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ABSTRACT

In this paper we propose a method for the automatic count-
ing of pedestrians in video sequences for (automatic) video
surveillance applications. We analyse the trajectory data
set provided by a detection/tracking system. When us-
ing classical target detection and tracking systems, it is
weel known that the number of detected targets is over-
estimated/underestimated. A better representation for the
trajectories is given in the ICA (Independent Component
Analysis) transformed domain and clustering techniques
are applied to the ICA-transformed data in order to pro-
vide a better estimation of the actual number of pedestri-
ans which are present on the scene.

1. INTRODUCTION

In this paper we focus the attention on the output data
of an automatic multi-object detection/tracking system,
in the particular case of pedestrian tracking. Despite the
multitude of methods presented in literature to tackle this
problem (see [1, 2, 3, 4, 5, 6]), the detection and tracking
of moving objects does not provide yet a reliable method
of counting the number of the tracked objects. The dis-
cordance between the number of detected objects and the
real number of targets in the scene depends on objective
difficulties to define properly the target object as an im-
age region respecting predefined properties. All the image
segmentation methods are always strongly dependent on
image illumination conditions, cluttered backgrounds and
partial occlusions between targets. All the blob-detection
based methods suffer of underestimating the real number
of targets in the scene.
On the contrary, in our detection/tracking system more
than one tracker is associated to the same pedestrian, giv-
ing an overestimation of the real number of individuals
present in the scene. The contribution of this paper is to
refine the detection/tracking results by analysing the com-
puted trajectories, finding a better representation in the

ICA transformed domain and applying clustering tech-
niques to give a better estimation of the real number of
pedestrians present in the scene.

The paper is structured as follows: in section 2 we define
the problem in the context of trajectory analysis/clustering.
In section 3 we give a short reference to related works in
this field. In section 4 we describe our trajectory represen-
tation and we give a description of the main ICA concepts.
In section 5 we present the two metric/similarity measures
adopted to perform the clustering between the trajectory
data and in section 6 we present our results. We conclude
by presenting our final remarks.

2. INPUT DATA AND PROBLEM DEFINITION

Without entering into details, we summarize here how the
input trajectory data are generated. We assume having
a calibrated camera, giving a unique correspondence be-
tween the image plane and the top view reconstruction of
the scene. A large number of hypothetical moving points
(trackers) is initialized on the top view plan by means of
a grid with a certain resolution. The corresponding pro-
jections of these points on the image plan, filtered using a
foreground mask, are tracked by means of a visual corre-
lation method (see figure 1). The resulting trajectories are
re-projected on the top view plan and filtered again using
behavioral constraints (see [7, 8, 9, 10]).1.
At the end of the filtering stages we have a reduced set
of trajectories, originated by the filtered trackers, most of
which are correctly placed on the pedestrians. This ap-
proach guarantees a good detection of moving targets but
introduces an overestimation in the number of the mov-
ing objects, caused by the initial grid used to initialize the
system and by the errors introduced by visual correlation.
More than one tracker can belong to the same moving re-

1The interested reader can find a detailed description of the detec-
tion/tracking algorithm at http://lts1pc19/indexpage.html
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Figure 1: The top view grid used to initialize the algo-
rithm.

gion having at the same time a good behavior (e.g. track-
ers placed on different parts of the same human body). We
show in figure 2 some examples of this problem. This sit-
uation makes it impossible to give a good estimation of
the actual number of people. This specific problem could

Figure 2: Three examples of multiple trackers represented
by rectangles on the same pedestrian.

be approached from different points of view. A deeper im-
age analysis on the moving regions could be useful, even
if the low resolution and bad quality of sub-images make
the task quite difficult. In line with the approach used
to detect pedestrians, we propose in this paper to anal-
yse the dynamic of moving targets, i.e. their trajectories,
looking for similarities between trajectories that belong to
the same moving region. We attempt to cluster the result-
ing trajectories assuming that trackers placed on the same
pedestrian will generate trajectories much similar to each
other.

3. RELATED WORK

Different approaches have been developed in the literature
to give measures of similarity between trajectories and/or
defining a metric or quasi-metric to compare them. A clas-
sical approach widely used in time-series analysis is the
DTW (Dynamic Time Warping, see [11, 12]). The main
idea behind DTW is to find an alignment of two time se-
ries on a common time-axis. Another classical approach
is to use a vector-form for trajectories and use ap-norm to
compute distances (see [13]). This method does not deal

directly with outliers while most of the metrics used to
compare data sets are sensitive to this phenomenon. On
the contrary, it is possible to gain in simplicity and per-
formances because it allows dimensionality reduction. A
better approach would handle the natural dimensionality
of the data directly. This leads to model-based cluster-
ing techniques, where each cluster will be described by
a probability density function and the density of the data
will be a mixture of functions. One example of this kind
of approach is the mixture of regression models ([14]). A
lot of work has been performed in the data mining com-
munity, mainly focusing on finding better distance mea-
sures to indexing items in databases ([15, 16]). Finally,
interesting approaches are those proposed by ([17] and
[18]) where similarity measures and metrics are defined
based on the definition of specific relations between sets
of points.

4. TRAJECTORY REPRESENTATION

The basic idea of our method is to use a generative prob-
abilistic approach in order to give a better representation
of our data, where the presence of outliers is reduced. We
consider a trajectory simply as a set of points, where each
point is expressed with 3 coordinates(x, y, t), the two
plane coordinatesx andy and the timet. We show in fig-
ure 3 some examples of trajectory data. We note how a 3-
D representation gives more discriminant power to group
the trajectory data than the 2-Dxy-plane projection. How-
ever, we see in fig. 3(c) an example of how it can be quite
difficult to associate a trajectory with the corresponding
pedestrian.
Looking at trajectories as 3-D data distributions, we can
see that they are quite sparse. It is well known that when
the sources are sparse, independent component analysis
can be seen as a probabilistic method to find an interest-
ing non-orthogonal rotationthat concentrates and better
represents the data.

4.1. Independent Component representation

Independent Component Analysis (ICA) ([19, 20, 21]) is a
generative model where a set of random variables, theob-
servations, are supposed to be generated by a mixing pro-
cess starting from another set of statistical independent la-
tent (unobservable) variables, thesources, by means of an
unknown mixing matrixA. This model can be described
by the following equation:

X = As (1)

whereX represents the observations ands the sources.
The numberm of observations can differ from the num-
ber n of sources. For a general discussion on ICA we



(a) Original trajectories (b) xy-plane projection

(c) Rotated axes

Figure 3: We show here an example of 9 trajectories: they
are manually grabbed from 3 pedestrians who walk close
to each other. Three trackers have been placed, respec-
tively, on the head, body-center and feet for each individ-
ual.

can assume, without loss of generality, thatm = n. The
basic hypothesis of the ICA model is the statistical inde-
pendence of the latent variables. It is possible to show
that independenceis strictly related tonon-gaussianity.
So, the main assumption in ICA is the non-gaussianity of
the source signals. ICA becomes interesting for our pour-
poses when we consider its geometrical interpretation. To
better understand the characteristics of ICA, let us think
to principal component analysis. PCA is a well known
unsupervised statistical method to find useful data repre-
sentations. Its goal is to find a ’better’ basis so that in this
new basis the data are uncorrelated. The solution cho-
sen by PCA is an orthogonal matrix depending just on the
second-order statistics of the data (i.e. the covariance ma-
trix). ICA can be seen as the non-orthogonal extension
of PCA. The chosen solution is based on the high-order
statistics of the data and represents a non-orthogonal ro-
tation finding directions with high concentrations of data.
As a consequence, this transformation changes the relative
distances between points affecting similarity and/or dis-
tance measures. For these reasons it can be quite useful in
classification and clustering problems. We show in figure
4 the same set of 9 trajectories as in figure 3 after ICA.
We note how the non-orthogonal rotation has improved

(a) ICA trajectories (b) 2-D projection

(c) Rotated axes

Figure 4: The same data set represented in the ICA space.
The solution found by ICA algorithm change the relative
distances between points giving more disciminant power
to cluster the trajectories.

the discriminant power reducing distances between that
trajectoriy’s points that belong to the same individual. In
figure 4(c) become evident the three main trajectories.

5. CLUSTERING ALGORITHM IN ICA SPACE

Having noa-priori knowledge about the number of pedes-
trians in the scene we proceed by grouping trajectories
using a hierarchical clustering algorithm. This approach
represents a natural way of grouping data over a variety
of scales. Trajectories are paired into binary clusters, the
newly formed clusters are grouped into larger clusters un-
til a hierarchical tree is formed. The resulting tree can be
analysed at different levels to find out different resulting
clusters. We proceed in our experiments using theHaus-
dorff distance and theLCSSsimilarity measure between
trajectories aspairwise distancesbetween observations.
Givenn trajectories, the pairwise distance information is
represented by a vector of lengthn(n − 1)/2. Different
methods exist to obtain the hierarchical tree structure from
the pairwise distance information. We compare the results
obtained using four different algorithms:complete, aver-
age, centroidandward. We repeat the two clustering pro-
cedures both in the original and ICA transformed domain
showing that the ICA transformation gives better results



with both the distance and similarity measures2.

5.1. The Housdorff distance

Using the same notation as [18], the Hausdorff distance
dh between two setsA andB is defined as:

dh(A,B) = max(maxa∈A(min d(a, b)|b ∈ B),
maxb∈B(min d(a, b)|a ∈ A)) (2)

whered(., .) represents a point-distance function (normally
the Euclidean metric). As it is well known, this metric
is very sensitive to outliers. The ICA transformation at-
tempts to reduce this sensitivity. On the other hand it has
also some quite good properties. First, it represents a met-
ric and not just a similarity. Second, we can easily apply
this measure to sets of different sizes.

5.2. Longest Common Sub-Sequence

The second measure we use (a similarity measure) is based
on theLCSS, i.e. longest common sub-sequence, as de-
fined in [22]. Keeping the same notation as the referenced
paper, we use what the authors call theS1 similarity mea-
sure. It does not extend to translations because in our case
two parallel trajectories with similar shapes may represent
two different individuals.
Given two trajectoriesA = ((ax,1, ay,1), ..., (ax,n, ay,n))
andB = ((bx,1, by,1), ..., (bx,m, by,m)), let Head(A) and
Head(B) be two sequences defined as:
Head(A) = ((ax,1, ay,1), ..., (ax,n−1, ay,n−1))
Head(B) = ((bx,1, by,1), ..., (bx,m−1, by,m−1)).

Definition 1 Given an integerδ ≥ 0 and a real number
0 < ε < 1 theLCSSδ,ε(A,B) is defined as follows:



0 if A or B is empty

1 + LCSSδ,ε(Head(A),Head(B)),
if |ax,n − bx,m| < ε and|ay,n − by,m| < ε and|n−m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A,Head(B))),
otherwise

Definition 2 Given two trajectories A and B and given
ε ∈ (0, 1) andδ ≥ 0, the similarity measureS1 is defined
as follows:

S1(δ, ε, A, B) =
LCSSδ,ε(A,B)

min(m,n)
(3)

2The independent components are estimated using the FastICA Mat-
lab package (http://www.cis.hut.fi/projects/ica/fastica/)

This similarity measure is more robust to outliers in trajec-
tory data, can operate on trajectories of different lengths
and can be efficiently computed by means of dynamic pro-
gramming.

5.3. The hierarchical tree structure

As already said, different algorithms can be used to create
the cluster-tree structure, starting from the pairwise dis-
tance vector. They can be ‘agglomerative’, meaning that
groups are merged, or ‘divisive’, in which one or more
groups are split at each stage. Moreover, conventional
heuristic methods or more complex model-based methods
(where maximum likelihood citerion is used to merge dif-
ferent groups) are used at each step to merge or split the
current cluster-tree structure. In this paper we focus our
attention on data representation for trajectory clustering.
In this spirit we use simple conventional agglomerative
methods. We shortly describe in the following the four
used linking methods and we remind the interested reader
to [23] and [24], for more complex clustering approaches.

Let beu andv two clusters of sizenu andnv respectively
and let bexui the ith object in clusteru. We have:

• complete: this method uses the largest distance be-
tween two objects in two groups:

d(u, v) = max(dist(xui, xvj))withi = 1, ..., nu, j = 1, ..., nv

(4)

• average: uses the average paired distance between
all the object pairs in the two clusters

d(u, v) =
1

nu · nv

nu∑
i=1

nv∑
j=1

dist(xui, xvj) (5)

• centroid: two groups are compared using the dis-
tance relative to their centroids. The centroidxuc

for the clusteru is defined as:

xuc =
1
nu

nu∑
i=1

xui (6)

• ward: this method uses the incremental sum of squares

d(u, v) =
nunvd2

uv

nu + nv
(7)

whereduv is computed with the centroid method.



6. RESULTS

In our experiments we use two sets of trajectories. The
first one is composed by 30 trajectories manually grabbed
and the second one consists in 15 trajectories obtained
with our detection/tracking system. We show in the fol-
lowing the obtained results.

Test 1
The manually tracked points that generate our first data
set are placed on 10 different pedestrians, 3 for each of
them and are placed on the head, the body’s center and
on the middle of feet of the individuals. The selected 10
pedestrians walk divided in goups of respectively 3, 3 and
4 persons, as we can see in figure 5. The goal is to cor-
rectly cluster the 30 trajectories in 10 different clusters.
We show in figure 5 the trajectories.
The results of the first data set are summarized in tables
1 and 2 where columne1 represents themissedpedestri-
ans and columne2represents the number ofover-counted
pedestrians. Byover-countedwe mean a pedestrian with
more than one resulting cluster over himself. We talk
aboutmissedpedestrian when no clusters refer to him.

num clustering num num e1 e2
traj alg clsuters ped

Hausdorff distance:
complete 12 1 3

30 average 13 10 1 4
centroid 11 2 3

ward 10 1 4
LCSSsimilarity :

complete 11 / 1
30 average 10 10 1 1

centroid 13 / 3
ward 11 / 1

Table 1: Results obtained using the Hausdorff metric and
LCSSsimilarity in the original space

Test 2
The second data set represents a subset of trajectories com-
puted by our detection/tracking system. We show the data
in figure 6 and the clustering results in tables 3 and 4.

6.1. Comments

Tables 1, 2, 3, and 4 present different interesting points
to discuss. The results for the first data set clearly show
how the ICA transformation improves the clustering. We
can see it also in the respective results using the Haus-
dorff and LCSS metric/similarity. The differences of the
respective results in the original space are removed in the

num clustering num num e1 e2
traj alg clsuters ped

Hausdorff distance:
complete 10 / /

30 average 10 10 / /
centroid 10 / /

ward 10 / /
LCSSsimilarity :

complete 10 / /
30 average 10 10 / /

centroid 10 / /
ward 10 / /

Table 2: Results obtained using the Hausdorff metric and
LCSSsimilarity in ICA space

num clustering num num e1 e2
traj alg clusters ped

Hausdorff distance:
complete 6 2 2

15 average 6 6 2 2
centroid 7 1 2

ward 6 2 2
LCSSsimilarity :

complete 1 5 /
15 average 1 6 5 /

centroid 1 5 /
ward 5 2 1

Table 3: Results obtained using the Hausdorff metric and
LCSSsimilarity in the original space

ICA space, where the Hausdorff distance performs as well
as the LCSS similarity measure. This is an implicit in-
dication that the non-orthogonal rotation has reduced the
presence of outliers in the trajectories, concentrating the
data along the independent directions. We remark the
same qualitative improvements for the second data set.
The complete, average and centroid linking algorithms
for the data in the original space and using LCSS (see
table 3) show how the selected threshold is too high to
let LCSS similarity finding differences in the data dis-
tribution. The same experiments in the transformed do-
main show how the grouping power has been improved,
changing the representation but keeping the same cluster-
ing threshold. This threshold, which indicates the level in
the hierarchical tree, has been fixed in all our tests at the
value of 0.8. Of course, the results can be improved with
an appropriate tuning of the threshold value. We report
finally in the next figure the images related to the centroid
linking algorithm. The average trajectory for each clus-



num clustering num num e1 e2
traj alg clusters ped

Hausdorff distance:
complete 6 1 1

15 average 6 6 1 1
centroid 6 1 1

ward 6 1 1
LCSSsimilarity :

complete 4 3 1
15 average 6 6 1 1

centroid 6 1 1
ward 6 1 1

Table 4: Results obtained using the Hausdorff metric and
LCSSsimilarity in ICA space

ter has been computed and the red markers represent the
starting points of such trajectories.

6.2. Limitations

The limitation of this approach resides in an ambiguity in-
trinsic in the ICA model. In equation 1 boths andA are
unknown. We can change the order of the independent
components keeping untouched the validity of the model.
Therefore the components are estimated up to a permuta-
tion matrix. When the ICA model is used, for example,
as a dimensionality reduction method this doesn’t change
the results. On the contrary, in our case we use the ICA
model to estimate a transformation matrix to change the
representation of the data. Permuting the order of the es-
timated components is the same as invert the axis of the
new representation system, changing the data representa-
tion itself. This fact leads to different clustering results.
One solution can be to keep the ICA estimation that opti-
mizes the clustering. In our specific case, having three in-
dependent components, the number of permutations is3!.
As a consequence, it is possible to choose the order which
maximizes the clustering performances. In our case, this
choice has been done by visual inspection.

7. CONCLUSION AND FUTURE WORKS

In this paper we have shown a possible approach to solve
the problem of counting targets in detection/tracking sys-
tems of moving objects, taking pedestrians as specific ap-
plication. This classical image processing task has been
approached as a trajectory clustering problem. We have
shown that despite the multitude of methods present in the
literature in different domains such as time series analysis
and data mining, a simple changing in the data represen-
tation can improve the final results. We consider the tra-
jectories as 3D data distributions and we use independent
component analysis to estimate the transformation matrix.
In the ICA space the data appear better grouped around
the independent directions and the presence of outliers is
reduced. With this new representation, standard distance
measures between sets of points, such as the Hausdorff
distance, can perform as well as more sophisticated simi-
larity measures such as theLCSS.
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(a) Projection on thex-yplane

(b) 2D projection in the ICA space

(c) The corresponding starting points placed
on pedestrians

Figure 5: Illustration of the manually grabbed trajectories.

(a) Projection on thex-yplane

(b) 2D projection in the ICA space

(c) The corresponding starting points placed
on pedestrians

Figure 6: Illustration of the automatically tracked trajec-
tories.


