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ABSTRACT 
 

Non-rigid registration algorithms have been proposed 
over the years to register medical images to each other. 
One class of applications for these algorithms is the 
automatic segmentation of structures and substructures 
using a predefined atlas. But these algorithms have been 
limited to image volumes without gross abnormalities or 
pathologies and have thus been of limited use for 
applications such as the automatic segmentation of 
radiation sensitive structures for radiation therapy 
planning. The algorithm we present in this paper is an 
extension of a non-rigid registration algorithm we have 
previously developed (the Adaptive Basis Algorithm). 
This extension permits the use of the algorithm for the 
automatic segmentation of medical images even when 
structures have been displaced substantially. The 
algorithm automatically adjusts the stiffness of the 
transformation to permit larger displacements over 
regions that are known to be very compliant and smaller 
displacements over regions that are known to be less 
compliant. The stiffness map can be defined once and for 
all in an atlas. The algorithm has been tested and 
evaluated on head image volumes with large ventricular 
enlargements and head image volumes with large space-
occupying lesions. 

 

1. INTRODUCTION 
 

Non-rigid inter-subject brain registration has been an 
important research topic during the last decade. A 
potential application, particularly useful in radiation 
therapy or neurosurgical planning, is the automatic 
delineation of brain structures and substructures using 
atlas-based methods. In this approach, structures of 
interest are labeled in a reference brain also called the 
atlas. The atlas is then registered to a subject’s image 
volume. This establishes a point-to-point correspondence 
between the atlas and the patient’s image volume. This, in 
turn, permits the transfer of labels from the atlas to the 
patient’s volume. So far, methods proposed to solve this 

problem have been of limited use for patients with gross 
abnormalities or with extremely large ventricles. 
 

 
Figure 1:  MR volume used in this study. 

 

Figure 1 illustrates two examples of volumes used in this 
study. The left panel shows a large space-occupying 
lesion that has deformed its surrounding structures. The 
right panel shows one slice in a volume with enlarged 
ventricles. The challenges one faces when trying to 
register a normal volume to one of these are twofold: (1) 
the tumor does not exist in the atlas and (2) ventricular 
enlargement does not always happen by pushing and 
compressing surrounding structures. Often, cerebral 
matter simply disappears. Trying to compute a 
transformation that warps the atlas onto the patient 
volume may thus appear to be a futile exercise. But, as 
will be shown, the method we propose permits the 
accurate and automatic registration of an atlas with this 
type of image volume. We note that methods have been 
proposed earlier to register an atlas to volumes with 
space-occupying lesions (see for instance [1]). However, 
these require seeding the atlas with a pseudo-tumor and 
are thus not fully automatic. 
 

2. METHOD 
 

The method we propose is an extension of a non-rigid 
registration algorithm we have recently developed (Rohde 
et al. [2]). We modify this algorithm in two ways (1) we 
enforce the bijectivity of the transformations we compute 
and (2) we adapt the mechanical properties (i.e., the 
stiffness) of the transformation spatially. 
 

2.1. Bijectivity constraints 
 

Techniques have already been proposed to compute 
bijective transformations. In [3], Christensen et al. 
compute the forward and the backward transformations 
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simultaneously and enforce consistency between these 
transformations. Thirion et al. [4] following the approach 
suggested by Burr et al. [5] compute the forward and the 
backward transformations independently but modify these 
transformations at each iteration to maintain their 
compatibility. It is the latest approach we have followed 
in this work. 
 

2.2 The automatic adjustment of the stiffness of the 
transformation 
 

Most of the techniques proposed so far for non-rigid 
registration uniformly impose constraints over the entire 
image domain. Notable exceptions can be found in 
Tanner et al. [6] in which control points in a B-spline 
based approach are coupled to locally enforce rigidity of 
the transformation, or in Little et al. [7] in which rigid 
structures are incorporated in a modified thin-plate spline 
registration algorithm. Both these techniques do, 
however, require segmentation of the rigid structures 
prior to registration and they enforce the rigidity 
constraints strictly. Registration methods based on 
physical models (see for instance Miga et al. [8] or 
Ferrant et al. [9]) do also, in principle, permit the 
adjustment of the mechanical properties of the 
transformation but they too require labeling of the various 
types of tissue and structures prior to registration. 
 

In the Adaptive Basis Algorithm we use in this work, the 
displacement field that registers the images is modeled as 
a linear combination of radial basis function with compact 
support: 
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In which p  is a position vector in one image, 'p  the 

corresponding point in the other image and iΦ  are basis 

functions placed on an irregular grid at positions ip . This 

algorithm also includes a constraint scheme that prevents 
the creation of physically incorrect transformations (i.e., 
transformations that would induce tearing or folding of 
the images). This scheme is implemented as a constraint 
between coefficients of adjacent basis functions. 
 

At each iteration of the algorithm, the difference between 
the value of the coefficient being computed and of the 
coefficients of adjacent basis functions is evaluated and 
compared to an upper bound λ. When this limit is 
exceeded, the coefficient value is set to λ. This can be 
written in 1-D as: 

1( )i ic c λ+ − ≤   

where ci and ci+1 are adjacent basis functions coefficients.  
 

Figure 2 that plots 'p  vs. p  illustrates this concept. The 

left panel shows a situation where all coefficients are the 

same. The right panel shows a situation where the 
difference between the coefficients of adjacent basis 
functions is large. The larger the difference between these 
coefficients the larger the local deformation generated by 
the transformation. This can be related to the mechanical 
properties of the transformation. The transformation 
shown on the left is stiffer or less compliant than the one 
shown on the right. Note also that the transformation 

' ( )p T p=  needs to remain monotonically increasing to 

avoid pixel cross-over. This is the case for the 
transformation shown on the left but not for the 
transformation shown on the right. Relaxing the 
constraint between basis function coefficients can thus 
increase the compliance of the transformation but also 
lead to non-physical transformations. 
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Figure 2:  Left: p’=T(p) for a stiff  transformation. Right: p’=T(p) for a 
very elastic transformation with pixel cross-over. 
 

In our earlier work, the constraint between coefficients 
was used to guarantee the monotonicity of the 
transformation. Here, we use this constraint to adjust the 
mechanical properties of the transformation locally. 
Furthermore, because we are dealing with situations in 
which a one-to-one correspondence between an atlas and 
a particular image volume is not possible everywhere, we 
permit folding and tearing of the transformation over 
regions where it does not matter (e.g. within the 
ventricles) to preserve the physical properties of the 
transformation where it matters.  
 

Because we want the algorithm to be automatic, labeling 
of regions that can deform more or less in each volume is 
not an option. But this can be done in the atlas because it 
requires labeling these regions only once. In the work 
presented here we associate an elasticity map with the 
atlas, which we call ( )pΛ . So far, this map only contains 

two regions: the intra-ventricular region in which we use a 
high intraλ  value, and the extra-ventricular region in 

which we use a low extraλ  value.  This choice of 

parameters allows the deformation to be more elastic over 
the ventricular regions that are typically compressed or 
expanded more than brain tissues. The information 
provided by the elasticity map is used in the registration 
process as follows: 
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in which 2A ST − −  is the transformation that registers the 

atlas to a subject image volume and 2S AT − −  is the 

transformation that registers the subject to the atlas. This 
equation shows that for a fixed location p  the elasticity 

map of the Atlas-to-Subject transformation is adjusted at 
each iteration. This is not required for the Subject-to-
Atlas transformation because the elasticity map is defined 
in the atlas. 
 

The λ values and the other registration parameters are 
experimentally optimized on representative images of a 
particular data set and then kept fixed for the registration 
of  images of this data set. 
 

3. RESULTS 
 

3.1 Synthetic images 
 

The performance of our local stiffness control approach 
was first evaluated on 2D binary images containing two 
similar circles or ellipses. The ellipses were generated 
from the circles by increasing the size of the vertical axis. 
The test consists in deforming circles into ellipses using 
different elasticity values for the right and left shape. 
Figures 3a and 3b present results without and with the 
bijectivity constraint, respectively. In both cases, the top 
row presents results obtained with the same λ  value 
everywhere and the bottom row with a λ  value smaller 
for the right shape than for the left shape. In every case, 
the panel 1 shows a test image that has the same shape as 
the binary circle but that contains concentric circles with 
different intensity values to help in visualizing and 
comparing the transformations. These concentric circles 
were obtained with a distance map. The panel 2 shows the 
shape on the panel 1 deformed with the computed 
transformation. The panel 3 shows differences between 
the deformed binary circle and the target ellipse (common 
sections are showed in white, regions that do not 
correspond are shown in gray). The panel 4 shows the 
transformation applied to a regular grid and the panel 5 
shows the difference between the forward (circle to 
ellipse) and the reverse (ellipse to circle) transformations. 
 

Two main conclusions can be drawn from these figures. 
First, the bijectivity constraint we use produces forward 
and reverse transformations that are indeed inverse of 
each other. This, in turn, leads, to transformations that are 
more regular and that tend to be topologically correct. 
Second, the scheme we propose permits the local control 
of the transformation stiffness. Comparing the bottom and 
top panels in figures 3a and 3b, it is clear that by imposing 
a greater stiffness on the right circle, we have prevented 
the algorithm to deform it enough to cover the entire 
ellipse. 
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a)  

b)  
Figure 3: Circles deformed into ellipses with local control of stiffness. 
Rows: a) Without bijectivity. b) With bijectivity. Columns: 1. Source 
image. 2. Source deformed to the target. Up: with the same λ value 
everywhere. Down: with a λ value smaller for the right shape. 3. 
Differences between the deformed binary circle and the target ellipse 
(common sections in white). 4. Transformation applied to a regular grid. 5. 
Difference between the forward and the reverse transformations. 
 

3.2 Real data 
 

Figure 4 and the top row of figure 5 show results obtained 
on one volume with enlarged ventricles and one with a 
large space-occupying lesion, respectively. In both cases, 
the left panel shows the atlas after an affine registration to 
its corresponding patient’s volume (figure 1). The second 
and third panels show the registration results obtained 
with the same λ  value everywhere. To generate the 
results shown in the second panels, we used the λ  value 
we use for healthy brains. A larger value was used to 
generate the results shown on the third panels. The fourth 
panels show results obtained with a large value over the 
ventricular area and a normal one elsewhere. The 
corresponding deformation grids are shown below these 
images to help visualize and compare the smoothness and 
regularity of the transformations. Ventricles, tumor, and 
brain contours drawn on the patient’s volumes are copied 
on the deformed atlas and grids. 
 

The bottom row of figure 5 shows a surface rendering of 
the deformed ventricles and brainstem. These were 
obtained by deforming the structures defined in the atlas 
with the computed transformations. The tumor was 
segmented by hand and displayed to show its position 
relative to the brainstem and ventricles and the effect it 
has on these.  
 

The second panels in figure 4 and 5 clearly show that a λ  
value used for non-pathological brains leads to a 
transformation that is too stiff to completely expand or 
contract the ventricles. The third panels show that 



increasing the value of λ  compresses/expands the 
ventricles satisfactorily but also lead to a transformation 
that is irregular and, at places, non-physical. The right 
panels show that a local control of the stiffness of the 
transformation is a good compromise between these two 
extremes. The transformation is smooth and does not 
produce folding of the images over regions of interest 
while allowing a large deformation and compression of 
the ventricles. The monotonicity of the transformation is 
not preserved where the images differ topologically (e. g. 
inside the tumor) but these are regions where the 
correspondence one to one doesn’t matter. 
 

In the large tumor volume, the tumor not only compresses 
the ventricles but it also compresses the top of the 
brainstem. Comparing the two rightmost bottom panels of 
figure 5, one observes that a uniformly large λ  value 
leads to a transformation that flattens the top of the 
brainstem but also changes its shape far away from the 
tumor. Using two different λ  values leads to a 
transformation that flattens the top of the brainstem but 
preserves its shape further down. 

 
Figure 4: Registration of a child brain with enlarged ventricles. 

 

Figure 5: Registration and segmentation of an adult brain with a large 
space-occupying tumor. 

5. CONCLUSION 
 

The results presented in this paper indicate that local 
control of the stiffness of the transformation represents a 
property particularly useful for automatic registration of 

medical images with large abnormalities or pathologies. 
The method proposed here is fully automatic. It doesn’t 
require any previous segmentation of the patient’s volume 
nor seeding of the atlas and the elasticity map used is 
defined only once by the user in the atlas. For the cases 
used in this study, we defined areas in the volume (the 
lateral ventricles) that can deform more than the rest of 
the image. Futher work includes using our scheme to 
constrain the deformation of rigid structures such the 
vertebras or semi-rigid structures such as the mid-sagital 
plane. The validation of the results presented in this paper 
was performed visually and qualitatively. Future work 
includes validating our algorithm quantitatively and 
comparing to existing methods such as the one described 
in [1]. 
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