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Abstract— This paper presents an error resilient coding scheme
for atomic image bitstreams, as generated by Matching Pur-
suit encoders. A joint source and channel coding algorithm is
proposed, that takes benefit of both the flexibility in the image
representation, and the progressive nature of the bitstream, in
order to finely adapt the channel rate to the relative importance of
the bitstream components. An optimization problem is proposed,
and a fast search algorithm determines the best rate allocation for
given bit budget and loss process parameters. Simulation results
show that the unequal error protection is quite efficient, even in
very adverse conditions, and it clearly outperforms simple FEC
schemes.

I. I NTRODUCTION

The problem of image transmission over error-prone chan-
nels can generally only be efficiently addressed by joint source
and channel coding approaches, where source rate is traded
against channel protection to optimize the end-to-end average
image quality. The separation principle enounced by Shannon
indeed does not hold in practical applications with delay or
complexity constraints, and optimal approaches are inevitably
based on joint compression and protection strategies.

Image signals are non-stationary by nature, and most of
the coding schemes produce coded representations with non-
equivalent elements. Some parts of the bitstream are thus more
important than others, which naturally yields to the concept
of unequal error protection. Unequal error protection has been
widely studied in the recent years (see for example [1]–[3]),
and researchers have proposed optimal channel coding strate-
gies for different, generally scalable, compression schemes
based on orthogonal transforms.

This paper proposes to investigate the joint source and
channel coding of streams built on atomic expansions of image
signals, in particular those based on Matching Pursuit. Coding
approaches that use redundant signal representations have
recently gained interest in the research community. In addition
to an improved approximation rate, they present interesting
properties in terms of flexibility, sparsity and scalable nature
of the signal representation. The strategy proposed in this
paper proposes to take benefit from the flexibility of Matching
Pursuit streams, and to derive an optimal channel rate allo-
cation, finely adapted to the importance of the independent
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bitstream elements. An end-to-end quality optimization prob-
lem is derived, and a fast search algorithm is proposed, that
jointly optimizes the number of Matching Pursuit elements to
be transmitted, along with their respective channel protection.
Interestingly enough, the proposed coding strategy may be
seen as a form of Multiple Description Coding, similar, for
example, to the scheme proposed in [4], where each data
packet can be perceived as a different description of the image
signal. Finally, the proposed unequal error protection strategy
is shown to outperform basic error resiliency schemes, and
offers graceful degradations of the image quality, even in very
adverse channel conditions.

The paper is organized as follows. Sec. II briefly presents
the source coding scheme used in this paper, which is based
on a Matching Pursuit algorithm. The joint source and channel
coding scheme is presented in Sec. III, and the related channel
rate optimization problem is described in Sec. IV. Sec. V
presents simulation results that highlight the performance of
the optimized Unequal Error Protection strategy, and Sec. VI
finally concludes the paper.

II. M ATCHING PURSUIT IMAGE CODING

Recent studies have shown the potential of novel representa-
tion methods, that target the efficient approximation of natural
images, generally dominated by edge-like characteristics [5],
[6]. Algorithms based on redundant expansions have also been
shown to provide very good approximation properties. In the
same time, they present numerous advantages in terms of
flexibility and adaptivity [7], even if there is often a price to
pay in terms of encoding complexity. In contrast to orthogonal
transforms, overcomplete expansions of signals are indeed not
unique. The number of feasible decompositions is infinite,
and finding the best solution under a given criteria is a NP-
complete problem. Matching Pursuit (MP) is one of the sub-
optimal approaches that greedily approximates the solution to
this complex problem. It iteratively decomposes any function
f in the Hilbert spaceH in a possibly redundant dictionary
of functions calledatoms [8]. Let D = {gγ}γ∈Γ be such a
dictionary with‖gγ‖ = 1 andΓ represents the set of possible
indices. The functionf is first decomposed as follows :

f = 〈gγ0 |f〉 gγ0 +Rf , (1)

where〈gγ0 |f〉 gγ0 represents the projection off onto gγ0 and
Rf is a residual component. Since all elements inD have by
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definition a unit norm, it is easy to see from eq. (1) thatgγ0

is orthogonal toRf , and this leads to

‖f‖2 = |〈gγ0 |f〉|2 + ‖Rf‖2 . (2)

To minimize ‖Rf‖, one must choosegγ0 such that the
projection coefficient|〈gγ0 |f〉| is maximum. The pursuit is
carried out by applying iteratively the same strategy to the
residual component. AfterM iterations, one has the following
decomposition forf :

f =
M−1∑
n=0

〈gγn
|Rnf〉gγn

+RMf , (3)

whereRM is the residual of theM th step withR0f = f .
Similarly, the energy‖f‖2 is decomposed into :

‖f‖2 =
M−1∑
n=0

|〈gγn |Rnf〉|2 + ‖RMf‖2 . (4)

The approximation error decay rate in Matching Pursuit has
been shown to be bounded by an exponential. In other words,
the decay of the residue norm is faster than an exponential
decay curve whose rate depends on the dictionary only.
From [9], there exists a decay parameterλ > 0 such that
for all M ≥ 0

‖RMf‖ ≤ 2−λM‖f‖ . (5)

The decay rate can be written as [9]

2−λ = (1− α2 β2)
1
2 , (6)

whereβ is the redundancy factor andα ∈ (0, 1] is driven by
the search strategy.

The image coder used in this paper is similar to the MP
coder presented in [7]. The dictionary of atomsgγ is built on
anisotropic refinement of wavelet-like functions. Quantization
and arithmetic coding are then applied to the coefficients and
atom parameters. Note that the resulting MP bitstream presents
very interesting properties that can be exploited in the joint
source and channel coding scheme. First, following eq. (5), the
stream is progressive. Second, atoms are totally independent,
which allows to avoid error propagation within the bitstream.
Finally, the order of the atoms is irrelevant, and the decoder
can reconstruct the decoded image regardless of the atom
numbers.

III. JOINT SOURCE AND CHANNEL CODING

In practical applications with limited delay, and non-
stationary channels, the separation theorem enounced by Shan-
non does not hold anymore. In this context, only joint source
and channel coding can lead to minimal end-to-end distortion.
In the presence of channel loss, the encoder needs to trade-off
source rate against channel protection, in order to optimize
the end-to-end quality. Under a fixed bit budget constraint,
the sender may choose to send only a subset of the atoms
generated by the Matching Pursuit encoder, and to protect
them with efficient channel coding.

The end-to-end distortion is then composed of the source
distortion ‖RMf‖2, that is driven by the numberM of
encoded atoms, and the distortion generated by the potential

loss of atoms. In other words, the average total distortion can
be written as:

D = ‖RMf‖2 +
M−1∑
n=0

‖cn‖2 pn , (7)

where cn = 〈gγn |Rnf〉 is the atom coefficient, andpn

represents the probability of loosing the atomgγn . From
eq. (4), the distortion can further be expressed as:

D = ‖|f‖|2 +
M−1∑
n=0

‖cn‖2 (pn − 1) . (8)

Note that, without loss of generality, the quantization error
has been neglected for the sake of clarity. On the one hand,
the error in a priori quantization schemes is included in the
source rate distortion‖RMf‖2. On the other hand, optimal a
posteriori quantization schemes induce the same quantization
error for any coefficient, which can easily be factored in
eq. (8).
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Fig. 1. Unequal Error Protection Scheme.

The progressive Matching Pursuit bitstream is segmented
in N packets ofS coded atoms, as illustrated in Figure 1.
Without loss of generality, we assume that all Matching Pursuit
atoms are coded with the same number of bits1. The atoms,
sorted along the decreasing magnitude of their coefficients, are
distributed according to a simple round robin strategy in the
successive packets. As illustrated in Figure 1, Forward Error
Correction (FEC) is then applied column-wise across the N-
packet block, using a systematic code, like a Reed-Solomon
code. In columni, ki atoms are protected with a channel rate
ki

N . Since all atoms do not have the same importance, unequal
error protection is naturally applied to the series of atoms, in
order to increase the chance to recover the most important
atoms. Note that the unequal error protection scheme used
in this work is similar to the method proposed in [4] in the
context of Multiple Description Coding.

Recall that a FEC code with channel rateki

N is able to
recover up toN −ki erasures. IfN −ki packets at maximum
are lost, the channel protection is able to recover theki

Matching Pursuit atoms in columni. We consider here a
packet erasure channel, that can be modelled by the widely
accepted Gilbert model. It is a simple two-state Markov chain
allowing to capture the first order correlation of the loss

1This assumption has been verified in a first approximation on several MP
bitstreams.
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process. The loss probability on the channel is denotedπ,
and the average size of burst of losses is represented byα.
For a given packet loss probability and average burst length
on the transmission channel, the loss probabilitypn of losing
the atomn is therefore directly driven by the channel rate
chosen for this atom (see [10] for details). In order to guarantee
optimal quality, the channel rate has to be finely adapted to
the atom importance in the Matching Pursuit expansion. The
optimization of the joint source and channel coding strategy
is presented in the next section.

IV. CHANNEL RATE OPTIMIZATION

A. Optimization Problem

The joint source and channel coding problem becomes
equivalent to jointly optimizing the number of atoms, and
the channel rate for each of these atoms, under a fixed bit
budget. In other words, with the average distortion from
eq. (8), and the packetization scheme proposed here-above,
the optimization problem can be written as:

min
{ki}

D = max
{ki}

S∑

i=1

ki∑
n=1

‖cKi+n‖2 (1− pKi+n(ki)) , (9)

under the bit budget constraint
∑S

i=1 ki ≤ NS. The cumula-
tive valueKi =

∑i−1
j=1 kj represents the number of atoms that

has been packetized in the firstki−1 columns of the matrix
presented in Fig. 1 (withK1 = 0). The channel rate allocation
is further defined as~kj = [kj

1 .. kj
S ], and the corresponding

energy in the reconstructed image is written as:

E(~kj) =
S∑

i=1

kj
i∑

n=1

‖cKj
i +n‖2 (1− pKj

i +n(kj
i )) . (10)

B. Fast Search Algorithm

In order to solve the channel rate optimization problem, a
fast search algorithm is proposed, that takes benefit of the
progressive nature of the Matching Pursuit bitstream. The
search algorithm is illustrated in Algorithm 1.

Algorithm 1 Fast search algorithm

k0
i ← N, ∀i ∈ [1..S]

j ← 0
repeat

j ← j + 1
Ij =

{
ι | ((ι = 1) or (kj−1

ι−1 < kj−1
ι )) and (kj−1

ι > 1)
}

E(~kj) ← E(~kj−1)
for all ι ∈ Ij do

κi ← kj−1
i , ∀i 6= ι

κι ← kj−1
ι

if E(~κ) > E(~kj) then
kj ← κ
E(~kj) ← E(~κ)

end if
end for

until E(~kj) = E(~kj−1)

1 S
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Fig. 2. Representation of the solutionkj in the iterative search strategy.
Ij = {1, i1, i2}.

The fast search algorithm iteratively looks for the best
channel rate allocation, starting from the initial allocation
k0

i = N, ∀i ∈ [1..S]. Since the bitstream is progressive,kj
i can

only be non-decreasing with the column orderi, as represented
in Figure 1. At each iterationj of the search algorithm, the
allocation~kj that maximizes the energyE(~kj) is retained.
The possible candidates at iterationj are limited to the subset
of channel rate allocations~κ that are equal to the solution
~kj−1, except for the columni = ι, wherekj

ι = kj−1
ι − 1. The

columnsι in which the the rate allocation differ are either the
first column (ι = 1), or the columns that represent a change
in the channel rate, i.e.,kj−1

ι−1 < kj−1
ι , under the condition

that kι > 1. The strategy is illustrated in Figure 2, where
the solution at iterationj + 1 can only be different from~kj

in i equal to1, i1 or i2. The search algorithm stops when
none of the candidates at iterationj +1 improves the average
energyE(~kj). Finally, it can be noted that the computation
of the average energyE(~κ) is quite fast, since at mostN
atoms change their respective contribution between successive
iterations of the search algorithm.

V. SIMULATION RESULTS
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Fig. 3. Channel rate per atom, for different loss ratiosπ (α = 2, N = 10
andS = 120).

This section presents simulation results of the optimal
joint source and channel coding strategy proposed here-above.
Figure 3 illustrates the channel rate allocation for the different
atoms of the Matching Pursuit stream, in different channel
conditions. The total rate is set to10 packets of120 atoms
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Fig. 4. Average Channel Rate versus packet loss ratioπ, for different loss
characteristicsα (N = 10 andS = 120).

(i.e., approximately half a MTU), which corresponds to a bit
budget of 45 kbits. As expected, the channel rate increases
with the atom order, and larger FEC protection is applied for
the most important atoms. The channel rate also decreases
when the packet loss ratioπ increases, since obviously more
protection is needed when transmission conditions worsen.
Figure 4 shows the influence of the channel average burst
length α on the average channel rate allocation. For low
loss ratios, the protection is more important for very bursty
channel loss processes. Due to the limit of FEC in bursty
loss conditions, the channel rate however increases for bursty
channel conditions, at high loss rates. Since loss often cannot
be recovered in these conditions, the optimal joint source and
channel coding prefers to increase the number of atoms to be
sent, in order to augment the benefit due to correctly received
packets.

Figure 5 illustrates the influence of the packet size on the
performance of the coding strategy. For a fixed total bit budget,
small packets allow for larger FEC blocks (i.e., larger values
of N ), and thus for better error resilience at low and medium
values of the packet loss ratioπ. For very high loss ratios
however, the bursty nature of the loss process highlights the
limits of FEC protection, even for large FEC blocks.

The performance of the Unequal Error Protection strategy
is finally compared to the behavior of a simple Equal Error
Protection (EEP) method in Figure 6. The EEP simply consists
in distributing the atoms in the different packets following a
round-robin strategy, in order to balance the importance of
the packets. FEC packets are then added to the data packets,
depending on the channel characteristics. In contrary to the
UEP strategy, packets are either data packets, or FEC packets,
which limits the possibility to finely adapt the channel rate to
the atom importance, in EEP. As expected, the UEP strategy
outperforms the EEP scheme for all packet loss ratesπ. More
surprisingly, it can be seen also that the EEP strategy is in
general very inefficient. It is slightly better than a strategy
without any channel coding only for medium loss rates.

Figure 7 proposes visual comparisons of the decoded im-
ages in both UEP and EEP joint source and channel coding
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Fig. 5. Average EnergyEm versus packet loss ratioπ, for different packet
size (α = 2, N S = 45kbits).
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Fig. 6. Average EnergyEm versus packet loss rateπ, for different channel
coding strategies (α = 2, N = 10, S = 120).

strategies. If only one loss affects the bitstream transmission,
both schemes behaves similarly since the coding strategy for
π = 0.1 allows for recovering the packet erasure. However,
when two packet losses affect the transmission, EEP can
recover only one lost packet, or even none of them when the
channel protection has been underestimated. It can be seen
however that even in these very adverse conditions, the UEP
scheme is able to recover most of the bitstream energy. The
decoded image stays of very good quality, even in the very
poor conditions where two packets out of10 are lost, while
the expected loss ratio was actually smaller (i.e.,π = 0.01).

VI. CONCLUSIONS

Joint source and channel coding of bitstreams built on
atomic image representations has been discussed in this paper.
Such approaches jointly optimize the number of atoms to be
coded for a given bit budget constraint, and their respective
channel protection that depends on the atom importance, and
the channel state. An Unequal Error Protection algorithm
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(a) UEP,π = 0.1, one loss. (b) UEP,π = 0.1, two losses. (c) UEP,π = 0.01, two losses.

(d) EEP,π = 0.1, one loss. (e) EEP,π = 0.1, two losses. (f) EEP, π = 0.01, two losses.

Fig. 7. Decoded image for different loss patterns, for different coding strategies (N = 10, total bit budget of 45 kbits).

has been proposed as a solution to a channel rate allocation
optimization problem. It has been shown to outperform basic
channel coding strategies, and to offer graceful degradation
of image quality, even in very poor channel conditions. We
are currently working on the application of Unequal Error
Protection to Matching Pursuit video streams [11], in taking
benefit from an increased flexibility in signal representation,
compared to state-of-the-art coders.
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