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Abstract

Shadows are integral parts of natural scenes and one of the elements contributing to nat-

uralness of synthetic scenes. In many image analysis and interpretation applications, shadows

interfere with fundamental tasks such as object extraction and description. For this reason,

shadow segmentation is an important step in image analysis. In this paper, we propose a

new cast shadow segmentation algorithm for both still and moving images. The proposed

technique exploits spectral and geometrical properties of shadows in a scene to perform this

task. The presence of a shadow is first hypothesized with an initial and simple evidence based

on the fact that shadows darken the surface which they are cast upon. The validity of detected

regions as shadows is further verified by making use of more complex hypotheses on color in-

variance and geometric properties of shadows. Finally, an information integration stage con-

firms or rejects the initial hypothesis for every detected region. Simulation results show that

the proposed algorithm is robust and efficient in detecting shadows for a large class of scenes.
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1. Introduction

Shadows provide relevant information about the scene represented in an image or

a video sequence. They contain cues about the shape and the relative position of
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objects, as well as about the characteristics of surfaces and light sources. Despite this,

in applications requiring the identification of objects, shadows modify the perceived

shape and color, thus introducing a distortion in the object detection process. For

this reason, the problem of shadow detection has been increasingly addressed over

the past years.
Shadow detection techniques can be classified into two groups: model-based, and

property-based techniques. Model-based techniques rely on models representing the

a priori knowledge of the geometry of the scene, the objects, and the illumination.

Property-based techniques identify shadows by using features such as geometry,

brightness or color of shadows.

Model-based techniques are designed for specific applications, such as aerial im-

age understanding [1–5] and video surveillance [6–8]. They are based on matching

sets of geometric features such as edges, lines or corners to 3D object models. Mod-
el-based schemes generally handle simple objects and are only applicable to the spe-

cific application they are designed for.

The above-mentioned limitations are overcome by using spectral and geometric

features of shadows in property-based techniques. Luminance information alone is

exploited in early techniques by analyzing edges [9,10], histograms [11] or texture in-

formation [12]. Edge and texture information is exploited more recently in [13] to de-

tect background regions which are covered or uncovered by a moving cast shadow.1

Static edges and uniform changes of shading in the background texture are searched
for over time. An additional cue is given by the penumbra of shadows. The penum-

bra of a cast shadow is the part of the shadow where direct light from an extended

light source is only partially occluded. The penumbra in outdoor scenes, when shad-

ows present sharp edges due to the illumination source that is far from the objects,

could be difficult to detect.

Luminance, chrominance, and gradient density information is used in [14]. A

combined shadow confidence score is derived for extracted foreground regions in vi-

deo sequences that allows for separation of a cast shadow from the corresponding
object. This method is based on the hypothesis that shadow areas are not textured.

This assumption is valid for applications such as traffic surveillance when shadows

are cast on the road. Moreover, the method makes use of the convex hull of objects

which is appropriate for vehicles, but less appropriate for non-rigid objects such as

pedestrians. Color information is used also in [15], where the Dichromatic Reflection

Model is exploited for learning background color during an off-line training phase

and separating shadowed background from foreground regions in outdoor image se-

quences.
A physics-based approach to distinguish material changes from shadow bound-

aries in chromatic still images is presented in [16]. This method takes into account

the effect of ambient illumination which is usually neglected by other approaches.

An a priori estimate for the strength of the ambient illumination has to be provided

to the method. Color ratios are used in [17] for the same purpose. Here, an estimate

of the illumination field from the integration of the edge information is also derived.
1 The definition of cast shadows will be given in Section 2.
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In [18], a camera calibration procedure requiring a sequence of images is used to gen-

erate a 1-D illumination invariant shadow-free image. This image is used together

with the original image to locate shadow edges and to reconstruct a shadow-free full

color image. A classification of color edges by means of photometric invariant fea-

tures into shadow-geometry edges, highlight edges, and material changes is proposed
in [19].

A method for real-time cast shadow detection for video conference applications is

proposed in [20]. The algorithm uses color information in the YUV color space in

order to avoid time consuming color transformations. The authors observed that

a shadow reduces the YUV values of a point linearly with respect to the same point

in light. This observation is used in the method to detect shadows and remove them

from segmented objects.

Intensity, hue and saturation are exploited in [21] to detect moving cast shadows.
The detection is based on the observation that shadows change significantly the

brightness of an area without significantly modifying the color information. On

the basis of the same observation, a statistical background subtraction algorithm

which exploits a computational color model that separates the brightness from the

chromaticity components of a pixel is presented in [22]. In [23], the change in appear-

ance of a pixel when shadowed and when illuminated is statistically modeled. The

parameters of the method, which exploits a diagonal model of illumination change,

require a time-consuming setting and are optimized for traffic monitoring.
Geometric properties of shadows are generally less exploited for shadow segmen-

tation than spectral properties, but they can provide valuable information. In [24],

both intensity and geometry constraints are used to detect and to classify shadows

in images of a constrained, simple environment. In [25], geometry information is

combined with color information to detect cast shadows. A limitation of the method

is the active process that is required to determine the location of the light source. The

approach proposed in [26] overcomes this limitation by presenting a method for

the estimation of the projection of the light source direction in the 2D image plane.
The estimated direction is used to guide the cast shadow detection process. However,

the method requires the manual segmentation of the shadow in the first frame of the

sequence and segmented shadow-casting objects without shadows. The estimation of

the 3D illuminant direction in a scene from shading and shadow information has a

long history and dates back to Pentland�s original work [27]. Classical methods for

illumination direction estimation make strong assumptions on the scene making

them not applicable to complex real world images. Recent methods exploit bright-

ness distribution in shadows cast by objects of known 3D shapes [28–30] or insert
in the scene objects of known shape, reflectance, and position [31,32] to compute

an illumination distribution in the scene. These methods mainly address augmented

reality applications. Although they achieve good results in real images with complex

illumination distributions, the need for specific equipment, multiple images or

knowledge of the 3D shape, pose and location of objects prevents them to be used

in other applications where no control on the scene is available.

In this paper, we propose an image understanding system for the detection of cast

shadows which exploits shadows� spectral and geometric properties. The analysis is
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organized in three stages. A hypothesis about the presence of a shadow is first gen-

erated on the basis of an initial and simple evidence, i.e., shadows normally darken

the surface upon which they are cast. The validity of this hypothesis is further ver-

ified on each detected region by making use of hypotheses on color invariance and

geometric properties of shadows. Finally, an information integration stage confirms
or rejects the initial hypothesis for every detected region. The system is conceived to

work with uncalibrated images from different sources and with objects of different

nature.

We demonstrate that the proposed methodology can be applied to both video se-

quences and still images. In the case of video, the proposed algorithm�s performance

is compared to [21–23], which also exploit shadows� spectral properties but use dif-

ferent color models than those used here, and additionally to [13], which represents,

to the best of our knowledge, one of the most complete methods in the literature. In
the case of still images, the method extends and simplifies that in [24], which also ex-

ploits shadows� geometry for shadow extraction in single uncalibrated images.

An accurate characterization of shadows in terms of spectral and geometric prop-

erties and a study of the solutions proposed in the literature to the problem of sha-

dow segmentation according to this characterization allows here to propose an

analysis method for detecting shadows in both still and moving images which im-

proves on the existing techniques.

The paper is organized as follows. In Section 2, the physical generation of shad-
ows in a scene is described. The characterization of shadows in terms of spectral and

geometrical properties leads to the definition of explicit criteria for their identifica-

tion, as discussed in Section 3. Experimental results are presented in Section 4,

and in Section 5 we draw the conclusions.
2. What is a shadow?

A shadow occurs when an object partially or totally occludes direct light from a

source of illumination. Shadows can be divided into two classes: self and cast shad-

ows. A self shadow occurs in the portion of an object which is not illuminated by di-

rect light. A cast shadow is the area projected by the object in the direction of direct

light. In the following, the relationship between shadows and lit regions is formalized

in order to derive relevant shadow properties.

2.1. Spectral properties of shadows

To describe the spectral appearance of a surface in shadow, let us consider the

physics of color generation. The appearance of a surface is the result of the interac-

tion among illumination, surface reflectance properties, and the responses of a chro-

matic mechanism. This chromatic mechanism is composed of three color filters in a

color camera.

To model the physical interaction between illumination and object�s surface, let

us consider the Dichromatic Reflection Model [33]. The radiance [34] of the light,
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Lr(k, ~p), reflected at a given point ~p on a surface in the 3D space, given some illu-

mination and viewing geometry, is formulated as
Lrðk;~pÞ ¼ LaðkÞ þ Lbðk;~pÞ þ Lsðk;~pÞ; ð1Þ

where La(k), Lbðk;~pÞ, Ls(k, ~p) are the ambient reflection term, the body reflection

term, and the surface reflection term, respectively, and k is the wavelength. The

ambient illumination term is assumed to account for all the light indirectly reflected

among surfaces in the environment and does not vary with geometry. If there is no

direct illumination because an object is obstructing the direct light, then the radiance

of the reflected light is
Lrshadowðk;~pÞ ¼ LaðkÞ; ð2Þ

which represents the intensity of the reflected light at a point in a shadow region.

Let SRðkÞ, SGðkÞ, and SBðkÞ be the spectral sensitivities of the red, green, and blue

sensors of a color camera, respectively. The color components of the reflected inten-

sity reaching the sensors at a point ðx; yÞ in the 2D image plane are
Ciðx; yÞ ¼
Z
K
Eðk; x; yÞSCiðkÞdk; ð3Þ
where Ci 2 fR;G;Bg are the sensor responses, Eðk; x; yÞ is the image irradiance [34] at

ðx; yÞ, and SCiðkÞ 2 fSRðkÞ; SGðkÞ; SBðkÞg. The interval of summation is determined by

SCiðkÞ, which is non-zero over a bounded interval of wavelengths K. Since image

irradiance is proportional to scene radiance [34], for a pixel position ðx; yÞ repre-

senting a point ~p in direct light, the sensor measurements are
Ciðx; yÞlit ¼
Z
K
a LaðkÞ
�

þ Lbðk;~pÞ þ Lsðk;~pÞ
�
SCiðkÞdk ð4Þ
giving a color vector ~Cðx; yÞlit ¼ ðRlit;Glit;BlitÞ. a is the proportionality factor between
radiance and irradiance. For a point in shadow the measurements are
Ciðx; yÞshadow ¼
Z
K
aLaðkÞSCiðkÞdk ð5Þ
giving a color vector ~Cðx; yÞshadow ¼ ðRshadow;Gshadow;BshadowÞ. It follows that each of

the three RGB color components, if positive and not zero, decrease when passing

from a lit region to a shadowed one, that is
Rshadow < Rlit;

Gshadow < Glit;

Bshadow < Blit:

ð6Þ
Ambient light can have different spectral characteristics with respect to direct light

[16]. The case of outdoor scenes, where the diffuse light from the sky differs in spec-

tral composition with respect to the direct light from the sun, provides an example
[15,18,35]. Since we aim in this work at avoiding calibration procedures and cam-

era-dependent computations as in [18,35], so as to propose a segmentation algorithm

that can be applied even when no control on the imaging conditions and the scene is
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possible, we assume that the ambient light is proportional to the direct occluded

light. In this case, the assumption is a commonly used one [14,20–22,26]. Another

situation is when inter-reflections among different surfaces in the scene are present.

Local effects due to inter-object reflection are extremely hard to analyze [34] in real

world complex scenes as those addressed in this paper.2 Experiments will however
show that the proposed method is robust to the above mentioned assumption even

in scenes where the effect of mutual illumination could be non-negligible.

A second spectral property of shadows can be derived in the commented hypoth-

esis by considering photometric color invariants. Photometric color invariants are

functions which describe the color configuration of each image point discounting

shading, shadows, and highlights. These functions are demonstrated to be invariant

to a change in the imaging conditions, such as viewing direction, object�s surface ori-
entation and illumination conditions [38]. Let us define F as one of the above men-
tioned photometric color invariants. Fl is the value assumed in a point in light, and Fs
is the value in the same point in shadow. Then,
2 A
Fl ¼ Fs: ð7Þ

Examples of photometric color invariants are normalized rgb, hue (H), saturation

(S), c1c2c3 and l1l2l3 [38]. In particular, among the different photometric invariant

color features, as stated in [39], we adopted the c1c2c3 model. The c1c2c3 invariant
color features are defined as follows:
c1ðx; yÞ ¼ arctan
Rðx; yÞ

maxðGðx; yÞ;Bðx; yÞÞ ; ð8Þ

c2ðx; yÞ ¼ arctan
Gðx; yÞ

maxðRðx; yÞ;Bðx; yÞÞ ; ð9Þ

c3ðx; yÞ ¼ arctan
Bðx; yÞ

maxðRðx; yÞ;Gðx; yÞÞ ; ð10Þ
for Rðx; yÞ, Gðx; yÞ, and Bðx; yÞ representing the red, green, and blue color compo-

nents of a pixel in the image.

It is known from Kender [40] that normalized color rgb is unstable near the black

vertex of the RGB space, where it is undefined, while hue is unstable near its singu-

larities at the entire achromatic axis. The analysis of the noise propagation through

the invariant transformations in Eqs. (8)–(10) is addressed in detail in [19]. The in-
stability of photometric invariant transformations will be taken into account by

the algorithm proposed in Section 3.

2.2. Geometrical properties of shadows

The geometric appearance of a shadow depends on objects and scene layout.

However, it is possible to identify some geometrical characteristics of shadows, the
detailed analysis of mutual illumination for simple scene geometries can be found in [36,37].



Fig. 1. Shadow lines definition.
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shadow boundaries, without any knowledge of the structure of the object or of the

scene. Shadow boundaries can be classified into four classes: shadow-making lines,

shadow lines, occluding lines, and hidden shadow lines. These lines are depicted in

Fig. 1. Shadow-making lines, AB, separate the illuminated surface and the non-illumi-

nated surface of an object. They appear to be the outlines of an object if the position

of the observer is aligned with the direction of the light source. The projections of the

shadow-making lines in the direction of light rays are called shadow lines, DE. Oc-

cluding lines, CD, separate an object from its cast shadow. A hidden shadow line,
CE, is a shadow line corresponding to a non-visible shadow-making line.
3. Proposed method

We exploit the spectral and geometrical properties described in Section 2 to auto-

matically recognize shadows in both video sequences and still images. A bottom-up

analysis organized in three levels is performed. This hierarchical control structure
uses the hypothesize-and-test scheme. The presence of a shadow is first hypothesized

based on some initial evidence. The hypothesized shadow region is then verified by

checking its consistency with other additional hypotheses. Finally, an information

integration confirms or rejects the initial hypothesis. A detailed description of the

three levels is given in the following sections.

3.1. Hypothesis generation

The first level of the proposed strategy makes use of the property that shadows

darken the surface upon which they are cast. This results in the identification of
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potential shadows. Let us refer to the image under analysis3 with Iðx; yÞ ¼ ðRðx; yÞ;
Gðx; yÞ;Bðx; yÞÞ, where R;G;B represent the three color channels and ðx; yÞ indicates
a generic pixel position. The intensity of each pixel Iðx; yÞ is compared to the inten-

sity of a reference pixel, Iðxr; yrÞ. The reference pixel ðxr; yrÞ is defined differently for

still images and video, and it is described in the following.
Equation (6) states that each camera sensor must have a lower response for a

point in shade. The pixel ðx; yÞ becomes a candidate shadow if its intensity is smaller

than that of the reference pixel for all three channels. This results in the identification

of a set of pixels, Sc, which are candidate to be shadow pixels
3 T
Sc ¼ fðx; yÞ : Rðxr; yrÞ > Rðx; yÞ;Gðxr; yrÞ > Gðx; yÞ;Bðxr; yrÞ > Bðx; yÞg: ð11Þ

In the following, the details of the implementation of the first level of analysis are

given for still images and video sequences, respectively.

3.1.1. Still images

For still images, shadow points are identified through the detection of shadow

contours. In the first level of analysis, the candidate shadow contour S0
c, with

S0
c � Sc, is first extracted. The reference pixel ðxr; yrÞ is a neighbor of the pixel under

analysis defined as ðxr; yrÞ ¼ ðxþ d; y þ cÞ, with d and c 2 f0; 1;�1g, where d and c
are not simultaneously equal to zero, i.e., ðxr; yrÞ 6¼ ðx; yÞ. Edges are first extracted
from the image, then the property described in Eq. (11) is tested.

The edge map is obtained by applying the Sobel operator [41], separately on the

three color channels. The final edge map results from a logical OR-connection oper-

ation on the three edge maps corresponding to the three color channels. The Sobel

operator has been chosen for its simplicity having verified that it provided satisfac-

tory results in our experiments.

The property described in Eq. (11) is tested by analyzing the gradient image on the

edges. A contour point ðx; yÞ becomes a candidate shadow contour point, that is
ðx; yÞ 2 S0

c, if the gradient has the same orientation in all the three components

(Fig. 2B). This is verified by analyzing the coherence of the signs of the horizontal

and vertical gradients for the three color channels.

3.1.2. Video

For video sequences, the reference pixel ðxr; yrÞ belongs to a reference image which

represents the background of the scene. The reference image can be either a frame in

the sequence or a reconstructed one [42]. The reference pixel ðxr; yrÞ is at the same
location as ðx; yÞ in the image under analysis. The analysis is performed only in

the areas of the image which have been identified as changed by a motion detector

[42]. The identified areas correspond to both moving objects and their shadows.

Candidate shadow points are detected by analyzing the image difference Dðx; yÞ
computed as
Dðx; yÞ ¼ Iðxr; yrÞ � Iðx; yÞ: ð12Þ
his image is the current image of the sequence in case of video.



Fig. 2. First row: (A) original image; (B) candidate shadow points belonging to the color edge map of the

RGB image and verifying property in Eq. (11). Second row: (C) color edge map of the invariant features

containing material boundaries for which the shadow hypothesis is weakened; (D) integration of the sha-

dow evidence from the spectral analyzes of (B) and (C). Third row: Refinement by means of geometric

analysis providing the shadow line and hidden shadow line (E), and complete shadow contours (F).

246 E. Salvador et al. / Computer Vision and Image Understanding 95 (2004) 238–259
In a noise-free case, the conditions Rðxr; yrÞ � Rðx; yÞ > 0, Gðxr; yrÞ � Gðx; yÞ > 0,
Bðxr; yrÞ � Bðx; yÞ > 0 would suffice to state that the pixel ðx; yÞ belongs to Sc. In

real situations, the noise introduced by the acquisition process alters the above test,

so that it becomes Rðxr; yrÞ � Rðx; yÞ > b1, Gðxr; yrÞ � Gðx; yÞ > b2, Bðxr; yrÞ�
Bðx; yÞ > b3. The vector b ¼ ðb1; b2; b3Þ takes care of the distortions introduced by

the noise. In addition to this, to obtain a more robust result for each pixel position

ðx; yÞ, we extend the analysis to an observation window, WCðx;yÞ , of ð2N þ 1Þ
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ð2M þ 1Þ pixels, centered in ðx; yÞ. In WCðx;yÞ , we analyze the sum of differences

Dwðx; yÞ, given by
Dwðx; yÞ ¼
1

ð2N þ 1Þð2M þ 1Þ
XN
i¼�N

XM
j¼�M

Dðxþ i; y þ jÞ: ð13Þ
If each component of Dwðx; yÞ is larger than the corresponding component of b, then

ðx; yÞ belongs to Sc. The threshold b is content dependent and should be tuned for

each sequence. To avoid the tuning of the threshold we employ a statistical ap-

proach. This approach is based on the assumption that the noise in the signal

Dwðx; yÞ respects a certain distribution. We analyzed the difference Dwðx; yÞ in several

sequences for indoor and outdoor scenes and we derived that it follows a Gaussian

distribution. The statistical approach is based on a significance test [42]. The goal of

the statistical test is to check the validity of the hypothesis that a sample Dwðx; yÞ
comes from a given probability distribution, the Gaussian distribution. The pixel

ðx; yÞ is defined as candidate shadow pixel if the significance test is satisfied for all

color channels.

3.2. Accumulation of evidence

The result of the first level of analysis is the identification of a set of candidate

shadow pixels. This analysis leads to the detection of shadow pixels but also of object
pixels. These spurious object pixels are darker than the corresponding reference pix-

els. A further analysis is required to confirm or to reject this initial hypothesis. Pho-

tometric invariant color features and spatial constraints are exploited at this level of

the shadow segmentation process to provide additional evidences to the hypothe-

sized shadows.

As we saw in Section 2.1, the presence of a shadow does not alter the value of the

invariant color features. Let us define the set of pixels Se as
Se ¼ fðx; yÞ : Invðxr; yrÞ ¼ Invðx; yÞg: ð14Þ
The set Se is defined by comparing the invariant color features of every pixel with the

features of the reference pixel. If the value of the invariant color features has not

changed with respect to the reference, the hypothesized shadow is strengthened. In

the specific implementation of this paper
Invðx; yÞ ¼ ðc1ðx; yÞ; c2ðx; yÞ; c3ðx; yÞÞ; ð15Þ
as commented in Section 2.1. A precaution is required when analyzing the photo-

metric invariant features. Due to the considerations discussed in Section 2.1, pixels

that fall near the black vertex of the RGB space may give rise to unstable invariant

features values in presence of noise. As suggested in [43], we extracted those pixel

whose RGB values are below a value of 30 (on a range of 256 levels). We verified in a

wide range of test images that these regions did not correspond to cast shadow
pixels. It is therefore possible to discard these pixels from our shadow analysis. The

works of [21,22] arrive at the same conclusions.
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The last evidence about the existence of a shadow is derived from geometrical

properties. We want to analyze the position of the shadow with respect to the ob-

ject. This verification is based on checking the existence of the shadow line, DE, and
hidden shadow line, CE (Fig. 1). These lines separate the shadow pixels from the

background pixels, and constitute a necessary condition for the existence of a sha-
dow.

The following sections give the details of the implementation of the two tests for

still images and video sequences, respectively.

3.2.1. Still images

According to Eq. (7), contours in the invariant color features will correspond

to surface boundaries and not to shadow contours. Color edge detection is there-

fore performed in the invariant space. A morphological dilation operation is ap-
plied on the invariant feature edge map to close the contours. Then isolated pixels

are removed so that to obtain the final map, EðInvðx; yÞÞ (Fig. 2C). If we define S0
e

as
S0
e ¼ fðx; yÞ : EðInvðx; yÞÞ ¼ 0g; ð16Þ
then the shadow hypothesis is strengthened for the set of pixels (Fig. 2D)
S0 ¼ S0
c \ S0

e; ð17Þ

where object edges belonging to S0

c have been discarded. The shadow points which

form the border between shadowed background and object cannot however be found

by means of this analysis. This is clear from Fig. 2D. These points form the occluding

line, CD (Fig. 1). The occluding line does not indeed belong to S0
e since it represents a

material change. In real images, moreover, S0 contains misclassified pixels due to

sensor noise and approximations in the model underlying Eq. (7). Geometrical in-

formation is used therefore at this point to reduce the misclassification in S0 and to

extract the missing parts of the shadow contour.

Geometrical evidence is verified by checking the existence of the shadow line,

DE, and the hidden shadow line, CE. This is done by extracting segments in S0

and rejecting isolated and disconnected pixels, thus obtaining the subset S00

(Fig. 2E). To this end, isolated groups of pixels are eliminated after connected com-
ponent analysis. This decision is based on a threshold whose value is set to 30% of

the number of pixels of the largest connected component in S0. This value has been

determined by means of extensive tests. Since it is relative to the largest component,

it is adapted to the image content and does not require content-dependent setting.

To extract the missing part of the shadow contour, the definition of occluding line,

CD, is finally exploited. First, the contact points between shadow contour and ob-

ject contour EðInvðx; yÞÞ are detected. A contour dilation operation is applied to the

shadow contour in order to more effectively extract contact points. Then, the posi-
tion of the shadow with respect to the line that connects the two points is computed

and the occluding line is extracted from EðInvðx; yÞÞ giving the complete shadow

contour (Fig. 2F). Finally, the shadow area is obtained by filling each closed sha-

dow contour.
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3.2.2. Video

The identification of the pixels satisfying the first evidence is achieved by analyz-

ing the difference in the invariant feature values, dðx; yÞ, computed as
4 E

Image
dðx; yÞ ¼ ðjc1ðxr; yrÞ � c1ðx; yÞj; jc2ðxr; yrÞ � c2ðx; yÞj; jc3ðxr; yrÞ � c3ðx; yÞjÞ: ð18Þ

As for Eq. (12), the test becomes diðx; yÞ < fi for i ¼ 1; 2; 3, where f ¼ ðf1; f2; f3Þ
takes care of the distortions introduced by noise and approximations in the model.

As for the first level, we consider a window, WIðx;yÞ, centered in ðx; yÞ, and we

analyze the sum of differences dwðx; yÞ, given as in Eq. (13). The setting of the

threshold f is driven by experiments on different sequences. The statistical ap-

proach is not used in this step of the algorithm since we observed that the dif-

ference of invariant features dwðx; yÞ could not be approximated by a known
distribution.

Once the set of pixels Se is obtained, the position of shadows with respect to ob-

jects is tested (geometric property). In case a hypothesized shadow is fully included in

an object, the shadow line is not present, and the shadow hypothesis is then weak-

ened.

3.3. Information integration

Once the additional evidences have been extracted, a decision making step is per-

formed. This final step allows the fusion of the different pieces of information. The

result is a rejection of the initial hypothesis in case the rules are not respected. Other-

wise the hypothesis is confirmed.

If the analysis of the photometric invariant color features on the candidate sha-

dow is not successful, the pixel is labeled as material change. If the analysis is suc-

cessful, the candidate shadow undergoes further analysis by means of the

geometrical constraints. This final verification is required to eliminate the last ambi-
guities.
4. Experimental results

4.1. Test set

The performance of the proposed algorithm and a comparison with state-of-the-
art methods are presented in this section. Extensive experiments have been carried

out on different test images and test sequences. A selection of test images is shown

in Fig. 3A. The image size is 288� 352 pixels. Among the test sequences, two indoor

and one outdoor scenes with different complexity are shown in Fig. 4A, Fig. 5A, and

Fig. 6A: the MPEG-4 test sequence Hall Monitor, the art.live4 test sequence Group,
uropean project IST 10942 art.live (Architecture and authoring tools for prototype for Living

s and new Video Experiments), http://www.tele.ucl.ac.be/PROJECTS/art.live/

http://www.tele.ucl.ac.be/PROJECTS/art.live/


Fig. 3. Shadow segmentation results for still images. (A) Original image; (B) shadow mask (white pixels)

superimposed on the original image.
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and the MPEG-7 test sequence Highway. The image size is 288� 352 pixels and the
temporal resolution is 25 images per second.

4.2. Shadow segmentation results

4.2.1. Still images

Figure 3 shows the results of the proposed algorithm for three test images. The

original image (Fig. 3A) and the superimposition of shadow masks on the original

image (Fig. 3B) are displayed.



Fig. 4. Shadow segmentation results for the test sequence Hall Monitor. (A) Original image; (B) shadow

mask (white pixels) superimposed on the original image.
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The parameters of the proposed algorithm for still images are the edge detection

thresholds (Sections 3.1.1 and 3.2.1), whose values have been determined empirically

based on the following reasoning. The threshold value for the invariant features

analysis must be large enough to minimize the occurrence of false positives detected

due to noise far outside the object contours. The threshold for the RGB color space

analysis should be small enough to minimize the occurrence of false negatives and to



Fig. 5. Shadow segmentation results for the test sequence Group. (A) original image; (B) shadow mask

(white pixels) superimposed on the original image.
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obtain closed contours. In Fig. 3, for the images from top to bottom, the values are

respectively 0.06, 0.05, 0.02 for the edge map on the RGB color space; and 0.12, 0.14,

0.14 for the edge map on the invariant features.
Shadows are correctly detected by the proposed algorithm. Smeared edge mark-

ings can be observed in the extracted shadows, particularly for Fig. 3, bottom. This

type of error is caused by the use of a small threshold for edge detection in the RGB



Fig. 6. Shadow segmentation results for the test sequence Highway. (A) Original image; (B) shadow mask

(white pixels) superimposed on the original image.
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space. To overcome this problem, a morphological post-processing depending on the

application at hand may be used to improve the final segmentation results.

4.2.2. Video

Figure 4B, Fig. 5B, and Fig. 6B show the results of the proposed shadow segmen-

tation algorithm in video sequences. The reference image is the first frame of the
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sequence, acquired before the objects enter in the field of view. The parameters to

choose are the size of the observation windows for the generation of the hypothesis,

WC (Section 3.1.2), and for the first analysis of evidence, WI (Section 3.2.2) and the

value of the threshold fi for the photometric invariant color features test (Section

3.2.2). The values of the above-mentioned parameters are the same in all the tests
and they are the result of an extensive analysis: WC is 5� 5 pixels, WI is 7� 7 pixels,

and fi ¼ 7. An analysis of the method�s performance with different parameter sets is

presented in Section 4.3.

The segmentation results for four sample frames of the test sequenceHall Monitor

are shown in Figure 4B. The method correctly identifies the shadows which moving

objects cast on the floor and on walls. In the second image it is possible to notice that

an error occurred: a part of the trousers of the man are detected as shadow region.

This is due to the fact that the color of the trousers and the color of the correspond-
ing background region are similar. In addition, the trousers are slightly darker than

the background. This portion of the trousers has therefore the same characteristics as

a shadow cast on the background. The additional test on geometrical evidence does

not succeed in eliminating the candidate shadow, because of the existence of the sha-

dow line. To overcome this problem, our current research direction [44] is to intro-

duce a reliability estimation of the shadow over time. This will allow to discard

shadows which do not present time coherence, as in the case of part of background

and moving objects presenting similar color characteristics.
A different scenario is depicted in Fig. 5. People walking in a room cast several

shadows which are caused by their interaction with multiple light sources. In this

scene, a model-based method for shadow recognition would fail due to the complex-

ity of the scene. The proposed method is based on shadow properties and therefore it

can be applied to complex scenes, when shadows and objects occlude each other.

Finally, an outdoor scene is depicted in Fig. 6. Vehicles of different dimensions are

running on a highway. Objects are smaller and lighting conditions are different when

compared to the previous indoor sequences. These results demonstrate that the pro-
posed method can be applied on a large class of scenes, without changing the values

of the parameters.

4.3. Objective performance evaluation

To quantitatively analyze the performance of the method with different parameter

sets, a ground-truth segmentation should be obtained. However, the generation of a

ground-truth for shadow regions in real world scenes is a difficult task. In fact, the
outer boundary of a shadow occurs at points of infinitesimal decrease in the amount

of illumination. As a result, the exact boundary of a shadow cannot be manually de-

termined in a reliable way. As a solution, a more significant analysis can be obtained

by combining a shadow detection method with an object extraction method and by

evaluating the object detection accuracy. To this end, the proposed shadow segmen-

tation is therefore combined with the video object extraction method described in

[42]. This combination will also demonstrate an important application of the shadow

segmentation method (Fig. 7).



Fig. 7. Video object extraction for the test sequence Hall Monitor without (left) and with (right) shadow

detection.
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The ground-truth object segmentation is obtained manually. The comparison is

based on computing the pixel-wise deviation of a segmentation result from the cor-

responding ground-truth segmentation. The deviation is computed by taking into ac-
count two types of errors, namely false positives and false negatives. False positives,

�p, are pixels incorrectly detected as belonging to an object. False negatives, �n, are
pixels belonging to an object that have not been detected. Let cardðCÞ represent the
number of pixels detected as object pixels, and cardðCgÞ the number of pixels belong-

ing to the ground-truth segmentation. The deviation from the reference segmenta-

tion can be computed as
Table

System

WC

3�
5�
5�
5�
5�
5�
� ¼
0 if cardðCÞ ¼ cardðCgÞ ¼ 0;

�nþ�p
cardðCÞþcardðCgÞ otherwise;

�
ð19Þ
where � 2 ½0; 1�. The accuracy of the segmentation is quantified by m ¼ 1� �, with
m 2 ½0; 1�. The larger m, the higher the accuracy. When m ¼ 1, then there is a perfect

match between segmentation results and ground-truth segmentation.

In Table 1, the false negatives and false positives of object segmentation are re-

ported as percentage of the corresponding area in the ground-truth for different sets

of parameters for 300 frames of the test sequence Hall Monitor. The obtained results

show that the method�s performance remains stable for different parameter configu-

rations.

In order to further evaluate the performance of the proposed algorithm, the vi-
deo object extraction results obtained by combining the method described in [42]

with the proposed shadow segmentation have been compared to four state-of-the-

art object extraction methods which are robust to shadows [45]. The object detec-
1

performance with different parameter sets

WI fi %�p %�n m

3 7� 7 7 22.22 6.94 0.865

5 7� 7 7 23.84 5.71 0.865

5 5� 5 7 21.63 7.59 0.863

5 7� 7 4 28.55 4.97 0.850

5 7� 7 5 25.35 5.10 0.862

5 7� 7 6 23.34 5.81 0.866



Fig. 8. Comparison of video object segmentation accuracy for the test sequence Hall Monitor. The large

error in the first frames of the sequence is due to the fact that these frames correspond to the entrance of

the man in the scene. The first part of the man entering the scene is his shoe. The shoe has a color that is

very similar to that of the background. For this reason, the detection algorithms may be misled and do not

detect the shoe that is instead present in the ground-truth segmentation.
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tion accuracy m (Eq. 19) is computed to perform the comparison. The results for

the test sequence Hall Monitor are presented in Fig. 8. The symbols in the legend

of Fig. 8 refer to the shadow detection techniques used in the object extraction

process: DNM1 [21], DNM2 [13], SP [23], and SNP [22]. The mean values of ac-

curacy corresponding to the plots of Fig. 8 are the following: DNM1 0.78; DNM2

0.60; SP 0.59; and SNP 0.63; proposed 0.86. The combination of the proposed
shadow recognition method with [42] results in a more accurate object detection

over time when compared to state-of-the-art shadow-invariant object detection

algorithms.
5. Conclusions

In this paper, we described an efficient method for segmenting cast shadows in
both still images and video sequences. The proposed method is based on a
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bottom-up analysis approach. An initial hypothesis is tested to identify candidate

shadow regions. This initial hypothesis is then verified by exploiting photometric

and geometric properties of shadows. The proposed approach was demonstrated

through application to a number of test images and video sequences. In addition

to this, the proposed method was combined with a video object segmentation algo-
rithm in order to improve its segmentation accuracy. This improvement has been

quantified by means of an objective evaluation metric and compared to state-of-

the-art algorithms.

The method presented in this paper can be extended as outlined in the following.

The proposed segmentation algorithm is designed to detect a particular type of shad-

ows, namely cast shadows. Other types of shadows, such as self shadows, could be

detected by adding or replacing appropriate parts of the operators used in this algo-

rithm by others taking into account the specific photometric and geometric proper-
ties of such shadows. Moreover, the proposed approach addresses applications that

use a monocular camera, such as those used in video surveillance. For applications

that employ stereo or multiple cameras, the segmentation algorithm could exploit

further hypotheses based on homography and 3D photometric and geometric ana-

lyzes. Finally, due to the uncertainty in defining the shadow lines when shadows

present a very diffuse penumbra, more sophisticated operators such as that proposed

by [46] could be used to extend the proposed method.
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