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Abstract— This paper presents a scalable video coding scheme
(MP3D), based on the use of a redundant 3-D spatio-temporal
dictionary of functions. The spatial component of the dictionary
consists of directional and anisotropically scaled functions, which
form a rich collection of visual primitives. The temporal com-
ponent is tuned to capture most of the energy along motion
trajectories in the video sequences. The MP3D video coding
first finds motion trajectories. It then applies a spatio-temporal
decomposition using an adaptive approximation algorithm based
on Matching Pursuit (MP). The coefficients and the function
parameters are quantized and coded in a progressive fashion,
under multiple rate constraints, allowing for adaptive decoding
by simple bit-stream truncation. The motion fields are losslessly
coded and transmitted as side information to the decoder. The
multi-resolution structure of the dictionary allows for flexible
spatial and temporal resolution adaptation. This scheme is shown
to yield comparable rate-distortion performances to state-of-the-
art schemes, like H.264 and MPEG-4. It represents a promising
alternative for low and medium rate applications, or as a flexible
base layer for higher rate video systems.

I. I NTRODUCTION

Flexible representations that generate scalable video coding
schemes are nowadays getting quite a lot of attention from
the research community. They provide interesting solutions
to an increasing number of applications that require adaptive
signal representations, like video delivery over heterogeneous
networks such as Internet. Successful scalable video coding
schemes are generally based on the 3-D wavelet transform,
and employ a separable 2-D wavelet transform (DWT) for
the spatial information, and DWT with either a transversal
or lifting implementation along motion trajectories [1]–[3].
Recently however, it was pointed out that the separable 2-D
wavelet transform is not ideally suited for representing images
as it fails to capture regular geometric features (e.g. edges) [4],
mainly because it lacks directionality and anisotropic scaling.
Moreover, it is a shift-variant transform, which is not desirable
for representing motion in the video signal.

Three-dimensional Matching Pursuit video coding has re-
cently been introduced in [5], as an alternative to wavelet-
based scalable video coding methods. Redundant expansions
with dictionaries adapted to natural image features allow for
efficient coding at low bit rate. In the same time, the Matching
Pursuit algorithm [6] provides high flexibility in the signal
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representation, in addition to an inherent progressiveness of the
bit-stream structure. This paper proposes an enhanced video
coding scheme that adds motion estimation to the 3D Matching
Pursuit algorithm, and thus clearly improves the compres-
sion performance, especially for high motion sequences. The
Motion-Adaptive 3-D Matching Pursuit algorithm advanta-
geously uses a spatio-temporal transform where spatial atoms
follow motion trajectories. At low and medium bit rates, (i.e.
less than 500 kbps), the compression results are comparable to
the state-of-the-art coders like H.264 and MPEG-4, in terms
of rate distortion performance and visual quality.

This paper is organized as follows. The motion-adaptive
3-D transform and the embedded coding are presented in
Section II. Section III presents coding experiments, carried
out on standard test sequences. Section IV highlights the
resolution and SNR scalability properties. Finally, conclusions
and discussions are given in Section V.

II. T HE MP3D CODING SCHEME

A. Overview

The building blocks of the motion-adaptive three-
dimensional Matching Pursuit video encoder (MP3D) are
represented in Figure 1. It basically consists in two main
modules, which are:

• The motion-adaptive 3-D spatio-temporal transform,
• The embedded quantization and coding.

The video sequence is first partitioned into groups of
pictures (GOP) of sizeNGOP (with NGOP = 16 in this work).
A motion estimation is performed in the GOP, in order to
define the motion fields for each frame, and generate motion
trajectories along the successive frames. A Matching Pursuit
algorithm then determines the most relevant components of the
spatio-temporal video signal. It provides a sparse representa-
tion of the video information in a series of spatial atoms that
are filtered and displaced along the motion trajectories. In a
sense, this operation is similar to the the motion-compensated
temporal filtering (MCTF) [1], where the signal is filtered
in the temporal dimension along a given trajectory. Finally,
the atom parameters are then quantized and progressively
encoded to generate a scalable video stream. Lossless coding
(DPCM and arithmetic coding) is applied to the motion field
parameters, that are sent as a constant rate side information
layer to the decoder [7].
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Fig. 1. Block diagram of the Motion-Adaptive Matching Pursuit encoder (MP3D).

B. Motion Estimation and Trajectory Prediction

The motion vectors are estimated using a block-matching
(BM) based technique, with an exhaustive search algorithm.
The motion mappings and atom trajectories are then built from
the generated motion fields. A motion trajectory is defined as
the displacement of a pixel or a group of pixels in a frame,
toward previous and successive frames. It can be determined
uniquely given both the forward and backward motion fields
with respect to the reference frame. However, coding motion
vectors in both directions induces complexity and coding
overhead, for only a slight quality improvement.

In our scheme, only the backward motion fields are coded
and used to infer the forward ones, using an a priori selection
strategy. A given blockBm in framefi, is mapped to the best
matching blockB?

m in frame fi+1 using only the backward
motion vectors. The two following criteria allow to select the
best trajectory, (i) the minimum distance to the center of the
block, and (ii) the scanning order. In the case where more than
one motion vector from the framei + 1, point to a block that
overlaps with blockBm in frame fi, the selection is based
on the nearest neighbor criteria. In the low probability case
where this criteria is not sufficient to choose the best candidate
vector, the scanning order is determinant. The selection of
the motion trajectories is represented by the generic motion
mapping operatorW as,

Wi→i+1(I(x, y, i)) ≈ I(x, y, i + 1) (1)

whereI(x, y, i) denotes the samples of framei in the video
sequenceI. Figure 2 illustrates the steps involved during the
trajectory prediction. The dotted lines correspond to possible
paths which are discarded during trajectory prediction.

Now, the 3-D atom is built by replicating its spatial com-
ponent along the motion trajectory passing by its center in the
reference frame, which is chosen dynamically as the frame
with the largest energy in the GOP.

Reference frame

f(i)f(i−1)f(i−2) f(i+1) f(i+2)

Bm

Bm*

Fig. 2. Example of determining a trajectory for a block in framei.

C. The Spatio-Temporal Dictionary

The spatial component of the dictionary [8] is generated by
applying affine transformations on two mother atoms, which
are a 2-D Gaussiang1(x, y) = 1√

π
e−(x2+y2), and its 2nd

partial derivative (a ridge-like function)g2(x, y) = 2√
3π

(4x2−
2)e−(x2+y2). The 2-D Gaussian is used in order to extract the
low frequency components. Its2nd partial derivative is used to
capture image singularities like edges and contours. The affine
operator is a composition of translation, scaling and rotation
of the mother atoms, as follows:

U(x0,y0,a1,a2,θ)g =
1√
a1a2

g(r−θ(
x− x0

a1
,
y − y0

a2
)) ,

wherer−θ is a rotation matrix of angleθ. The temporal com-
ponent of the redundant dictionary is spanned by translating
and scaling aβ-splineβ3(t) [7].

D. The MP Decomposition

The 3-D transform consists in computing a decomposition
of the GOP in a finite number of spatio-temporal atoms
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along motion trajectories, by applying the Matching Pursuit
algorithm. A full 3D search is however computationally too
complex, as it requires to evaluateN × D scalar products,
whereD is the cardinality of the dictionary andN the number
of iterations. A heuristic search algorithm is used to reduce the
complexity, and it is described by Algorithm 1. The iterative
search algorithm first selects the frame with the highest energy,
in the GOPIn(x, y, i), whereI0(x, y, i) represents the original
pictures. It then performs an exhaustive spatial search in the
selected frame, in order to find theM best candidates among
the spatial atoms in the dictionary using an FFT algorithm.
Each one of theM candidates1 is then used to build spatio-
temporal atoms, aligned on the motion trajectories according
to W, and with the spline temporal functions defined in [5].
The atom which minimizes the energy of the residual signal
In+1(x, y, i) is then selected. The process is then repeated
until the signal expansion is long enough, or until a residual
error energy threshold has been reached.

Algorithm 1 The Heuristic Search Algorithm.

1: Let I(x, y, i), i = 1..NGOP be a block of frames
2: Select a reference framer with the largest energy
3: Use the 2D FFT-based exhaustive search algorithm to find
the bestM uncorrelated candidates among spatial atoms
4: Search for the best 3-D atoms starting from theM
candidates, mapped on motion trajectory
5: Update the residualIn(x, y, i) accordingly and iteratively
get back to step 2.

This algorithm has a complexity of orderO(N · (Ds ·
n log n + M · n ·NGOP )), whereDs is the cardinality of the
spatial dictionary,n is the size of the image,M is the number
of candidates, andN is the number of selected atoms.

E. Progressive Coding

The coefficients and atom indexes, where(px, py, pt),
(ax, ay, at) andθ, respectively represent the position, the scale
and the spatial rotation of the spatial mother functions, have
to be scalably encoded in order to provide a bit-rate and
resolution-adaptive video signal representation. This operation
is fundamental to fully benefit from the intrinsic scalability
properties of Matching Pursuit expansions over geometrical
dictionaries.

The embedded coding in the MP3D is achieved through
the sub-sets partitioning approach [7]. The series of atoms
is partitioned intoS disjoint sub-setssi, where each subset
containsli elements. These subsets can be seen as energy sub-
bands. Their number is dictated by scalability requirements
(i.e., the number of target decoding rates), and represents a
trade-off between stream flexibility, and coding efficiency, that
respectively increases and decreases withS. In each subset,
atoms are sorted according to their spatial positions, that are
further run-length encoded. The remaining index parameters
and quantized coefficients are encoded with the adaptive

1M is chosen to be proportional to the number of blocks in a picture, in
this scheme.

arithmetic encoder [9]. The resulting bit-stream is piecewise
progressive, and optimal truncation points are defined at sub-
set limits.

III. E XPERIMENTAL RESULTS

In this section, we evaluate the rate-distortion performances
of our codec by comparing it with two reference schemes,
MPEG4 [10] and H.264 [11]. The standard Foreman and
Football sequences in CIF format at 30 fps were used to
generate the results. In all experiments, we used a GOP size
of 16 (IPPP. . . for MPEG4 and H.264). It can be seen on
Fig. 3 and 4 that the PSNR of MP3D is higher than that
of MPEG-4 by about 1-1.5 dB for both sequences and over a
wide range of bit-rates. Meanwhile, it is only slightly inferior
to the performance of H.264, staying within a 1 dB gap.

Our scheme performs better on the Football sequence for
example, where it stays close to H.264 over the whole range
of bit rates under consideration. However, we noted that the
results for the Foreman sequence always penalize our scheme
at high rate. The MP3D does not perform very well for texture,
mainly due to the construction of the dictionary (see Fig. 5);
once most geometrical information has been encoded, and the
PSNR tends to saturate at high rate. Finally, it is noteworthy
that both H.264 and MPEG-4 are non-scalable video coding
schemes, optimized for compression performance, contrarily
to MP3D.
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Fig. 3. R-D Comparison of MP3D against h.264 and MPEG-4 for Football

Fig. 5 shows visual comparisons of the first frame from the
Football sequence decoded at 550 kbps, using the schemes
mentioned before. One can see that H.264 produces more
uniform regions. The regions in MP3D are also very smooth,
but most prominent edges are well captured due to the nature
of the dictionary we used. On the other hand, MP3D lost most
of the textures. Overall, MPEG-4 produces a slightly inferior
visual quality. Of course these tests are not conclusive, but
they allow to emphasize the behavior of MP3D in capturing
first the geometrical features in image sequences.
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(a) Original (b) MP3D

(c) H.264 (d) MPEG-4

Fig. 5. Visual Comparison for Frame 1 of Football decoded at 550 kbps
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Fig. 4. R-D Comparison of MP3D against H.264 and MPEG-4 for Foreman.

IV. SCALABILITY PROPERTIES

The multiresolution structure of the dictionary, the nature
of MP, and the embedded coding make the bitstream highly
scalable, offering 3-D geometric (i.e. spatio-temporal) and
SNR scalability. The geometric properties of the dictionary
ensure very easy sequence adaptation prior to decoding. As

Fig. 6. Frame 1 of Foreman decoded in QCIF from the CIF bitstream.

a result, a single bitstream can be decoded at any spatial
resolution (as long as the re-scaling is isotropic) and at various
frame rates, without resorting to costly re-encoding or post-
processing operations. For example, a coded video signalI
of spatial sizeW × H with a frame rateF can be spatially
decoded into a video signalĨ of spatial resolutionαW×αH at
the same frame rate as follows. First the full atom trajectory is
reconstructed at the initial size using the motion field operator
W. Then each individual atom is analytically re-scaled by
simply transcoding its index values (scales and positions) as
described in [5]. The new signal becomes :

Ĩ =
N−1∑

i=0

α ciW̃(gγi), (2)
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whereci are the atom coefficients and̃W(gγi) corresponds to
the motion-mapped atomW(gγi

) after transcoding. We noted
that, when transcoding byα < 1, thus to a lower resolution,
possible aliasing from very small atoms saturate quickly PSNR
quality as rate increases. The smallest atoms are thus simply
discarded. Figure 6 shows frame 1 of the Foreman sequence
decoded in QCIF format from the bitstream corresponding to
CIF format. Clearly, the spatial resolution adaptation preserves
image features after transcoding. These structures are indeed
well captured by our dictionary and the corresponding atoms
are simply re-scaled, when decoded at a different resolution.
This clearly brings a great advantage in visual quality.

Besides geometric scalability, MP3D provides natural SNR
scalability because of the exponential decay of MP coeffi-
cients and the embedded quantization. Fig. 7 shows frame
1 of the Foreman sequence decoded at 320 kbps from a
bitsream, that was encoded using the multiple rate constraints
{75, 135, 245, 360, 500} kbps, with an average PSNR of 33.8
db.

Fig. 7. Frame 1 of sequence Foreman decoded at 320 kbps, from the 500kpbs
bitstream

V. CONCLUSIONS

In this paper, a video coding scheme based on motion-
adaptive signal decompositions over a redundant dictionary
of waveforms is presented. The over-complete dictionary is
designed to model image primitives, mostly edges, that are
likely to display coherent trajectories over time. The Matching
Pursuit algorithm is used to obtain a compact signal represen-
tation. The motion trajectories of prominent image primitives
are determined form the motion fields, which are estimated
using block matching techniques. A redundant temporal dic-
tionary is also used for temporal decomposition. A progressive
bit-stream is generated from the selected atoms using the sub-
sets approach. The compressed video sequence can further be
decoded at any resolution due to the parametric structure of the
redundant libraries used to represent the information. These
geometric stream manipulations are lightweight and can be
performed at the decoder or by some simple network intelli-
gence. Comparisons with state-of-the-art codecs illustrate the

good performance of the proposed scheme at low bit-rates and
motivate its possible use as a base layer in a more general
scalable coding framework.
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