
Supervised Nonparametric Information Theoretic Classification

Cédric Archambeau†, Torsten Butz‡, Vlad Popovici‡, Michel Verleysen∗,†, Jean-Philippe Thiran‡
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Abstract

In this paper, supervised nonparametric information
theoretic classification (ITC) is introduced. Its principle
relies on the likelihood of a data sample of transmitting
its class label to data points in its vicinity. ITC’s learn-
ing rule is linked to the concept of information potential
and the approach is validated on Ripley’s data set. We
show that ITC may outperform classical classification al-
gorithms, such as probabilistic neural networks and sup-
port vector machines.

1. Introduction

Clustering and classification algorithms are fundamen-
tal ingredients in pattern recognition, data mining, know-
ledge discovery and other related fields [4, 1]. Whereas
clustering is an unsupervised way of grouping data using
a measure of similarity, classification can be seen as its su-
pervised version. Indeed, when the labels of the class pro-
totypes are available, one should use this additional know-
ledge in order to construct or improve a classification rule.
Subsequently, this classification rule may be used to auto-
matically classify new data samples. This rule is therefore
often called the generalization rule and the set of labelled
prototypes can be seen as the learning data set.

A common technique for clustering and classification
involves the estimation of the underlying probability den-
sity functions (PDFs) of the classes. Two types of ap-
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proaches can be considered. In parametric PDF estima-
tion, it is assumed that the data is drawn from a specific
density model. The model parameters are then fitted to the
data. Unfortunately, an a priori choice of the PDF model
is not always suited in practice, as it might provide a false
representation of the true PDF. By contrast, we can build
nonparametric PDF estimators, as for example the Parzen
window estimator [6]. Such techniques do not assume any
functional form of the PDF and allow its shape to be en-
tirely determined from the data.

Recently, a clustering evaluation function based on the
Information Potential was proposed [5] in order to per-
form nonparametric clustering tasks. In [2] the formalism
of information theoretic clustering is generalized by con-
sidering nonparametric classification error estimation and
by linking it to information theoretical concepts, such as
error transmission and distortion.

Within this framework, we propose a classification cri-
terion strongly related to information theory, as it allows
to minimize the error transmission. Actually, assigning
the optimal class label to a data sample can be seen as
minimizing the erroneous transmission of the real class
label of that sample. In addition, the proposed classifica-
tion algorithm is nonparametric. As a consequence, the
shape of the true, but unknown underlying PDFs is not
enforced a priori.

This paper is organized as follows. In Section 2, we in-
troduce nonparametric information theoretic classification
(ITC), which is based on the local class label transmission.
Subsequently, in Section 3, we recall the K-nearest neigh-
bor exchange algorithm [4], which is used for optimizing
the learning rule. Finally, in Section 4, we show simu-
lation results using Ripley’s synthetic data set [8]. We
compare the performance of ITC to probabilistic neural
networks [9], which are nothing else than Bayesian clas-
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sification combined to nonparametric class PDF estima-
tion, and support vector machines [10, 3], using Gaussian
kernels. All the considered methods are supervised.

2. Information theoretic classification

In this section, the concepts of local and global class
label transmission are first defined. Subsequently, an in-
formation theoretic learning rule related to error transmis-
sion and the information potential is constructed. Finally,
a classification criterion based on local class label trans-
mission is introduced.

2.1. Local class label transmission

Consider the d-dimensional feature vector x ∈ Ωx. Let
us define the following likelihood function:

L(x|C,C ′) = p(x|C) · p(x|C ′), (1)

where C ∈ ΩC and C ′ ∈ ΩC are the true class label
and the estimated class label of x respectively. The quan-
tity L(x|C,C ′) corresponds to the likelihood of having
the data sample x given C and C ′. In other words, it is
the likelihood of having x knowing that its true class label
is C and supposing we assign it the label C ′. Therefore
(1) characterizes the local transmission of the label C to
the estimated label C ′ in the vicinity of x.

2.2. Global class label transmission

We may extend the concept of local label transmission
by defining the global transmission of the class labels as
the expected likelihood of transmitting the true class label
C to the estimated label C ′ over the entire feature domain
Ωx:

T (C,C ′) =
∫
Ωx

∑
C∈ΩC

∑
C′∈ΩC

D(C,C ′)
· L(x|C,C ′)P (C)P (C ′)dx.

(2)

In this equation, P (C) and P (C ′) are the true and esti-
mated class priors, respectively. The function D(C,C ′)
is the similarity function.

In this paper, we focus on the minimization of the error
transmission, i.e. we want to maximize the global trans-
mission of true class labels. Besides, we do not assume
any class-dependent similarity for simplicity. Therefore,
we assume D(C,C ′) equals 1 when C = C ′ and 0 other-
wise. For other similarity choices, we refer to [2]. The
main advantage of the similarity function is that it in-
creases the flexibility of the classification algorithm by
making it application-dependent.

2.3. Classification learning rule

The Parzen window estimator [6] is one of the most
popular techniques for estimating a PDF nonparametri-
cally. It consists of placing a well-defined kernel function
on each data sample and then determining a common ker-
nel width σ. In practice, Gaussian kernels are often used.
The estimated PDF is defined as the sum of all Gaussian
kernels, multiplied by a normalization factor.

Both conditional PDFs appearing in the expression of
the likelihood (1), can be estimated nonparametrically
from the data by the Parzen window estimator:

p̂(x|C) =
1

|SC |
∑

xi∈SC

N
(
x − xi, σi

2
)
, (3)

p̂(x|C ′) =
1

|SC′ |
∑

xj∈SC′

N
(
x − xj , σj

2
)
, (4)

where the Gaussian kernels are defined as follows:

N
(
x − m, σ2

)
=

1
(2πσ2)d/2

exp
[
−‖x − m‖2

2σ2

]
. (5)

The sets SC and SC′ contain the data samples with class
labels C and C ′ respectively, and |SC | and |SC′ | are their
cardinality.

Posing M the number of prototypes, substituting the
PDF estimates (3) and (4) into expression (2) of the global
class label transmission T (C,C ′), and replacing the priors
P (C) and P (C ′) by |SC |

M and |SC′ |
M respectively, leads to:

T (C,C ′) =
∫
Ωx

∑
C∈ΩC

∑
C′∈ΩC

D(C,C ′)
· 1

M

∑
xi∈SC

N
(
x − xi, σi

2
)

· 1
M

∑
xj∈SC′ N

(
x − xj , σj

2
)
dx.

After integration, we can write the following informa-
tion theoretic learning rule:

Ĉ ′ = arg max
C′

∑
C∈ΩC

∑
C′∈ΩC

D(C,C ′)V (SC , SC′), (6)

where

V (SC , SC′) =
1

M2

∑
xi∈SC

∑
xj∈SC′

N
(
xi − xj , σi

2 + σj
2
)
.

The quantity V (SC , SC′) is the information potential [5]
and is closely related to Renyi’s entropy [7].

Note that in classical nonparametric PDF estimation,
the kernel width enforces a smooth density model. How-
ever, within the information theoretic framework, it can
be interpreted in a slightly different way. Here, the kernel
width controls the extent of the local domain around each
labelled prototype, rather than the degree of overlapping
of the kernels. In other words, it regulates the region of
label transmission of each data point.
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2.4. Classification criterion

By solving the maximization problem posed by the in-
formation theoretic learning rule, we can automatically
classify the class prototypes. Yet, whenever one wants
to classify new data samples the whole optimization pro-
cedure of the classification algorithm should be repeated,
which is not suited in practice. In addition, when the ker-
nel widths are not chosen properly, we might easily overfit
the data, resulting in a classification scheme not represen-
tative of the true classes. Therefore, class prototypes are
used for learning the classification task, while test sam-
ples are kept for evaluating its performance. The optimal
kernel widths can then be selected according to the best
generalization performance. It remains that, in order to
test the algorithm, we need a valid classification rule.

Consider again the information theoretic learning rule.
By applying this rule, we maximize the global transmis-
sion of the correct class labels over the entire feature space
domain. As a result, we assign the most probable class
labels Ĉ ′

l to the class prototypes {xl}Ml

l=1, according to
their neighborhood. By analogy to (2) where C = Ĉ ′

l

and C ′ = Ĉ ′
l , we can classify the test samples {xt}Mt=1

1

according to the likelihood of their local estimated class
label transmission, weighted by the class priors:

Ĉ ′
t = arg max

c
L̂(xt|c = Ĉ ′

l , c = Ĉ ′
l)P (Ĉ ′

l)P (Ĉ ′
l). (7)

Although the classification learning rule and the classifi-
cation criterion are not identical, it was found experimen-
tally that both are in agreement when the kernel widths
are not overestimated.

3. K-nearest neighbor exchange algorithm

The learning rule (6) can be optimized by the K-
nearest neighbor exchange algorithm [4]. This optimiza-
tion procedure allows escaping from local minima and
saves computations by labelling data groups instead of the
individual data points. As the contribution to the global
label transmission of data samples lying closely to each
other and belonging to the same classes is large, the clas-
sification algorithm assigns a common class label to sam-
ples in the same neighborhood. Meanwhile, class bound-
aries are positioned along regions of low sample density.

The optimization algorithm iterates over the following
steps:

1. Initialize randomly a class label to each sample of the
learning data set {xl}Ml

l=1 and choose an initial group
size K = K0;
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Figure 1. Ripley’s synthetic learning data
set. The true class of the prototypes are
denoted by ‘◦’ and ‘+’ respectively.

2. Create Ml groups by searching for each sample xl

the K-nearest neighbors with the same class label;

3. Remove identical groups, resulting in Pl groups;

4. Repeat until no improvement:

• For each group p, change its class label to any
class label and record improvement if any;

• If in the previous step, any improvement was
recorded, permute randomly the group indices;

5. If K > 1, divide the group size K by two, and go to
step 2;

6. End of algorithm.

In practice, the initial group size K0 can be initialized for
example as Ml

|ΩC | .

4. Results and discussion

The proposed supervised information theoretic classifica-
tion algorithm is validated on Ripley’s data set [8], shown
in Figure 1. It is a synthetic data set, composed of a learn-
ing set of size Ml = 250 and a test set of size Mt = 1000.
Each class is a mixture of two Gaussian distributions. The
two equally sized classes are strongly overlapping.

In this paper, the performances of information theoretic
classification (ITC), probabilistic neural networks (PNNs)
and support vector machines (SVMs) are compared. We
consider PNNs using Gaussian activation functions. Ba-
sically, such PNNs perform Bayesian classification after
estimating the PDF of each class by means of the class
prototypes [9]. The class densities are estimated non-
parametrically by Parzen. SVMs are supervised classi-
fication technique based on Vapnik’s statistical learning
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PNN (sigma=0.125)
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SVM (sigma=0.77, c=15)
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Figure 2. Classification of Ripley’s synthetic test set. The left figure shows the classification by
PNN, the one in the middle by SVM and the figure on the right by ITC.

theory [10, 3]. The goal is to find a large margin separa-
tion hyper-plane between the two classes. As the classes
are usually not linearly separable in the input space, data
is projected into a high-dimensional space through the so-
called kernel-trick, where the linear classification can be
done. Again, we consider Gaussian kernels.

In Figure 2, the classification result of Ripley’s test set
is shown, using PNN, SVM and ITC. In the latter, we
have taken σi = σj = σITC for simplicity. By per-
forming an exhaustive search, it was found that the opti-
mal kernel width for PNN is σPNN = 0.125 and for ITC
σITC = 0.2. As noted in Section 2.3, this difference can
be explained by the information theoretical interpretation
given to the kernel width in the context of ITC, i.e. it con-
trols the region of label transmission around each proto-
type. The optimal kernel width for SVM is σSV M = 0.75
and the regularization factor c = 15. For each classifi-
cation algorithm, the average classification error E was
computed. For PNN we have obtained EPNN = 9.3%,
for SVM ESV M = 9.7%, and for ITC EITC = 9.1%.

PNN and ITC perform better than SVM. When com-
paring PNN and ITC, one can see that ITC performs
slightly better than PNN. This can be explained as follows.
The effect of learning the classification task by maximiz-
ing the global class label transmission is the removal of
class outliers when estimating the class PDFs. We denote
by the term ‘class outlier’ a data sample located within a
foreign class. Hence, the class transitions are steeper, re-
ducing the uncertainty on the location of the class bound-
aries. The classification result is therefore less sensitive
to atypical data samples, as they do not contribute to the
PDF estimation of their respective classes.

5. Conclusion

In this paper, supervised nonparametric information
theoretic classification was introduced. The resulting clas-

sification algorithm exploits the likelihood of each class
prototype of transmitting its class label to a data point
located in its vicinity. Based on this principle, an infor-
mation theoretic learning rule and a related classification
rule were proposed. The former is linked to the con-
cept of information potential. The relevance of the ap-
proach was demonstrated by simulation. Indeed, infor-
mation theoretic classification outperforms probabilistic
neural networks and support vector machines on Ripley’s
well-known synthetic data set.
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