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bitstream elements. An end-to-end quality optimization prob-
Abstract—This paper presents an error resilient coding scheme |em is derived, and a fast search algorithm is proposed, that
for atomic image bitstreams, as generated by Matching Pur-qintly optimizes the number of Matching Pursuit elements to

suit encoders. A joint source and channel coding algorithm is . . . . .
proposed, that takes benefit of both the flexibility in the image be transmitted, along with their respective channel protection.

representation, and the progressive nature of the bitstream, in Interestingly enough, the proposed coding strategy may be
order to finely adapt the channel rate to the relative importance of seen as a form of Multiple Description Coding, similar, for

the bitstream components. An optimization problem is proposed, example, to the scheme proposed in [4], where each data
and a fast search algorithm determines the best rate allocation for packet can be perceived as a different description of the image

given bit budget and loss process parameters. Simulation results _. L Einally. th | .
show that the unequal error protection is quite efficient, even in signal. Finally, the proposed unequal error protection strategy

very adverse conditions, and it clearly outperforms simple FEC i shown to outperform basic error resiliency schemes, and
schemes. offers graceful degradations of the image quality, even in very

adverse channel conditions.
The paper is organized as follows. Sec. Il briefly presents
|. INTRODUCTION the source coding scheme used in this paper, which is based

The problem of image transmission over error-prone cha@d @ Matching Pursuit algorithm. The joint source and channel
nels can generally only be efficiently addressed by joint souregding scheme is presented in Sec. lll, and the related channel
and channel coding approaches, where source rate is tratfi§ Optimization problem is described in Sec. IV. Sec. V
against channel protection to optimize the end-to-end averdjgsents simulation results that highlight the performance of
image quality. The separation principle enounced by Shanni®¢ optimized Unequal Error Protection strategy, and Sec. VI
indeed does not hold in practical applications with delay éally concludes the paper.
complexity constraints, and optimal approaches are inevitably
based on joint compression and protection strategies. Il. MATCHING PURSUIT IMAGE CODING

Image signals are non-stationary by nature, and most ofRecent studies have shown the potential of novel representa-
the coding schemes produce coded representations with ni@P? methods, that target the efficient approximation of natural
equivalent elements. Some parts of the bitstream are thus miages, generally dominated by edge-like characteristics [5],
important than others, which naturally yields to the conceffll- Algorithms based on redundant expansions have also been
of unequal error protection. Unequal error protection has be@own to provide very good approximation properties. In the
widely studied in the recent years (see for example [1]-[3§ame time, they present numerous advantages in terms of
and researchers have proposed optimal channel coding strigxibility and adaptivity [7], even if there is often a price to
gies for different, generally scalable, compression schenfddy in terms of encoding complexity. In contrast to orthogonal
based on orthogonal transforms. transforms, overcomplete expansions of signals are indeed not

This paper proposes to investigate the joint source aHpique. The number of feasible decompositions is infinite,
channel coding of streams built on atomic expansions of imaged finding the best solution under a given criteria is a NP-
signals, in particular those based on Matching Pursuit. Codif§mplete problem. Matching Pursuit (MP) is one of the sub-
approaches that use redundant signal representations HR#Mal approaches that greedily approximates the solution to
recently gained interest in the research community. In additiéiS complex problem. It iteratively decomposes any function
to an improved approximation rate, they present interestidigin the Hilbert spacet in a possibly redundant dictionary
properties in terms of flexibility, sparsity and scalable natuf¥ functions calledatoms[8]. Let D = {g,} . be such a
of the signal representation. The strategy proposed in tifigtionary with||g, | =1 andI" represents the set of possible
paper proposes to take benefit from the flexibility of Matchintdices. The functiory is first decomposed as follows :

Pursuit streams, and to derive an optimal channel rate allo- F={gvlf) gvo + RS, (1)

cation, finely adapted to the importance of the independent o
where (g, |f) g~, represents the projection g¢fonto g.,, and
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definition a unit norm, it is easy to see from eq. (1) thaf loss of atoms. In other words, the average total distortion can

is orthogonal toR f, and this leads to be written as:
M—-1
FI? = Kgno NP+ IRFIZ - 2 /
” ” |< "/0| >‘ ” ” D= HRA[f”Q + Z ”anZ Pn (7)
To minimize ||Rf||, one must choose,, such that the n=0
projection coefficient|(g,,|f)| is maximum. The pursuit is where ¢, = (g,.|R™f) is the atom coefficient, ang,

carried out by applying iteratively the same strategy to th@presents the probability of loosing the atom,. From
residual component. Aftel/ iterations, one has the following eq. (4), the distortion can further be expressed as:

decomposition forf :

M—1
N D=|[fIII” + lenll® (pn —1) (8)
f= Z (97, IR" ), "‘RMfa 3) ’ng() !
n=0

Note that, without loss of generality, the quantization error
where RM is the residual of the\/*" step withR°f = f. has been neglected for the sake of clarity. On the one hand,
Similarly, the energy| f||* is decomposed into : the error in a priori quantization schemes is included in the
Mo1 source rate distortiofR* f||2. On the other hand, optimal a
1£112 = Z (g, R+ |RM )% . (4) posteriori quantization schemes induce the same quantization
n=0

error for any coefficient, which can easily be factored in
The approximation error decay rate in Matching Pursuit h&§l" (8).
been shown to be bounded by an exponential. In other words,

the decay of the residue norm is faster than an exponential — S -—
decay curve whose rate depends on the dictionary only. | | |
From [9], there exists a decay paramefer> 0 such that
forall M >0
2 FEC K
IRM £l < 27 M 7]l 5) | | ' |
. N

The decay rate can be written as [9] | FEC | |

2% = (1-a? )1, (6) | rc | |
where  is the redundancy factor and € (0, 1] is driven by \ | FEC | |

the search strategy.
The image coder used in this paper is similar to the MRg. 1. Unequal Error Protection Scheme.
coder presented in [7]. The dictionary of atomsis built on
anisotropic refinement of wavelet-like functions. Quantization The progressive Matching Pursuit bitstream is segmented
and arithmetic coding are then applied to the coefficients aiftd N packets ofS coded atoms, as illustrated in Figure 1.
atom parameters. Note that the resulting MP bitstream presefighout loss of generality, we assume that all Matching Pursuit
very interesting properties that can be exploited in the joiatoms are coded with the same number of'bithe atoms,
source and channel coding scheme. First, following eg. (5), therted along the decreasing magnitude of their coefficients, are
stream is progressive. Second, atoms are totally independéligtributed according to a simple round robin strategy in the
which allows to avoid error propagation within the bitstreangsuccessive packets. As illustrated in Figure 1, Forward Error
Finally, the order of the atoms is irrelevant, and the decodeprrection (FEC) is then applied column-wise across the N-
can reconstruct the decoded image regardless of the ateagket block, using a systematic code, like a Reed-Solomon
numbers. code. In column, k; atoms are protected with a channel rate
% Since all atoms do not have the same importance, unequal
I11. JOINT SOURCE AND CHANNEL CODING error protection is naturally applied to the series of atoms, in
order to increase the chance to recover the most important

In practical applications with limited delay, and non- Note that th | tecti h d
stationary channels, the separation theorem enounced by SH pms. Note that the uhequal error protection scheme use

non does not hold anymore. In this context, only joint sourd® this work is _S|m|lar to _th_e methqd proposed in [4] in the
and channel coding can lead to minimal end-to-end distortigrP"text of Multiple Descnptlon. Coding. .

In the presence of channel loss, the encoder needs to trade—oﬁecaII that a FEC code with channel ra‘}‘@ IS ab[e 0
source rate against channel protection, in order to optimiE%COVer Up toN — k; erasures. l.W _.ki packets at maximum
the end-to-end quality. Under a fixed bit budget constrai re IO_St’ the channel pr(_)tectlon IS able to recover the
the sender may choose to send only a subset of the at tching Pursuit atoms in columia We consider here a

generated by the Matching Pursuit encoder, and to prot@&Cket erasure channel, that can be modelled by the widely

them with efficient channel coding accepted Gilbert model. It is a simple two-state Markov chain
The end-to-end distortion is then composed of the Sourggowing to capture the first order correlation of the loss

i i M £112 i i
distortion [R™f|[%, that is driven by the numbenl of  iqpis assumption has been verified in a first approximation on several MP
encoded atoms, and the distortion generated by the potentiatreams.



process. The loss probability on the channel is denated k@
and the average size of burst of losses is represented. by N
For a given packet loss probability and average burst length
on the transmission channel, the loss probabpityof losing

the atomn is therefore directly driven by the channel rate 4
chosen for this atom (see [10] for details). In order to guarantee _ _ i
optimal quality, the channel rate has to be finely adapted to ' " 2 s

the atom Importance in the Matchlng Pursuit expansion. Tlh—% 2. Representation of the solutidd in the iterative search strategy.

optimization of the joint source and channel coding strategy — {1,41,i2}.
is presented in the next section.
IV. CHANNEL RATE OPTIMIZATION The fast search algorithm iteratively looks for the best

channel rate allocation, starting from the initial allocation
k? = N, Vi € [1..S]. Since the bitstream is progressi¥¢,can
The joint source and channel coding problem becomggly be non-decreasing with the column ordeas represented
equivalent to jointly optimizing the number of atoms, an¢h Figure 1. At each iteratior of the search algorithm, the
the channel rate for each of these atoms, under a fixed Kffocation &/ that maximizes the energE(Ej) is retained.
budget. In other words, with the average distortion fromhe possible candidates at iteratipiare limited to the subset
ed. (8), and the packetization scheme proposed here-ab@fechannel rate allocations that are equal to the solution

A. Optimization Problem

the optimization problem can be written as: ki=1, except for the column = ., wherek/ = ki—1 — 1. The
S ks columns: in which the the rate allocation differ are either the
min D =max > > llex,nl® (1 - pr,n(ki) . (9) first column ¢ = 1), or the columns that represent a change
(i} [t g e in the channel rate, i.ek’~| < k/~', under the condition

. S that k, > 1. The strategy is illustrated in Figure 2, where
under the bit budget constraiit;_, k; < NS. The cumula- e soytion at iteration + 1 can only be different fromi’

tive valuek; = Z_;:ll k; represents the number of atoms thaf, ; equal to1, i; or 5. The search algorithm stops when
has been packetized in the first, columns of the matrix none of the candidates at iteratigr- 1 improves the average
presented in Fig. 1 (witti, = 0). The channel rate allocationgnergy (7). Finally, it can be noted that the computation

is further defined a&’ = [k; .. kg], and the corresponding of the average energf(7) is quite fast, since at mosy
energy in the reconstructed image is written as: atoms change their respective contribution between successive
iterations of the search algorithm.

sk .
E(E]) = Z Z ”CKg«Hz”Z (1 _pKf+n(kZ)) . (10)

i=1 n=1 V. SIMULATION RESULTS

B. Fast Search Algorithm ‘

— m=2e-2

— -m=1le-1

In order to solve the channel rate optimization problem, a ren
fast search algorithm is proposed, that takes benefit of the *
progressive nature of the Matching Pursuit bitstream. The
search algorithm is illustrated in Algorithm 1. 0s

Algorithm 1 Fast search algorithm
k) « N,Vi € [1..9]

Channel Rate
o
o

j —0 0.4 1
repeat
j <_ ] + 1 - . . 0.2 7
7= {L | ((b=1) or ('~} < ki=1)) and (ki1 > 1)}
E(k) — B(ki—1) , : ‘ ‘ ‘ ‘ ‘ ‘
for a" L E Z‘] do 0 50 100 150 Amnggmber 250 300 350 400
ki — k)TN VYA
K, — ki—1 Fig. 3. Channel rate per atom, for different loss ratioga. = 2, N = 10
L - and S = 120).
if E(K) > E(k?) then
K — k& . . . . .
E(F) — E(R) This section presents simulation results of the optimal
end if joint source and channel coding strategy proposed here-above.
end for Figure 3 illustrates the channel rate allocation for the different

atoms of the Matching Pursuit stream, in different channel

until E(k7) = B(kI -1 > .
(k) ( ) conditions. The total rate is set td packets of120 atoms
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Fig. 4. Average Channel Rate versus packet loss ratifor different loss
characteristicsy (N = 10 and S = 120). Fig. 5. Average Energy,, versus packet loss ratio, for different packet
size @@ =2, N S = 45kbits).

(i.e., approximately half a MTU), which corresponds to a bit o

budget of 45 kbits. As expected, the channel rate increases —=—=
with the atom order, and larger FEC protection is applied for *°| T
the most important atoms. The channel rate also decrease: p
when the packet loss ratio increases, since obviously more aL ‘ L
protection is needed when transmission conditions worsen. R
Figure 4 shows the influence of the channel average burst
length « on the average channel rate allocation. For low
loss ratios, the protection is more important for very bursty
channel loss processes. Due to the limit of FEC in bursty Al \ |
loss conditions, the channel rate however increases for bursty !
channel conditions, at high loss rates. Since loss often cannot ‘

Average Energy
w
@
T

be recovered in these conditions, the optimal joint source and  ,s||~- & \
channel coding prefers to increase the number of atoms to be RS |
sent, in order to augment the benefit due to correctly received - o = o
packets. i

Figure 5 illustrates the influence of the packet size on the . 6. Average Energy’,, versus packet loss rate for different channel
performance of the coding strategy. For a fixed total bit budgebgding strategieso( = 2, N = 10, S = 120).
small packets allow for larger FEC blocks (i.e., larger values
of N), and thus for better error resilience at low and medium
values of the packet loss ratie. For very high loss ratios strategies. If only one loss affects the bitstream transmission,
however, the bursty nature of the loss process highlights thath schemes behaves similarly since the coding strategy for
limits of FEC protection, even for large FEC blocks. 7 = 0.1 allows for recovering the packet erasure. However,
The performance of the Unequal Error Protection strateg§h€n two packet losses affect the transmission, EEP can
is finally compared to the behavior of a simple Equal Errd€cover only one lost packet, or even none of them when the
Protection (EEP) method in Figure 6. The EEP simply consistgannel protection has been underestimated. It can be seen
in distributing the atoms in the different packets following &owever that even in these very adverse conditions, the UEP
round-robin strategy, in order to balance the importance 8heme is able to recover most of the bitstream energy. The
the packets. FEC packets are then added to the data pact@§oded image stays of very good quality, even in the very
depending on the channel characteristics. In contrary to tA@or conditions where two packets out Iif are lost, while
UEP strategy, packets are either data packets, or FEC packidg expected loss ratio was actually smaller (ize=: 0.01).
which limits the possibility to finely adapt the channel rate to
the atom importance, in EEP. As expected, the UEP strategy VI. CONCLUSIONS
outperforms the EEP scheme for all packet loss ratddore Joint source and channel coding of bitstreams built on
surprisingly, it can be seen also that the EEP strategy is dtomic image representations has been discussed in this paper.
general very inefficient. It is slightly better than a strategguch approaches jointly optimize the number of atoms to be
without any channel coding only for medium loss rates.  coded for a given bit budget constraint, and their respective
Figure 7 proposes visual comparisons of the decoded iohannel protection that depends on the atom importance, and
ages in both UEP and EEP joint source and channel codithg channel state. An Unequal Error Protection algorithm



Fig. 7.

(a) UEP,m = 0.1, one loss.

(d) EEP,7 = 0.1, one loss.

(e) EEP,m = 0.1, two losses.

(f) EEP, m = 0.01, two losses.

Decoded image for different loss patterns, for different coding stratefyies (0, total bit budget of 45 kbits).

has been proposed as a solution to a channel rate allocati@n Mohr A.E., Riskin E.A. and Ladner R.E., “Unequal loss protection:
optimization problem. It has been shown to outperform basic
channel coding strategies, and to offer graceful degradation
of image quality, even in very poor channel conditions. Wd4]
are currently working on the application of Unequal Error
Protection to Matching Pursuit video streams [11], in takings)
benefit from an increased flexibility in signal representation,
compared to state-of-the-art coders.
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