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Abstract— In this work, we explore a framework for the sparse
representation of video sequences by means of spatio-temporal
functions able to exploit the 2D nature of images and the temporal
smoothness associated to object trajectories. Decomposition over
redundant dictionaries formed by 2D functions capable to exploit
image geometry, has shown to be well adapted for efficient
sparse image approximations. Video representation by means
of temporally evolving sets of such 2D functions seems thus a
natural extension toward video approximation techniques. In the
present paper we study the deformation of a geometry oriented
image expansion based on Matching Pursuits (MP) [1], to obtain
a parametric representation of frames transformation through
time. We consider a modified MP approach based on a Bayesian
decision criteria to deform geometrical primitives in a predictive
fashion from frame to frame. Indeed, since motion stability
is not guaranteed using a pure MP, a Bayesian framework
is introduced to regularize motion among expansion terms of
frames representations.

I. INTRODUCTION

Video representations are often based on a signal model
where objects and regions follow smooth geometrical trans-
formations through time [2]. Considering images as sets of
regions separated by contours (the piecewise image model
[3]) makes geometry a key component of the information
contained in natural images. Studies based in such assumptions
underline the importance of geometrically adapted image rep-
resentations [4], [3], [5]. By extension, excepted from covering
and uncovering effects, sequences can be seen as sets of
geometrical 2D primitives that evolve through time. Thus,
meaningful representations capable of describing geometry in
sequences, should benefit from 2D adaptivity while tracking at
the same time temporal transformation. In this work, we study
the deformation of a geometry oriented image expansion based
on Matching Pursuits (MP) [1], [6] to obtain a parametric
representation of frames transformation through time. We
consider a modified MP approach based on Bayesian decision
criteria to deform geometrical primitives through time. A
Markov Random Field (MRF) framework is introduced to
regularize motion among terms of frame decompositions.
Results present the behavior of a greedy algorithm together
with the use of redundant dictionaries to track the temporal
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evolution of 2D atoms. This is done for two cases, i) without
considering a priori information in the greedy selection criteria
and ii) considering it. Finally a Rate-Distortion measurement is
performed to evaluate the decrease of entropy of the sequence
parametric description versus the increase of approximation
drift introduced by the modified greedy criteria.

The paper is structured as follows: In Section II the in-
vestigated framework for image and video representation is
exposed. Section III introduces the Bayesian framework used
in combination with a greedy algorithm. Results are presented
in Section IV. Finally, conclusions are drawn in Section V.

II. VIDEO EXPANSIONS OVER REDUNDANT PARAMETRIC
DICTIONARIES

A. Image Modeling

Efficient modeling of the wide variety of geometrical fea-
tures on images suggest the use of highly redundant sets of
functions. In this paper we will model images as short (i.e.
sparse) linear superpositions of atoms taken out from a huge,
usually very redundant, library (D) of functions gγ usually
referred to as a dictionary. Hence,

Î =
∑

γn∈Ω

cγn
· gγn

, (1)

where n is the summation index, cγ corresponds to the
projection coefficient for every atom gγ and Ω is the subset of
selected atom indexes from dictionary D. In order to adapt our
representation to catch the geometry of natural images, D is
defined as D = {gγ : γ ∈ Γ}. Each atom gγ = Uγg where Uγ

is a geometrical transformation applied to the mother function
g. This transformation consists in translation on the plane,
anisotropic scaling and rotation. Anisotropic Refinement (AR)
atoms [1] have been chosen as generating function g due to
their geometry oriented structure.

B. Proposed Video Representation

We consider an approach where 2D spatial primitives gt
γ

(where t indicates the temporal dimension) obtained in the
expansion of a reference frame of the form of (1) are tracked
through time from frame to frame. Indeed, we would like
to jointly represent image geometrical structures and their
temporal evolution.
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First, a reference frame is decomposed on the geometric re-
dundant dictionary described above. Given the non uniqueness
of the possible expansions and the computational complexity
needed to find the optimal one, we choose to iteratively
approximate the reference frame by means of the sub-optimal
Matching Pursuit algorithm [6]. This retrieves at each step the
atom gγ that best approximates the signal in a L2 norm sense.
Once a new expansion term has been found, MP subtracts this
from the signal in order to proceed in the following iteration
to retrieve a new term from the residual.

Given a set of images belonging to a sequence, the changes
suffered from frame It to It+1 are modeled as the application
of an operator F to the image It such that It+1 = Ft (It) and
It+1 =

∑

γn∈Γ
F

γn

t

(

ct
γn

· gt
γn

)

This poses a complex optimization problem to solve:

min
Ft

∥

∥

∥

∥

∥

∥

It+1 −
∑

γn∈Ω

F
γn

t

[

ct
γn

· gt
γn

]

∥

∥

∥

∥

∥

∥
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subject to Cost (Ft) ≤ ξ,

(2)
where Ft represents the set of transformations F

γ
t of all atoms

that approximate each frame, and Cost represents a given
constraint subject to the sequence model. In order to make
it feasible, an approximate solution is obtained by the use
of a greedy algorithm. Every frame is expanded by means
of a modified matching pursuit. A similar approach to the
used for the reference frame is used to retrieve the new
set of gt+1

γ (and the associated parametric transformation
Ft). However, at every greedy decomposition iteration some
new criteria needs to be considered in order to establish the
relation with the expansion of the reference frame. First, only
a subset of functions of the general dictionary is considered
as candidate functions to represent the deformed atom. This
subset is defined according to the past geometrical features
of the atom in the previous frame, such that only a limited
set of transformations (translation, scale and rotation) are
possible. As shown in Sec. IV, the simple constraint of limiting
possible atom transformations, and the simplicity of dictionary
functions [1] turns into a lack of regularity (stability) of the
atom motion. The use of some a priori information in the
selection criteria of the greedy algorithm is considered in the
following section. Indeed, we will assume that atoms that
contribute to the same structure in an image cannot have very
diverse motion.

III. A BAYESIAN APPROACH FOR TRACKING IMAGE
PRIMITIVES

A. Weak MP Optimization Functional

In order to include in the MP algorithm a regularity measure,
a more flexible version of the selection criteria is considered
(Weak Greedy Algorithm -WGA- [7]). Instead of selecting the
function giving the biggest scalar product at every iteration,
we select the most probable function with respect to a certain
motion. The selection of the atom that gives the maximum
scalar product is equivalent to select the most probable atom

given that all transformations have equal a priori probability.
However, in the case of smooth motion, there will be a lot of
transformations that are unlike and even impossible. Hence,
at every greedy prediction iteration the atom selected will
correspond to:

gt+1
γ′

n
= arg max

gt+1
γn , γ∈Γ

{

p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

·

p (∆γn,∆cn)} ,
(3)

such that ∆γn is the temporal parameter variation of the nth
term of the modified MP expansion, and γt+1

n , γt
n ∈ Γ.

The first probability term expresses matching probability of
a transformed atom, from frame at time t into the frame
at time t + 1, constrained to a given motion (change in
translation, rotation scale and projection coefficient) of an
atom. The second probability term introduces in the functional
the a priori knowledge based on a MRF of the possible
transformations, i.e. some transformations will be more likely
than others. This establishes a relation between nearby atoms
transferring the more reliable motion obtained from higher
energy atoms (first in the MP expansion) to weaker ones.

The matching probability p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

can
be defined as a function of an estimated residual error energy
∥

∥

∥
R̂t+1

n+1f
∥

∥

∥

2

for the retrieval of function gγn
at iteration n.

Atoms are assumed to deform under consistent motion trans-
formation. Thus, no change in the coefficient will be consid-
ered (except for scale changes) in the estimation of the most
probable motion:

R̂t+1
n+1f = Rnf t+1 −

〈

Rt
nf, gt

γn

〉

gt+1
γn

, (4)

where
〈

Rt
nf, gt

γn

〉

is normalized according to a possible re-
scaling of gt+1

γn
with respect to gt

γn
.

Assuming Gaussianity (by the central limit theorem [8]) and
independence of error samples Rt

n+1f(x, y) [9], the following
conditioned optimization criteria can be proved:

p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

≈
C1

√

∥

∥

∥
R̂t+1

n+1

∥

∥

∥

2
, (5)

where C1 is a constant.
The probability p (∆γn,∆cn) imposes the model that con-

straints the transformation F
γn

t of gt
γn

and the associated
coefficient. Earlier atoms are trusted to generate the MRF
for the future appearing atoms. Anyway, when no a priori
indicator of the motion of a primitive is available, an initial
tentative needs to be performed. The functions in use for the
generation of our dictionary have a relatively simple shape.
Similarly to the well known “aperture” problem, AR atoms
may not be able to retrieve the appropriate translation in the
direction parallel to contour gradients (usualy represented by
the smooth part (Gaussian) of AR atoms). In addition, possible
additional influences due to greedy sub-optimality [10] can be
a problem as well. Thus, the whole pixmap of the original
image inscribed in the support of that primitive is used for



a first estimate. This is, the cross-correlation (matching) for
every possible geometric transformation of the zero mean and
normalized versions of the pixmap and the frame that we want
to approximate is used.

∆γn components (∆~d, ∆~s, ∆θ), considered to be inde-
pendent random variables, and the temporal variation of the
coefficient (∆cn) are dependent on the temporal transforma-
tion ∆γn. Their probability function is assumed to be of the
form of a MRF. That is, they may be modeled by a Gibbs
distribution [11], which allows to transform (3) into:

∆γn = arg min
∆γn

{

1

2
log

(

∥

∥

∥
R̂t+1

n+1

∥

∥

∥

2
)

+ λ∆cn
E∆cn

(∆cn) +

λ
∆~dn

E
∆~dn

(

∆~dn

)

+ λ∆~sn
E∆~sn

(∆~sn) +

λ∆θn
E∆θn

(∆θn)}
(6)

where Ex (x) is a potential function that characterizes the
MRF and how neighboring variables are related and each λx

configures the contribution to the functional of each one of
the terms. All λx are related to the statistics of the assumed
Bayesian model and will be sequence dependent.

Temporal variations of coefficients ∆cn should be small in
ideal tracking of a primitive. In any case, coefficients may not
change sign. Changes to coefficients should be driven mainly
due to the change of scale of the approximating function. To
induce its temporal regularity, a normalized quadratic distance
between the coefficients at time t and t + 1 is considered
for E∆cn

(∆cn). Displacement, change of scale and rotation
potentials, are measured as the euclidean distance between
the value under test and the most likely (ML) transformation
estimated from previous MP iterations at every image location.
Hence, they can be represented as:

E
∆~dn

= (dn
x − d̂x

n
)2 + (dn

y − d̂y

n
)2

E∆~sn
= (sn

x − ŝx
n)2 + (sn

y − ŝy
n)2

E∆θn
= (θn − θ̂n)2,

(7)

where d̂, ŝ and θ̂ correspond to the ML estimates. These
estimates are nothing else than a weighted average of the
deformation of previous atoms that overlap in the spatial
location where this potentials are defined.

Finally, notice that an atom may become unuseful due to
changes in the image sequence. A threshold is defined on the
projection coefficients in order to detect it. These atoms are
then reintroduced in the frame description by means of a full
search without taking into account any kind of regularization.

IV. EXPERIMENTAL RESULTS

In this section an example based in a synthetic sequence and
one based in a natural one are presented. The examples show
mainly the MRF translational fields obtained in the process
of parametric representations. These evidence the effect of
regularization on the parametric descriptions. An additional
result on the natural sequece Foreman is presented to show the
effect of regularization in the prediction drift and the average
R-D.
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Fig. 1. Affine motion of a synthetic model (square). The white bat
corresponds to the foot-print of a selected atom in two temporal instants. Left
is the non-regularized prediction. Middle is the regularized prediction. Right
most reliable motion of the regularized solution. Rotation and displacement
can be appreciated.

The example corresponding to the motion associated to a
particular atom in a synthetic sequence can be found in Fig. 1.
The sequence corresponds to a translating and rotating square.
We consider a particular atom, represented in the picture
by a white mark that has the shape of its support. In both
columns, we see the representation of the square by means
of an expansion of 50 coefficients with the footprint of the
function support superimposed. In the left column we display
the corresponding past and present positions of the atom for
the non regularized case, i.e. the selected atom is fully driven
by the search of the highest projection coefficient absolute
value. On the right, the atom is steered considering the a priori
of rigid motion. At the bottom of Fig. 1 we can see the motion
associated to atoms of the right column. However the synthetic
model considered above is very simple and constrained. Fig.
3 shows a comparison between a non regularized result (left),
and a regularized one (right) of the highway image. A clear
influence of the regularization and motion initialization is
reflected in the flow related to the atoms motion. In the upper
right figure and the one below, a clear relation can be estab-
lished between atoms that participate in the cars approximation
and their motion. In the example where the truck appears, the
influence between neighboring atoms located in the wood area
in the background can not be avoided, i.e. the moving atoms
of the truck push in some measure the atoms representing the
background. Interdependence among neighboring primitives is
responsible for their strong interaction. In order to have an
objective measure of the regularization effects, we consider
the R-D curve obtained for a simple coding scheme applied
to the parametric representation of the Foreman sequence. For
this purpose, we apply the simple coding scheme described in
[12] to a group of 3 GOPs of 16 frames (a reference frame
will be inserted at the beginning of each GOP). Given the
regularized atom prediction criteria of our algorithm, spatial
and temporal regularity are imposed among atoms. Hence,
correlation of atoms at time t with their evolved version at
time t + 1 will be exploited by only encoding the temporal
differences of parameters and coefficients (i.e. the set of F

γ
t of

Eq.2). When an atom is refreshed , this is obtained by doing a
full search in the whole image. Atoms that have been refreshed
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Fig. 2. Up (left): Curves representing the loss of frame approximation
accuracy due to the regularization. Up (right): R-D comparison of the
regularized and non-regularized Foreman sequences (16 frames/GOP). Rate
variation is obtained by changing the number of terms (atoms/frame) con-
sidered in the sequence reconstruction. Down: Images corresponding to the
reconstructed frames 1st and 6th from the predicted foreman sequence using
500 atoms/frame.

will also be coded by just sending the difference with respect
to the atom they replace in the previous frame. Finally, an
arithmetic coding of the differential data is performed. The
curves on Fig. 2 show the gain obtained in terms of R-D
of the regularized Bayesian matching with respect to the non-
regularized one. As expected, regularization turns into a reduc-
tion of the entropy of the parametric representation of frame
to frame variations. Furthermore, reduction in entropy is high
enough to compensate in average the drift (i.e., WGA trades
between regularity and signal approximation) presented by the
regularized sequence with respect to the non-regularized.

V. CONCLUSIONS

The results show light on the possibility of tracking ge-
ometrical primitives through sequences using over-complete
geometrically oriented dictionaries. The use of simple match-
ing pursuits to track the transformation of primitives from
frame to frame is revealed to generate very instable parametric
sequence descriptions despite that signal approximations may
be good. Experimental results and theory [10] justify the need
for a priories to help (or fully drive) the decision criteria of
the greedy algorithm when general over-complete dictionaries
are in use. Additional effort is required to define more robust
approaches involving structured dictionaries where sets of
neighboring atoms could be considered to move together in a
rigid way. Furthermore, suboptimalities should be avoided by
the retrieval of a global optimum for the optimization problem
of Eq. 2.

REFERENCES

[1] P. Vandergheynst and P. Frossard, “Efficient image representation by
anisotropic refinement in matching pursuit,” in ICASSP, vol. 3, Salt Lake
City, May 2001.

[2] Y. Wang, J. Ostermann, and Y. Zhang, Digital Video Processing and
Communications. Prentice Hall, 2001.

[3] M. N. Do, P. L. Dragotti, R. Shukla, and M. Vetterli, “On the
compression of two-dimensional piecewise smooth functions,” in ICIP,
Thesalonica, October 2001.

0 5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

Fig. 3. Natural sequence motorway. Left column: non-regularized solution.
Right column: regularized tracking. First and third rows: Respective recon-
structions with 500 atoms. Second and forth rows: Most reliable primitives
motion

[4] E. J. Candès and D. L. Donoho, “Curvelets - a surprisingly effective non-
adaptive representation for objects with edges.” Curves and Surfaces, L.
L. S. et al., ed., Nashville, TN, (Vanderbilt University Press), pp. 123–
143, 1999.

[5] R. Figueras i Ventura, L. Granai, and P. Vandergheynst, “R-D analysis
of adaptive edge representations,” in MMSP, Virgin Islands, December
2002.

[6] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. on Signal Proc., vol. 41, no. 12, pp. 3397–
3415, December 1993.

[7] V. N. Temlyakov, “Weak greedy algorithms,” Department of Mathemat-
ics, University of South Carolina, Columbia, Tech. Rep., 1999.

[8] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed. McGrawHill, 1991.

[9] T. Aach, A. Kaup, and R. Mester, “Combined displacement estimation
and segmentation of stereo image pairs based on Gibbs random fields,”
in ICASSP, 1990.

[10] O. Divorra Escoda, P. Vandergheynst, and M. Bierlaire, “Video rep-
resentation using greedy approximations over redundant parametric
dictionaries.” LTS-2/ITS EPFL, Tech. Rep. ITS-2004.019, 2004, on-
line: http://lts2www.epfl.ch/ divorra/publications.php.

[11] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721–741, 1984.

[12] O. Divorra Escoda and P. Vandergheynst, “Video coding using a de-
formation compensation algorithm based on adaptive matching pursuit
image decompositions,” in ICIP, Barcelona, September 2003.


