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ABSTRACT

To be efficient, data protection algorithms should gener-
ally exploit the properties of the media information in the
transform domain. In this paper, we will advocate the use
of non-linear image approximations using highly redundant
dictionaries, for security algorithms. We show that a flex-
ible image representation based on a multidimensional and
geometry-based coding scheme, has precious attributes for
security information embedding. Redundant expansions pro-
vide very good approximation properties, as well as an in-
creased resiliency to coding noise, and a simple stream struc-
ture enables easy manipulations. This paper describes sim-
ple examples of image scrambling and watermarking appli-
cations, based on a Matching Pursuit image coder. It illus-
trates the very interesting potential of redundant decompo-
sitions for data protection and security applications.

1. INTRODUCTION

Digital media handling is nowadays very easy and popu-
lar, its distribution has also become simpler due to the rapid
expansion of broadband networks. In this context, where in-
tellectual property could be violated, new security methods
have been developed to protect multimedia content distribu-
tors and creators. In most cases, the security layer is mixed
with the image compression layer, and uses transform do-
main data.

Signal expansions using redundant dictionaries have in-
teresting properties for compression, especially at low bit-
rate. Such decompositions have proven to be quite efficient
in representing natural images. Since the first paper by Mal-
lat and Zhang ten years ago [1], Matching Pursuit is gaining
in popularity and lots of efforts has been invested in find-
ing good dictionaries and fast search algorithms. Using re-
dundant dictionaries generally allows more flexibility in the
representation and stream manipulation. Additionally, the
increased resiliency to coding noise can be advantageously
used for information embedding. This paper illustrates the
potential of redundant representations for data protection
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schemes, and presents simple applications of scrambling
and watermarking based on a Matching Pursuit coding al-
gorithm.

This paper is structured as follows. Section 2 is a short
overview of the redundant image expansions and Matching
Pursuit algorithm. Section 3 presents a simple protection
algorithm by image scrambling, that takes benefit of the ge-
ometric properties of redundant dictionary. Section 4 dis-
cusses information hiding in redundant expansions, and em-
phasizes the potential of a Matching Pursuit coder for wa-
termarking applications. Section 5 concludes the paper.

2. REDUNDANT IMAGE EXPANSIONS

Signal expansions using redundant dictionaries is a very ac-
tive domain since the introduction of the Matching Pursuit
algorithm by Mallat and Zhang in 1993 [1]. They have
shown that such a greedy algorithm converges exponentially
in finite dimension, and thus provides a good approximation
to a difficult combinatorial problem. The excellent paper of
Gribonval and Nielsen [2] presents the main results in the
research field during the last decade.

In general, a redundant expansion of a functionf in a
Hilbert spaceH is weighted sum of basis functions, also
called atoms which are also functions lying inH. The dic-
tionaryD is the overcomplete set of all atoms, and can be
written asD = {g~γ}~γ∈Γ with ‖g~γ‖ = 1. Matching Pur-
suit is a greedy algorithm that iteratively approximates the
signal. It choosesg ~γn

such that the projection coefficient
with the last residual is maximal. The residual signal at step
n is Rnf = Rn−1f− < Rn−1f |g ~γn

> g ~γn
. The initial

residualR0f = f . Thus, the functionf is decomposed as
follows:

f =
N−1∑
n=0

〈g ~γn
|Rnf〉g ~γn

+RNf (1)

In the case of redundant expansion of natural images,
the atoms are bi-dimensional functions. The dictionary used
in our coder is composed of non-separable atoms that are
built on Gaussian functions along the first direction and sec-
ond derivative of Gaussian functions in the orthogonal di-
rection [3]. Each atom is fully described by a set of pa-
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rametersγi: position, rotation and scale. They uniquely
represent the index~γ of the atomg~γ .

3. IMAGE SCRAMBLING

Scrambling is a well-known technique to introduce disorder
in digital data. Applied to images, it lowers the quality of
the whole or part of the image. It often happens that some
scrambling methods lead to images that are too distorted.
We now present an algorithm that adaptively scrambles the
encoded image. It introduces perturbation into the parame-
ters of the atoms. A parameterγi of an atom can take any
integer value from0 up toγmax

i . LetΓs be the set of all pa-
rameters. Let us define a squeezing functionS introducing
a perturbationp into the parameterγi as follows:

S(γi, p) = (γi + p + γmax
i + 1) mod (γmax

i + 1) (2)

To ensure reconstruction at the decoding,p has to be the
same as for the encoding. The numberp is the result of
a pseudo-random generator; to be able to decode correctly,
it should depend only on an initial seed. LetR be such
a pseudo-random number generator, the functionR(x) re-
turns an integer between0 andx. Algorithm 1 uniformly
scrambles the parameters of the atoms:

Algorithm 1 Uniform Scrambling of atoms parameters
Γs the set of parameters to modify for each atom.
To eachγi in Γs assignpmax

γi
the maximal deviation.

for all atomg ~γn
in the redundant expansiondo

for all γi in Γs do
r = −pmax

γi
+ R(2 ∗ pmax

γi
+ 1)

γi = S(γi, r)
end for

end for

This flexible scrambling algorithm allows to add pertur-
bation independently on position, scales or rotation parame-
ters, or to any combination of them. Figure 1 shows images
encoded with our Matching Pursuit encoder, after scram-
bling has been applied to the positions of the atoms. The
rows contain the approximations for respectively 200 and
500 atoms. The first column are the images without scram-
bling and the others shows the results for different maximal
allowable shifts on the positions. These images illustrate
the fact that we can easily achieve different levels of scram-
bling. Even for small deviations, the visual impact is al-
ready important.

The scrambling can also be applied on the rotation pa-
rameters and the corresponding images are shown in Fig-
ure 2. Since the dictionary is built on 18 different angles,
a unit shift of the rotation parameter corresponds to a phys-
ical rotation of 10 degrees of the atoms. Interestingly, we
can see that small shifts bring minimal visual distortion to
the images, and that the degradation is less important than
for similar shifts on the position parameter.

(a) Original (b) Shift = 2 (d) Shift = 8
Fig. 1. Scrambling of the position parameters of the atoms, with
different maximal shifts, for 200- and 500-atom expansions of the
128 x 128Lenaimage.

(a) Original (b) Shift = 1 (d) Shift = 4

Fig. 2. Scrambling of the rotation parameter of the atoms, with
different maximal shifts, for 200- and 500-atom expansions of the
128 x 128Lenaimage.

Finally, Figure 3 shows the results obtained with scram-
bling of the scale parameters. Scale scrambling is much
more sensitive than noise on the position or rotation param-
eters. This is due to two main factors. First, themod
operators in the scrambling algorithm causes abrupt scale
changes. When substituting a small scale parameter to a
large scale one, annoyinglinesappear. Such big changes do
not happen in the case where the parameters are cyclic, like
the rotation parameters. Second, the norm of the atom is not
conserved any more when scales change. The luminance of
the image is therefore clearly degraded.

Figure 4 shows the evolution of the PSNR given the
number of atoms in the image decomposition, for differ-
ent scrambling strategies. At the beginning, the quality in-
creases quasi normally since the first atoms are not extremely
sensitive to coding noise. At a given stage, adding more
scrambled atoms leave the error almost constant, since atoms
do not contribute anymore to the true image representation.
Figure 4 also confirms that the scale is the most sensitive pa-
rameter, and that the smallest degradations generally occur
when scrambling the rotation parameter.

Based on the previous simple examples, it is possible to
design more complicated scrambling strategies. It is straight-
forward to apply the previous algorithm only on some re-
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(a) Original (b) Shift = 1 (d) Shift = 4

Fig. 3. Scrambling of the scale parameters of the atoms, with
different maximal shifts, for 200- and 500-atom expansions of the
128 x 128Lenaimage.

gions of the image and it could be of big interest, for given
applications, to scramble only some regions of interest. An-
other possible application is to scramble only the lastM
atoms. The progressive order of the atoms within the Match-
ing Pursuit stream guarantees that a reasonable quality of
the image is already available with the first few atoms. Thus,
a low quality image would be publicly available, and the
high quality stream would be available only a subset of de-
coders, aware of the scrambling key.

Data protection by scrambling in the transform domain
has the advantage to stay very simple. Starting from an ex-
isting decomposition, our algorithm adds a random value
to a parameter. There exist very fast pseudo-random num-
ber generators. Thus, the complexity of our system is low
enough to fit real-time constraints. The complexity of de-
scrambling at decoder is the same as the one of the scram-
bling algorithm. Finally, note that the goal of this section
is not to prove the robustness of the data protection scheme
against potential attacks. This section however points out
the benefits that can be offered by flexible streams, gener-
ated by Matching Pursuit, in the design of scrambling algo-
rithms.

4. INFORMATION HIDING

This section discusses the potential of redundant approxi-
mations in order to hide information within the coded im-
age streams. Data hiding, in watermarking or steganogra-
phy applications, relies on properly identifying redundancy
in the image information, that can be used to hide a message
without degrading the image representation. Redundant de-
compositions are natural candidates to hide messages, due
to their inherent resiliency to coding noise. Geometrical
redundancy is generally captured by atom indexes. In the
same time, the importance of the coefficients in carrying
information, is somehow smaller than in coding schemes
based on orthogonal transforms. In these coders, the co-
efficients may even carry all the information: in a wavelet
coder, the value of the coefficients and their position suf-
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Fig. 4. PSNR evolution given the number of atoms and a scram-
bling strategy. (a) scrambling the positions, (b) scrambling the ro-
tation, (c) scrambling the scaling, (d) comparison of the slightest
scrambling for all illustrated methods.

fice to completely describe the image. Messages could thus
be easily added into the redundant expansion of the image,
where small and controlled variations in the parameter or
coefficient values may be unnoticeable on the decoded im-
age.

(a) Original (b) a = 0.1 (c) a = 0.3 (d) a = 0.5

Fig. 5. Example of reconstructed images when adding randomly
values to the projection parameter.

Figure 5 represents decoded images, after a uniform noise
has been added to the projection parameters in the Matching
Pursuit stream. The maximal magnitude of the noise,|A| is
proportional to the coefficient value, i.e.,|A| = a × |c~γ |.
Visually, when adding values that can be up to plus or mi-
nus 10 percents, it is difficult to decide which image could
be the original one. On the two last columns, a lot of noise
has been added, respectively up 30 and 50 percent of the
absolute value of the projection. Even in those extreme
cases, the user can still distinguish the content of the im-
age. The projection parameter could thus be used to hide
information without an important visual impact. Similarly,
messages can be hidden in well chosen atom parameters, or
in any combination of atom parameter and coefficients. It
has been shown in the previous section that small variations
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of the rotation parameter, for example, bring a controlled
degradation on the decoded image.

A simple algorithm is now presented, that hides a se-
cret messageS in the projection parameters. The listsh

is the binary version ofS. The projection coefficients are
quantized and coded using DPCM; it gives a list of integers
qi. A pseudo-random number generator gives us a listri of
numbers. Eachjumpin qi holds one bit ofS as described in
algorithm 2.

Algorithm 2 Steganography Encryption
h = 0
for i = 1 to N − 2 do

if qi > 1 then
if qi + ri 6= sh then

qi = qi − 1 ; qi+1 = qi+1 + 1 ; h = h + 1
end if

end if
end for

In the here-above discussion, the information hiding pro-
cess takes place after the image expansion have been gen-
erated, i.e., after all projection parameters and atoms have
been found. The information hiding stage could take place
during the search, in taking benefit of the redundancy of
the decomposition. One could force the presence of an a
priori list of atoms in the decomposition. The presence or
the absence of the chosen atoms in the expansion represents
the hidden watermark. Due to the properties of the Match-
ing Pursuit algorithm and the overcomplete dictionary, these
atoms stay indistinguishable from the other atoms in the ex-
pansion. The coding error they introduce in the stream is
also diluted by successive iterations of Matching Pursuit, so
that the hidden information cannot be discovered.

Algorithm 3 presents an algorithm making use of the
previously described principle. It introduces atoms from
a mark into the image. The decomposition of the mark
{g ~γm

}γm∈M has to be known. The algorithm will intro-
duce these atoms at given positions in the redundant image
approximation of the image.

(a) No Mark(b) Watermarked (c) Mark (d) Difference

Fig. 6. Example of watermarking during search. The difference
is normalized to a maximal value of 40.

Figure 6 shows the results obtained by applying algo-
rithm 3. Atoms from the image to hide, i.e., the mark, have
been added during the Matching Pursuit image expansion.
The error they generate is compensated during the search
and spread over the whole image. As the atoms to hide are

Algorithm 3 Watermarking

{g ~γm
}γm∈M the redundant image approximation of the

mark andM∈ Γ
o1 ando2 two positive numbers greater than0.
Choose a setrj of k integers betweeno1 andN − 1− o2

m = 0, a ≈ 0.8
R0f = f
for i = o1 to N − 1− o2 do

if i ∈ {rj} then
g~γi

= g ~γm
; ci = aci−1 ; m = m + 1

else
chooseg~γi

such that< Ri−1f |g~γi
> is maximal.

end if
Rif = Ri−1f− < Ri−1f |g~γi

> g~γi

end for

placed deterministically in the stream, it is possible to re-
cover the watermark. With some assumptions on the proba-
bilities of an atom to take part in the sparse approximation,
it is possible to compute the probability of such a list to
be accidentally present. It is obvious that this probability
can be made arbitrarily small when increasing the size of
the dictionary. On the other hand, the complexity to find
the sparse approximation depends directly on the size of the
dictionary. It has to be noted finally that this section does
not deal with the robustness of information hiding scheme,
but rather shows the potential of redundant expansions for
data embedding.

5. CONCLUSIONS

This paper advocated the use of redundant expansions in
media security applications. Simple methods are proposed
for data protection and information hiding in images en-
coded with a Matching Pursuit algorithm. We have shown
that simple geometric manipulations on the atoms lead to
interesting and promising results. The presented sketch of
algorithms have however to be seen as possible paths to ex-
plore rather than real solutions. The flexibility of the Match-
ing Pursuit streams, and their increased resiliency to coding
noise, allows to foresee an interesting potential for redun-
dant expansions in security algorithms.
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