysemy) depending on the context. This word variability may

obscure the conceptual structure of the collection.

LSI [7] has been successful in addressing this problem by revealing the underlying semantic content of

collection documents. It is implemented by projecting the original term-by-document matrix into a reduced

rank space by means of a truncated singular value decomposition, which diminishes the obscuring “noise” in

word usage. Thus, the retrieval is based on the semantic content of the documents rather than their lexical

content. As a consequence, a relevant document may be retrieved even if it does not share any literal terms

with the user’s query.

Most of the current implementations of LSI rely on matrix decompositions (see e.g., [3],[13]), with the

truncated SVD (TSVD) being the most popular [1],[2]. In TSVD it is assumed that the smallest singular

triplets are noisy and therefore only the largest singular triplets are used for the rank-k representation of

the term-by-document matrix A. We show that a technique based on polynomial filtering can render the
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same effect as TSVD, without resorting to the costly SVD decomposition. Polynomial filtering offers several

advantages including low computational and storage requirements.

Relevance feedback is a mechanism that is incorporated into LSI techniques to enhance its perfor-

mance. It uses information extracted from relevant documents to modify the original query in order to allow

better retrieval performance. We show that a relevance feedback mechanism can be easily retrofitted to LSI

techniques based on polynomial filtering.

The remaining sections of this paper are organized as follows: Section 2 provides an overview of the

vector space model and the LSI approach based on truncated SVD. In Section 3 the implementation of

LSI using polynomial filtering is described and in Section 4 the relevance feedback mechanism is discussed.

Finally, Section 5 provides a few numerical results illustrating the advantages characterizing the proposed

scheme.

2 Vector space models and LSI

Assume that we have a collection of m terms and n documents and let fij be the frequency of term i in

document j. The collection can be represented by an m× n term-by-document matrix

A = [aij ]

where aij is the weight of term i in document j. A term-by-document matrix is in general very sparse since

each term occurs only in a subset of documents. A term weight has three components: local, global, and

normalization. Let

aij = LijGiNj

where Lij is the local weight for term i in document j, Gi is the global weight for term i, and Nj is the

normalization factor for document j. The local weight Lij is a function of how many times the term i

appears in document j. The global weight Gi characterizes how often term i appears in the collection.

The normalization factor Nj compensates for length variability among different documents. Since weighting

schemes are critical to the performance of the vector space model, several of them have been developed in

the literature, see, e.g., [4].

A query is represented as a pseudo-document in a similar form, q = [qj ], where qj represents the weight

of term i in the query. After we have weighted the documents and the query, we can measure the similarity

between the query q and a document vector dj by computing their inner product. This similarity measure

is related to the angle θj between these two vectors, defined from the relation,

〈dj , q〉 = d>j q = ‖dj‖2‖q‖2 cos θj ,

and it is maximized when they are collinear. Hence, ranking all documents in the collection will simply

necessitate computing the n-dimensional similarity vector

s = A>q .

The vector space model is a quite simple and computationally attractive scheme for information retrieval, but

it has major drawbacks which make it ineffective in practice. Its main weakness comes from its underlying

assumption that the query and its relevant documents will share common terms so that it is sufficient to look

for exact term matches. However, this is not always the case because of word variability. This is precisely

the problem addressed by LSI.
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In the classical LSI approach, the vector space model is improved by replacing the original term-by-

document matrix by a low-rank approximation derived from its truncated Singular Value Decomposition

(SVD). The SVD of a rectangular m× n matrix A of rank r, can be defined as

A = UΣV >, (1)

where U = [u1, ..., um] and V = [v1, ..., vn] are unitary matrices and Σ = diag(σ1, σ2, ..., σn), σ1 ≥ σ2 ≥ ... ≥

σr > σr+1 = ... = σn = 0. The σi’s are the singular values of A and the ui’s and vi’s are, respectively, the

left and right singular vectors associated with σi, i = 1, ..., r. We define the i-th singular triplet of A as

{ui, σi, vi}. It follows from the decomposition that the matrix A can be expressed as a sum of r rank-one

matrices as,

A =
r
∑

i=1

σiuiv
>
i .

Additionally, it is known that

min
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F

where Ak =
∑k

i=1 σiuiv
>
i [11]. It is helpful for what follows to rewrite the matrix Ak as

Ak = UkΣkV
>
k , (2)

where Uk (resp. Vk), consists of the first k columns of U (resp. V ), and Σk is a diagonal matrix of size

k × k. Thus, if we truncate the SVD to keep only the k largest singular triplets we obtain the closest (in a

least-squares sense) approximation to A. This leads to the new similarity vector

sk = A>k q = VkΣkU
>
k q . (3)

It is assumed that the reduced rank representation of the matrix helps reveal the underlying semantic

structure of the collection and remove the noise due to word usage. The subspace spanned by the columns

of Uk and Vk is called term-space and document-space respectively. In LSI, a user’s query is represented as

the sum of term vectors indicated by the terms included in the query, scaled by the singular values, i.e.

q̂ = q>UkΣk, (4)

where q is a vector containing the weighted term frequencies of query terms. Using the cosine similarity

measure, the query vector q̂ is compared against all the document vectors in the document space and the

list of returned documents is sorted according to the value of the similarity measure.

One important issue when implementing LSI with TSVD, is the selection of the parameter k. This

remains an open problem in information retrieval. In practice, k is chosen to be significantly less than

min(m,n) which has the obvious advantage of reducing the computational cost of the method as well as its

storage requirements. However, the matrices Uk and Vk are dense and k must be kept small in order for

the TSVD method to be practically feasible. However, the optimal value of k may be much larger than the

value of k that the computational constraints impose.

Because of the high computational cost of TSVD, substantial research efforts have recently been de-

voted to the use of alternative matrix decomposition methods that will reduce the cost and/or the storage

requirements of truncated SVD approach while maintaining its performance quality (see e.g., [13]). However,

these methods, indeed all methods which rely on matrix decompositions, also incur a non negligible extra

cost related to the frequent updates of the decomposition when terms or documents are added or removed

from the collection. This update cost can be as high as that of the entire re-computation of the SVD.
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3 Latent Semantic Indexing by Polynomial Filtering

Polynomial filtering allows to closely simulate the effects of the reduced rank approximation used in LSI

models. Let q be the user’s query vector. In order to estimate the similarity measurement, we use a

polynomial φ of A>A and consider:

s = φ(A>A)A>q

= φ(V Σ>ΣV >)V Σ>U>q

= V φ(Σ>Σ)V >V Σ>U>q

= V φ(Σ>Σ)Σ>U>q. (5)

Compare the above expression with (3). Choosing the function φ(x) appropriately will allow us to interpretate

this approach as a compromise between the vector space and the TSVD approaches. Assume now that φ

is not restricted to being a polynomial but can be any function (even discontinuous). When φ(x) = 1 ∀x,

then φ(Σ>Σ) becomes the identity operator and the above scheme would be equivalent to the vector space

model. On the other hand, taking φ to be the step function

φ(x) =

{

0, 0 ≤ x ≤ σ2k
1, σ2k ≤ x ≤ σ21

(6)

results in φ(Σ>Σ) =

[

Ik 0

0 0

]

where Ik is the identity matrix of size k and 0 is a zero matrix of an

appropriate size. Then equation (5) may be re-written as:

s = V φ(Σ>Σ)Σ>U>q

=
[

Vk Vn−k
]

[

Σ>k 0

0 0

] [

U>k
U>m−k

]

q

=
[

VkΣ
>
k 0

]

[

U>k
U>m−k

]

q = VkΣ
>
k U

>
k q

= A>k q

which is precisely the rank-k approximation provided by the TSVD method.

Using the above framework when φ is a polynomial, the estimation of the similarity measurement

simplifies to a series of matrix vector products, where the corresponding matrix and vector are very sparse.

This can be implemented very efficiently using data structures that exploit sparsity. Therefore, the approach

of polynomial filtering in LSI models can a result that is close to that of TSVD without resorting to the

costly SVD or any other matrix decomposition. Furthermore, the need to store additional (dense or sparse)

matrices as is the case in TSVD, is completely avoided as is the need to update these matrices when entries

of A change.

The selection of the cut-off point is somewhat similar to the issue of choosing the parameter k in the

TSVD method. However, there is a salient difference between the two: choosing a large k in TSVD may

render the method much more expensive, while selecting a high cut-off in polynomial filtering does not affect

cost significantly.

3.1 Approximating the step function

We now consider ways of approximating the ideal step function φ given in (6) using a polynomial φ̂. One

approach would be to discretize the step function in the interval [0, b], with b ≡ σ21 , and then to find the
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coefficients of the polynomial which interpolates the produced data points in a least-squares sense. As is

well-known (see also below) this approach will produce a polynomial with potentially large fluctuations

between the data points resulting in a poor retrieval performance.

Another approach is to rely on Hermite interpolation by imposing smoothness conditions at both

endpoints of the interval. Assume that we enforce the following conditions at endpoints 0 and b,

φ̂(0) = 0, φ̂(1)(0) = φ̂(2)(0) = · · · = φ̂(i)(0) = 0

φ̂(b) = 1, φ̂(1)(b) = φ̂(2)(b) = · · · = φ̂(j)(b) = 0

Using the above i+j+2 conditions, we can employ Hermite interpolation in order to determine the coefficients

of a polynomial of degree i+ j+1 that will satisfy the given constraints. The derived polynomial φ̂(x) moves

from 0 to 1, as x moves from 0 to b. It can be shown [9] that the critical point, called inflexion point, where

φ̂ moves rapidly from 0 to 1 is at:

tinfl =
b

1 + j/i
or

j

i
=

b

tinfl
− 1. (7)

Therefore, the ratio j
i determines the localization of the inflexion point. This approach has the disadvantage

that the degree of the polynomial needs to become adequately large in order for the approximation to be

qualitative.

The most successful approach when approximating a function with polynomials, is the piecewise poly-

nomial approximation where instead of using only one large degree polynomial on the whole interval, we use

several smaller degree polynomials at appropriate subintervals of the original interval. The problem with

the piecewise polynomials is that they cannot be easily evaluated when their argument is a matrix. Erhel

et al in [9] suggest a new technique, called PPF, which approximates any piecewise polynomial filter by a

polynomial in some least-squares sense. This technique is used in [9] for solving ill-conditioned linear systems

in image restoration where the problem matrix is symmetric semi-positive definite with a large number of

singular values close to zero and the right-hand side vector is perturbed with noise. In this paper we apply

a similar technique in the totally different context of information retrieval. We provide more details about

this technique in the next subsection.

3.2 Piecewise polynomial filters

In this section we give a brief description of the least-squares polynomial filtering technique. The reader is

referred to [9] for a thorough analysis of the methodology. Let Pk+1,2 be the set of polynomials p of degree

k + 1 such that p(0) = p′(0) = 0, i.e. Pk+1,2 = 〈t2, · · · , tk+1〉. The proposed iterative algorithm builds a

sequence of polynomials φk ∈ Pk+1,2 which approximates the ideal function φ in a least-squares sense,

φk(t) =

k
∑

j=1

〈φ, Pj〉Pj(t), (8)

where {Pj} is a basis of orthonormal polynomials for some L2 inner-product, denoted by 〈·, ·〉. The L2-inner

product can be selected appropriately so that its computation can be done without resorting to numerical

integration. In order to do this, we subdivide the interval [0, b] into L subintervals such that

[0, b] =
L
⋃

l=1

[al−1,al
], with a0 = 0, aL = b (= σ21)).
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The inner product on [0, b] is equal to the weighted sum of the inner products on each subinterval [al−1, al].

Each of these inner products in turn is computed using expansions in the basis of Chebyshev polynomials of

the approximation. Since Chebyshev polynomials are orthogonal in each sub-interval, numerical integration

is avoided.

A Krylov subspace [12, ch.6] Km of a square matrix C with respect to r0, is defined as

Km(C, r0) ≡ span{r0, Cr0, C
2r0, . . . , C

m−1r0}.

Observe now that the filtered vector φk(C)r, where C = A>A and r = A>q, belongs to the Krylov subspace

Rk(C, r) ≡ Kk(C,C
2r).

In order to compute the basis of orthogonal polynomials {Pj} we use the Stieljes procedure [6] for constructing

orthogonal polynomials using a 3-term recurrence

Pj+1(t) =
1

βj+1
[tPj(t)− αjPj(t)− βjPj−1(t)] ,

for j = 1, . . . ,m. There is a strong connection between the filtered space Rk(C, r) and the polynomial space

Pk+1,2. The correspondence is:

φk ∈ Pk+1,2 → φk(C)r ∈ Rk(C, r). (9)

This mapping has the important advantage that we can provide the Krylov subspace Rk(C, r) with an inner

product that is derived from the polynomial space. Furthermore, we can compute the Lanczos [5] sequence

vj = Pj(C)r, via a 3-term recurrence where the scalars αj ’s and βj ’s are computed by the Stieljes procedure.

The sequence of vectors rk = φk(C)r is in the filtered space Rk(C, r). If we let γj = 〈φ, Pj〉 then using

equation (8) we get the expansion

rk =

k
∑

j=1

γjvj .

At this point we can describe the algorithm PPF which is sketched in Table 1. Observe that the same scalars

αk and βk are used in the Stieljes procedure (line 9) and the Lanczos process (line 10). This is due to the

mapping (9).

4 Relevance feedback in Latent Semantic Indexing

Standard implementations of LSI offer the users the ability to associate terms and document according to

their preferences. Substantial research efforts (see e.g. [14], [8]) have been devoted to improving LSI with the

additional feature of allowing the model to update itself based on user feedback. This can be accomplished

via the relevance feedback mechanism. Relevance feedback uses the terms in relevant documents to modify

the user’s original query to achieve better retrieval performance. In the sequel, we analyze the relevance

feedback in the TSVD implementation of LSI and then describe how the relevance feedback mechanism can

be retrofitted into a polynomial filter–based LSI method.

4.1 Relevance feedback in TSVD

Let d ∈ Rn be a vector whose nonzero elements are indices specifying the relevant document vectors. In

TSVD the relevant feedback query is modified from the original query given in (4) by adding to it the sum

of relevant documentv vectors. In particular, the modified query is

q̃ = q>UkΣk + d>Vk. (10)
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Algorithm PPF: Piecewise Polynomial Filter

Input: φ piecewise polynomial on [0, b]
Output: the approximation rk to the filtered
vector φ(C)r.

1. β1 = 〈t
2, t2〉

1
2

2. P1(t) =
1
β1
t2

3. γ1 = 〈φ, P1〉
4. v1 =

1
β1
C2r, v0 = 0

5. r1 = γ1v1
6. For k = 1, ... Do:

7. Compute tPk(t)
8. αk = 〈tPk, Pk〉
9 Sk(t) = tPk(t)− αkPk(t)− βkPk−1(t)
10. sk = Cvk − αkvk − βkvk−1
11. βk+1 = 〈Sk,Sk〉

1
2

12. Pk+1(t) =
1

βk+1
Sk(t)

13. vk+1 =
1

βk+1
sk

14. γk+1 = 〈Pk+1, φ〉
15. rk+1 = rk + γk+1vk+1
16. End

Table 1: The PPF algorithm for least-squares polynomial filtering.

Therefore the new similarity vector used for ranking the collection documents becomes

s′ = Vkq̃
> = Vk(ΣkU

>
k q + V >k d) = s+ VkV

>
k d

where s is the original similarity vector. Assuming that A has full rank, we can expand d in the basis of the

right singular vectors vi of A. Then d =
∑n

i=1 γivi, where γi = v>i d and since Vk = [v1, ..., vk] it holds that,

VkV
>
k d = VkV

>
k

[

n
∑

i=1

γivi

]

= VkV
>
k

[

k
∑

i=1

γivi +

n
∑

i=k+1

γivi

]

=
k
∑

i=1

γivi

since VkV
>
k is an orthogonal projector. Therefore, the relevance feedback component added to the new

similarity measurement s′ has components only in the directions of the right singular vectors associated with

the k largest singular values.

4.2 Relevance feedback with polynomial-filters

Following the analysis of Section 3, the polynomial φ has been designed such that when it is applied on a

vector d, it dampens its components that correspond to the smallest singular values. Therefore, it is possible

to use polynomial filtering to produce the action of the projection VkV
>
k d employed in the relevance feedback

mechanism of TSVD, without having the matrix Vk available. Observe that:

φ(A>A)d = φ(V Σ>ΣV >)d = V φ(Σ>Σ)V >d .
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MEDLINE CRANFIELD TIME
No of doc. 1033 1398 425
No of terms 8322 5204 13057
No of queries 30 225 83

Navg 23.2 8.17 3.9
Sparsity (%) 0.63 1.08 1.6

Table 2: Characteristics of the datasets. Navg denotes the average number of relevant documents per query.

Choosing φ as in equation (6) it follows that,

V φ(Σ>Σ)V >d ≈
[

Vk Vn−k
]

[

Ik 0
0 0

]

V >d

=
[

Vk 0
]

[

V >k
V >n−k

]

d = VkV
>
k d .

Therefore, polynomial filtering allows to incorporate relevance feedback in LSI models in an efficient manner

without resorting to the costly SVD. The numerical results which follow, indicate that the retrieval perfor-

mance using polynomial filtering techniques both for LSI and for LSI with relevance feedback, can compete

with the TSVD implementations. At the same time, the computational and storage costs of these methods

can be much lower than those of the SVD-based counterparts. For example, in terms of storage, the new

methods require only a handful of vectors to be saved. Also there is no factorization to update when the

matrix A changes.

5 Numerical results

In this section we compare the retrieval performance of the following four methods: TSVD-RF and TSVD

implementing LSI with truncated SVD with and with relevance feedback respectively, as well as PPF-RF

and PPF implementing LSI via polynomial filtering with and without relevance feedback accordingly. The

PPF methods were implemented in C++ and the TSVD methods were implemented in Fortran 77. For

the truncated SVD calculation we used the dlansvd irl routine from PROPACK1, a Fortran 77 software

package for large-scale SVD computations based on Lanczos bidiagonalization.

The numerical experiments were performed under Linux 2.4.21 in a workstation with a PIII processor @

933 MHz, 256 KB cache and 512 MB memory. We used the MEDLINE, CRANFIELD and TIME collections,

which are publicly available2. The characteristics of the three datasets are tabulated in Table 2. Notice that

all matrices are very sparse, with the number of non zero entries less than 2%. The term-by-document

matrices for all collections were created using the TMG tool [15]. In the parsing phase, we employed the

option of stemming [10] and as a stoplist, SMART’s English stoplist.

In order to introduce the performance metric used in the experiments, we need to define two important

factors, precision and recall. Consider a ranked list of documents returned by an information retrieval

method. Observing the first i (window size=i) documents, we define precision as the ratio Pi =
ri

i , where

ri is the number of relevant documents among the top i documents. Similarly, we define recall as the ratio

Ri =
ri

rq
, where rq is the total number of relevant documents to the specific query in the collection. The last

number can be estimated by the relevance judgement for each query that comes with each test collection. In

1http://soi.stanford.edu/∼rmunk/PROPACK/index.html
2All collections are available from ftp://ftp.cs.cornell.edu/smart/
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other words, precision is the proportion of the top i documents that are relevant and recall is the proportion

of all relevant documents in the collection that are retrieved. Both precision and recall take values in the

interval [0, 1].

A common performance metric used in literature is the n-point interpolated average precision defined

as
1

n

n−1
∑

i=0

p̄

(

i

n− 1

)

, where p̄(x) = max
(ri/rn)≥x

Pi. (11)

In practice, the n = 11-point interpolated average precision is used for each query separately. Another typical

performance metric for collection with multiple queries is the precision-recall diagram, where we measure

the pairs (Ri,Pi) at various values of the window size i. This is done for each query individually and then

averaged over all queries.

In all the following experiments we employed the log local weighting scheme and entropy global term

weighting scheme [4]. The log × entropy weighting scheme has been experimented over five test collections

and was 40% more effective than raw term weighting [2]. Additionally, we normalized the columns of A. In

what follows, we model the inflexion point of Hermite interpolation applied on the whole interval [0, b] as

tinfl = ηb, where η expresses the percentage of the interval where the cut-off point will be located. This is

somewhat similar to choosing k in the TSVD method. Then we use equation (7) in order to determine the

ratio j/i = 1/η − 1.

In PPF we used two subintervals. Thus, we have to choose an additional parameter a which is the

right endpoint of the first interval. The first piece is a Hermite interpolating polynomial and the second

piece is equal to 1. The parameter a was set to 2ηb. We kept the same inflexion point tinfl = ηb as described

in the case of Hermite interpolation applied on the whole interval, which results in j/i = 1.

Example A. In this example we explore ways to determine the degree of the polynomial in the PPF

method. Given the desired inflexion point we exploit the ratio j/i of equation (7). Thus, we have the

flexibility to determine the actual value of i and j provided that their ratio satisfies equation (7). Therefore

the degree of the resulting polynomial will be in the general case dγi+γj+1e, where γ is a scalar multiplicative

factor that acts both on i and j and has no effect on the ratio between them.

We plot precision-recall curves for various values of γ, experimented on all datasets. We used k =

50, which resulted in η = 0.0929 for the MEDLINE, η = 0.0779 for the TIME and η = 0.0484 for the

CRANFIELD collection. Tables 3 and 4 depict the mean average precision and the corresponding query

times achieved by the PPF and PPF-RF methods. We use the term query time to denote the total time

required by a certain method to process all the available queries in the collection.

Observe in Figure 1 for the MEDLINE dataset, that increasing γ to more than 2 is not very helpful in

terms of precision-recall and mean average precision. On the other hand, according to Figure 2 corresponding

to the CRANFIELD dataset, the precision-recall curve for γ = 3 is much better than the one corresponding

to γ = 2. This is also illustrated in the PPF-RF case, by the mean average precision improvement from

0.5172 to 0.6045, at a cost of timing increase from 57.59 to 84.91 sec. Additionally, it appears that further

increase of γ is worthless. Concerning the TIME collection depicted in Figure 3, the choice of γ = 2 seems

to be the most beneficial in terms of precision and cost. It also appears that for larger values of γ than 4

may lead to poor performance due to overfitting.

Example B. In this example we explore the effectiveness of all methods, in terms of computational

cost and precision. We experiment with various values of the dimension k of the TSVD, and measure the

mean average precision and the corresponding query time. The parameter η which is responsible for the

9



MEDLINE CRANFIELD TIME
γ PPF PPF-RF PPF PPF-RF PPF PPF-RF

1 0.814 0.961 0.270 0.368 0.558 0.972
2 0.835 0.969 0.336 0.517 0.664 0.998
3 0.819 0.928 0.383 0.604 0.681 0.998
4 0.817 0.846 0.388 0.661 0.568 0.952

Table 3: Mean average precision for γ = 1, 2, 3 and 4, experimented on all datasets.

MEDLINE CRANFIELD TIME
γ PPF PPF-RF PPF PPF-RF PPF PPF-RF

1 2.28 4.5 24.41 43.71 10.95 19.34
2 3.21 5.93 31.1 57.59 14.09 26.08
3 3.94 7.12 37.9 84.91 16.54 31.71
4 4.66 8.47 44.28 90.6 20.12 37.27

Table 4: Query times (sec) for γ = 1, 2, 3 and 4, experimented on all datasets.
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Figure 1: Precision-recall curves for various values of γ, on the MEDLINE collection. Left plot: PPF. Right
plot: PPF-RF.
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Figure 2: Precision-recall curves for various values of γ, on the CRANFIELD collection. Left plot: PPF.
Right plot: PPF-RF.
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Figure 3: Precision-recall curves for various values of γ, on the TIME collection. Left plot: PPF. Right plot:
PPF-RF.
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Figure 4: A comparison of all methods for k = 20 : 20 : 300, on the MEDLINE collection (30 queries). Left
plot: mean average precision. Right plot: timings (in sec).

localization of the inflexion point, is determined by η =
σ2

k

b . Using equation (7) this results in i = j; we

employed γ = 3.

Figure 4 illustrates the mean average precision and corresponding query times versus k = 20 : 20 : 300,

experimented on the MEDLINE collection. Observe that the PPF methods compete their TSVD counterparts

in terms of precision, and clearly outperform them in terms of query times. Figures 5 and 6 illustrate the

same measurements for the CRANFIELD and TIME datasets respectively. In both cases, notice again that

the PPF methods offer comparable precision to TSVD methods, at a much lower cost. Finally, observe that

in the CRANFIELD case, the query time of PPF intersects the timing curve of TSVD at a higher level than

in Figure 4. This is due to the large number of queries (225) of the current collection.

Example C. In the sequel, we proceed with another experiment which compares all methods in terms

of precision-recall curves. We employed a typical value for k, namely k = 50 for all datasets. The results

are illustrated in Figure 7. Notice that in the majority of cases, PPF methods achieve better results than

the TSVD methods. It seems that both PPF methods present much better retrieval performance than

their TSVD counterparts, especially for the CRANFIELD and TIME datasets. Observe also in the TIME

plot, that the recall levels (horizontal axis) are high from the very beginning. This is due to the fact that

Navg = 3.9, as illustrated in Table 2. This means that the average number of relevant documents per query

is modest, causing the initial levels of recall to be high.

We have begun to explore the interesting issue of the effectiveness of the PPF methods for much larger
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Figure 5: A comparison of all methods for k = 20 : 20 : 300, on the CRANFIELD collection (225 queries).
Left plot: mean average precision. Right plot: timings (in sec).
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Figure 6: A comparison of all methods for k = 20 : 20 : 300, on the TIME collection (83 queries). Left plot:
mean average precision. Right plot: timings (in sec).
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Figure 7: Precision-recall curves for all methods averaged over all queries. Top-Left plot: MEDLINE dataset.
Top-Right plot: CRANFIELD dataset. Bottom: TIME dataset.

data sets, such as the TREC3 collections. Though we expect that the conclusions will be similar, we also

note that evaluating the performance of LSI-related methods on such sets is challenging in the absence of

reliable and comprehensive relevance information.

6 Conclusion

A new methodology for implementing LSI was presented, which does not rely on any matrix decomposition

of the term-by-document matrix. The method has appealing computational cost and storage requirements.

In addition, because there is no matrix factorization, there is no need for any updates as is the case for

methods based on SVD or other decompositions. The numerical experiments indicate that the proposed

framework has robust retrieval performance characteristics and is very competitive with the truncated SVD

implementations of LSI. Finally, the method is able to incorporate relevance feedback allowing even better

retrieval performance.
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