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Abstract

This paper introduces a two-steps adaptive generalized Hough transform (GHT) for the detection of non-analytic

objects undergoing weak affine transformations in images. The first step of our algorithm coarsely locates the region of

interest with a GHT for similitudes. The returned detection is then used by an adaptive GHT for affine transformations.

The adaptive strategy makes the computation more amenable and ensures high accuracy, while keeping the size of the

accumulator array small. To account for the deformable nature of natural objects, local shape variability is incorpo-

rated into the algorithm in both the detection and reconstruction steps. Finally, experiments are performed on real

medical data showing that both accuracy and reasonable computation times can be reached.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Detecting objects in images is a very active field

of computer vision. Applications are numerous

such as pattern recognition in industrial processes,

detection of anatomical structures in medical

images or object localization in aerial or satellite
data. Most of the usual segmentation algorithms

rely on very local image information (edges, pixel
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gray levels) and use to fail if the initialization is

performed too far away from the expected solu-

tion. For instance, the widely used active contours

(Kass et al., 1998) are very myopic since the curve

propagates according to a differential equation,

that is, the particles of the snake are moved under

the influence of a very small neighborhood of image
pixels. If an application requires full automatic

object extraction, global information about the

structure of interest (e.g. shape) has to be encoded

in the segmentation algorithm. However, most of

the methods relying only on global constraints do

not reflect shape variations at small scales. Ap-

proaches combining both local and global types of
ed.
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information are usually a kind of trade-off between

global shape alignment and fidelity to local image

features (e.g. Chakraborty et al., 1996; Cootes

et al., 1994; Leventon et al., 2000).

In order to address this problem, we propose a

two-steps approach, in which the structure of
interest is first globally and rather coarsely de-

tected using a Hough transform. This estimate can

be then refined, in a second step, with any well-

known local algorithm. For instance, the use of a

geodesic active contour model (Ecabert and Thi-

ran, 2002) makes the segmentation free of global

constraints, providing good convergence to the

object boundary.

1.1. Hough transform

Initially designed for analytic curves (Hough,

1962), the Hough transform (HT) was then gen-

eralized to non-analytic shapes by Ballard, 1981.

This method is able to detect any arbitrary shape

undergoing a geometric transformation in an
image. Moreover, it has shown to be robust and

can even be used successfully for the detection of

overlapping or semi-occluded objects in noisy

images. However, increasing the number, the

range or the accuracy of the parameters of the

geometric transformation may lead to high com-

putation efforts, which are practically not amen-

able.
In the context of straight lines detection, Il-

lingworth and Kittler (1987) proposed to imple-

ment the HT efficiently using an adaptive

accumulator array and a coarse-to-fine strategy, so

that only the areas of interest are investigated in

greater details. Obvious advantages of this ap-

proach are that the process can go on until a given

accuracy is reached without increasing the size of
the array.

The randomized HT (RHT) offers a different

approach to achieve increased efficiency in the

detection of analytic curves (Xu and Oja, 1993),

whereby a set of n pixels is randomly selected from

the edge image, determining the n parameters of

the curve of interest. This yields the coordinates of

a single point in the parameter space and therefore
only one cell of the accumulator array needs to be

incremented. Besides, the dynamic implementa-
tion of the accumulator array along with the

‘‘exact’’ computation of the parameters provide

with infinite range and high resolution of the

parameters.

Straight lines and analytic curves have a limited

range of applications, especially for real life scenes
or medical image analysis. The shapes to detect

are usually provided as a pixel map of typical

appearances of the object of interest. Based on the

pioneer work of Ballard (1981), many algorithms

have been proposed to detect more general shape

undergoing geometric (e.g. similarity or affine)

transformations. The use of the gradient direc-

tional information acts favorably in two points
(Montiel et al., 2001): it increases the detection

speed and improves the parameter accuracy by

reducing the wrong evidences. However, obvious

problems still reside if the number of degrees of

freedom of the geometric transformation is high.

Indeed, the six parameters of the affine transfor-

mation would produce a six-dimensional accu-

mulator array. Moreover, the entire process has to
be repeated for every combination of the discrete

parameter values. If wide range and high accu-

racy are required for the parameters, both com-

putational time and storage space become very

large. These methods are also referred to as brute

force voting, or 1-to-n mapping, approaches. In-

deed, one point of the edge image produces the

incrementation of n cells of the accumulator
array.

They are to compare to the so-called n-to-1
mapping methods (e.g. Aguado, 2002; Kimura

and Watanabe, 2002; Ser and Siu, 1995; Fung

et al., 1996), which from n image points produce

only one incrementation in the array. They are

usually fully invariant respective to the underly-

ing geometric transformation and the parameters
can be computed at once from image points,

reducing therefore the number of superfluous

operations and the computation time. However,

according to our experience, the techniques used

to extract geometric invariant points from the

image are very sensitive to noise and object

overlapping. Moreover, the results are further

degraded by the fact that two natural shapes are
not supposed to be exactly in geometric corre-

spondence.
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1.2. Proposed approach

This paper is concerned with the description of

a generalized HT for the extraction of natural

shapes from images. Unlike the original general-
ized HT (GHT) mainly designed for similarity

transformations introduced by Ballard (1981), we

propose a two-steps approach able to deal with

affine transformations. Indeed, the wide range of

variability that natural shapes can cover is better

described by a geometric transformation having

six parameters than four.

However, the six parameters of the affine
transformation would produce a six-dimensional

array, leading to unrealistic computational time

and storage requirement, if high parameter accu-

racy is expected. For that purpose, we propose a

two-steps adaptive approach. In the first step, a

standard GHT for similitudes with poor discreti-

zation of the accumulator array axis is performed

on the image. In the second step, the resulting
coarse detection is then applied as initialization to

an adaptive GHT for affine transformations. The

use of an adaptive scheme makes it possible to

achieve high accuracy without increasing the size

of the accumulator array. This method will be re-

ferred to as HT for shapes under weak affine

transformations.

Another major contribution of this paper is the
incorporation of local shape variability at three

stages of the detection. First, natural shapes are

considered by encoding in the R-table not only

one reference shape, but several instances of the

object of interest. Second, an uncertainty region is

associated to each entry index of the R-table,

accounting for different sources of error influenc-

ing the computation of the shape parameters. This
uncertainty region can be directly derived from

the generalized R-table introduced previously.

Finally, a priori shape information is used intelli-

gently along with the gradient image to recon-

struct the object from the peak of the accumulator

array.

This paper is organized as follows. In Section 2

the two-steps HT for shapes under weak affine
transformations is introduced. Section 3 describes

the different techniques used to account for natural

shape variability in the detection process. Finally,
experimental results on magnetic resonance images

of the brain are shown in Section 4.
2. Hough transform for shapes under weak affine

transformations

n-to-1 mapping methods have the advantage of

being fully affine invariant, but are unfortunately

not robust for real images and for the recognition

of shapes that are not exactly affine transformed.

Approaches using brute force voting like the GHT

can overcome this problem by increasing the space

complexity. Indeed, for each combination of the
transformation parameters and for each edge

pixel, all the corresponding cells of the accumula-

tor array need to be incremented. Nevertheless, the

gradient direction can still be used to reduce the

number of false evidences, and errors due to dis-

crete computation can be taken into account as

proposed by Aguado et al. (2000).

However, if a shape under affine transformation
is to be detected, the GHT has to be repeated M4

times, where M is the number of discrete values for

each parameter of the linear transformation. Di-

rect implementation cannot be carried out if time

performances are required. For that purpose, we

propose a two-steps implementation, where in the

first step, a GHT for similarity transformations

with poor axis discretization is performed on the
image, leading to a coarse detection. Complexity

increases thus as M2 if both independent para-

meters (i.e. isotropic scale and orientation) are

discretized with M values. The obtained result is

then used, in the second step, as initialization to

an adaptive GHT for affine transformations,

where each axis of the parameter space is discret-

ized with only three values. The range of the axis
values is re-estimated iteratively during the coarse-

to-fine search strategy.

2.1. Generalized Hough transform for similarity

transformations

To introduce the GHT, let W be a shape tem-

plate and x be a point of the gradient image.
Moreover, let us define a geometric transformation

of the shape template by
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AW þ t ¼
aA bA
cA dA

� �
�

Wx

Wy

� �
þ

tx
ty

� �

ðaAdA � bAcA 6¼ 0Þ;

with A and t corresponding respectively to a linear
transformation and to a translation vector. In the

affine case, A can be interpreted as the product of

elementary matrices (A ¼ Ai � Aj; . . .), corre-

sponding to elementary geometric operations like

rotations Ar, non-uniform scalings As and shea-

rings Ash with

Ar ¼
cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� �
; As ¼

sx 0

0 sy

� �
;

Ash ¼
1 shx
shy 1

� �
:

The similarity transformation is a particular case

of the affine transformation with shx ¼ shy ¼ 0

and sx ¼ sy , that is, with four independent para-

meters.
The potential location of the position parame-

ters t for the potential parameters A of the linear

transformation can be expressed as (Montiel et al.,

2001)

tðW ; x;AÞ ¼ x� AW : ð1Þ
This traces a curve in the parameter space, and

after gathering all evidences for all edge pixels, the

maxima of the accumulator array define the best

values A� and t� which correspond to the trans-

formations that map the model to the image. Note

that from Eq. (1) it becomes clear that the

parameters of the linear transformation can be

seen as input, while the translation as output, of

the detection.
The complexity of the extraction process is now

completely reported on the transformation and is

independent on the shape template. Indeed, until

now, no assumptions have been made about W .

Eq. (1) can be used for analytical as well as for

non-analytical templates. In the remainder of the

text, only non-analytical shapes will be dealt with.

That is, the templates are given as a set of points as
W ¼ ðx1; . . . ; xnÞ.

When dealing with non-analytical objects, the

shape information is encoded in a reference table

(R-table), in which the entry indices correspond to
the gradient orientation u at the object boundary.

For a given reference point o (e.g. the gravity

center or the center of the minimum bounding box

to minimize the relative error), the vectors

ri ¼ o� xi are stored as a function of u (Ballard,

1981) for i ¼ 1; . . . ; n.
During the detection process, the elements of

the accumulator array that are incremented are

given by Aguado (2002)

fðt;AÞjt ¼ x� Axi; juðxÞ

� arg½AðcosðxiÞ; sinðxiÞÞ0�j < du;

ði ¼ 1; . . . ; nÞg 8x 2 I ;

where du is an allowable angle error and I the

input image. Under the assumption of weak affine

transformations, this brute force voting GHT
delivers a reliable estimation of the object position

and a coarse approximation of its pose, which will

be refined in a second step as described in the next

subsection.

2.2. Adaptive generalized Hough transform for

affine transformations

The parameters resulting from the previous step

can be used as starting values of another HT for

more complex transformations (e.g. affine). The

parameter search can be therefore restricted to a

small area around the previous solution, saving

time and storage complexities. However, even in

that case, if the transformation parameters are

numerous and discretized with high accuracy, the
array becomes intolerably large and the number of

possible combinations too important for real

applications.

Based on the idea of Illingworth and Kittler

(1987), an adaptive coarse-to-fine approach is

proposed. Unlike the HT which represents the

whole parameter space by a quantized array, the

adaptive strategy consists of accumulating the HT
in a small size accumulator and using this infor-

mation intelligently to redefine the parameter

range so that only the interesting areas are

investigated in greater detail. This procedure can

be repeated until the parameters reach a pre-

specified accuracy without increasing the storage

space.
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In order to keep interesting time performances,

arrays of small size should be used. We chose a

3 · 3 · 3 · 3 accumulator array for affine transfor-

mations. This is a reasonable compromise between

speed and interpretation of the general space

topology. Each cell of the array corresponds to a
plane with image dimensions, which will be accu-

mulated during the detection stage. After accu-

mulation, the maximum is searched through all

the planes. The cell corresponding to the plane

having the highest peak returns the transformation

parameters for a given accuracy, while the object

position is given by the position of the maximum

within this plane. The parameter range and accu-
racy for the next iteration can be re-estimated by

analyzing the position of the maximum for each

axis of the array according to the following rule:

• if the maximum was located on an exterior

cell, then the accuracy is kept and the param-

eters are re-arranged such that this cell stands in

the middle of the new array (! location of the
actual parameter, Fig. 1(a));

• else a new range is defined around the cell of

maximum value amax as ½amax � d; amax þ d�
(a ¼ faA; bA; cA; dAg), which is then is quantized

in three new bins of finer accuracy. The new

accuracy is now given by ð2=3Þd, where d is a

small number decreasing over the time. For in-

stance, d can be updated as d :¼ 0:9 � d every
time that a new range is defined (! accuracy

improvement, Fig. 1(b)).
Fig. 1. Interpretation of the parameter space axes after accu-

mulation. (a) The axis is centered around the cell of maximum

accumulation. (b) If the maximum lies in the middle cell, the

parameter accuracy is improved by reducing the axis range.
3. Accounting for local shape variability

The HT for the detection of shapes under weak

affine transformations presented above does a

good job even in presence of occluded shapes.
However, the complete specification of the exact

shape is required to achieve precise segmentation.

For real life computer vision or medical applica-

tions, the target objects usually does not have ex-

actly the same shape as the transformed template

and local variations should be taken into account

to improve the accuracy of the detection.

3.1. Local shape variability with active Hough

transform

The HT is one of the most powerful methods

for the detection of shapes under geometric

transformations in images. However, until now,

the HT has been assumed to be used for the rec-

ognition of a single shape only, for instance the
middle shape of an object class. Natural objects

are characterized by much more flexibility and a

HT for natural shapes in supervised detection was

introduced by Brejl and Sonka (2000), assuming

that different prototypes of the object of interest

are provided in a form of segmented example

images. Let this training set be made out of

Ns shapes W1; . . . ;WNs ; ðWj ¼ ðx1 j; . . . ; xNljÞ; j ¼
1; . . . ;NsÞ, each of them being aligned to the mean

shape and being composed of Nl corresponding

samplings. The manually identification of these

points may rapidly become very tedious and in real

applications only few of them are identified by an

expert user. The remaining of these points can be

found by sampling the interval defined by two

successive landmarks. Small sampling steps should
be used to provide enough data for the building of

the R-table.

Unlike the original GHT, all shapes of the

training set will be encoded in the R-table, that is,

all Ns � Nl points will now contribute to a new en-

try. This operation consists essentially of encoding

the shape variability of an object class within the

R-table. In opposition to (Brejl and Sonka, 2000),
we argue that if an entry already exists, the new

contribution should nevertheless be added. Indeed,

the weight of a point, which appears several times
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in the R-table, will be more important, since that

contribution is more likely to happen.

3.2. Uncertainty regions for error compensation

Many sources of error influence the computa-
tion of the shape parameters A and t, so that not

only one cell of the accumulator array is incre-

mented, but rather a region around the expected

point. This problem was already investigated by

Ballard (1981) or Garrido et al. (1998). The latter

proposed to associate to each R-table entry an

uncertainty region, such that not just one single

cell is incremented, but all the cells corresponding
to that region. That is, an uncertainty region is

given to each entry of the R-table whose size

(width) depends, for instance, on an a priori

deformation probability distribution. This solu-

tion is attractive since each uncertainty region can

reflect the actual deformation at a given boundary

point.

The uncertainty regions can be directly com-
puted from the R-table of the active HT described

above. Indeed, to each entry index of the R-table

(i.e. discrete gradient orientation) corresponds a

set position vectors relative to a reference point

(Section 2.1). Considering these vectors as samples

of a random distribution, it is now possible to

define the uncertainty region as a density of

probability which is directly estimated from these
samples. The statistical modeling can be per-

formed with the adaptive kernel method (Silver-

man, 1986), which automatically adapts the

amount of smoothing according to the data,

without user’s knowledge. It becomes now clear,

that during the building of the R-table, all Ns � Nl

points of the training set should be considered,

even if a similar entry has already been recorded.

3.3. Shape variance in the reconstruction step

The last issue to address is the reconstruction

of the shape from the maximum of the accumu-

lator array. The easiest solution would be to

compute the back transformation of the mean

shape, but it would not take into account neither
the shape variability nor the contribution of the

image.
To include shape variance in the reconstruction

step, the corresponding landmarks of the training

set can be used intelligently. Let Li ¼
fxi1; xi2; . . . ; xiNsg ði ¼ 1; . . . ;Nl) be the ith set of

corresponding landmarks for the Ns shapes of the

training set after back transformation according to
the optimal parameters extracted from the maxi-

mum of the accumulator array. For 16 i < Nl, Li

can be seen as a set of Ns observations of a two-

dimensional density of probability pLiðx; yÞ.
Modeling the underlying probability density with

the adaptive kernel method as above, we obtain

p̂Liðx; yÞ, an estimate of the distribution of the ith
landmark points. To rely this information with the
image content, the position of the boundary points

can be computed by

argmax
ðx;yÞ

fp̂Liðx; yÞ � pBðx; yÞg; ð2Þ

where pBðx; yÞ is the boundary probability for a
given image (Paragios, 2000). Maximizing Eq. (2)

is equivalent to maximizing the joint probability

for the position and boundary. It simultaneously

guarantees likely shape variance along with good

correspondence to image boundary. (For practical

uses, pBðx; yÞ can also be seen as the gradient image

rescaled between 0 and 1.)
4. Experimental results

In this section, two experiments are carried out

on real medical images. The first experiment is

concerned with the detection of the corpus callo-

sum from 2D saggital magnetic resonance (MR)

slices, while in the second experiment, the left
ventricle is searched in 2D axial MR images. For

an illustration of the searched anatomical struc-

tures, please refer to Fig. 2. Note that all images

are of size 256 · 256 pixels and that for clarity,

only zoomed parts will be shown in the next sub-

sections.

4.1. Detection of corpus callosa

Fig. 3 illustrates the different steps of the HT for

natural shapes under weak affine transformations

and local geometric variations. Fig. 3(a) corre-



Fig. 2. Anatomical structures to extract in the experiments of

Sections 4.1 and 4.2. (a) Corpus callosum, (b) left ventricle.

Fig. 4. Translation parameter accumulator after the GHT

for similarity transformations corresponding to column (a) of

Fig. 3.
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sponds to the mean shape of the object class,

which was made of 12 instances of previously

segmented corpus callosa. On each shape, 50
points were computed from 5 landmarks identified

manually. Fig. 3(b)–(d) show the detection of dif-

ferent corpus callosa for the encoded shape class.

The first and second rows correspond respectively

to the detection results assuming a similitude,

respectively an affine transformation, with rigid

reconstruction from mean shape. The detection

seems to be better for the second row, but it re-
mains constrained to rigid transformations and

cannot account for local deformations. Fig. 3(d)

shows that in extreme cases, the generality of the

affine transformation over the similitude can lead
Fig. 3. Detection of corpus callosa with the HT for shapes under weak

(d) Examples of detection for different patients. The first row shows th

The second row shows the results for affine transformations with rigid

for affine transformations with reconstruction accounting for local sh
to better results. The third row shows the results

using shape variance in the reconstruction step.

Fig. 4 shows the translation parameter accu-

mulator after the GHT for similitudes. From this

figure, it can be seen that the peak corresponding

to the object location is distinctly higher than the
background noise, ensuring a good starting posi-

tion for the adaptive HT for affine transforma-

tions.
affine transformations. (a) Mean shape of the object class. (b)–

e results for similarity transformations with rigid reconstruction.

reconstruction, whereas the third row corresponds to the results

ape variations.



Fig. 5. Detection of left ventricles with the HT for shapes under

weak affine transformations. (a) Mean shape of the object class.

(b)–(d) Examples of detection for different patients. The first

row shows the results for similarity transformations with rigid

reconstruction. The second row shows the results for affine

transformations with rigid reconstruction, whereas the third

row corresponds to the results for affine transformations with

reconstruction accounting for local shape variations.
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The experiments were performed on a Linux

station Pentium III, 1000 MHz with test images of

size 256 · 256 pixels. The computation time re-

quired by the HT for the similarity transformation

was about 3.5 s with a scale going from 0.8 to 1.5
quantized in 10 values and an orientation between

)20.0� and 20.0� quantized in 20 values. These

numerical values strongly depend on the applica-

tion and were heuristically chosen, such that the

range of possible transformations be covered. The

computation time for the affine transformation

depends on the number of iterations, which have

to be performed until the pre-defined accuracy. In
our examples, the initial d was set to 0.15 and the

program stops when the parameter precision

reaches 0.01. A pass lasts 0.5 s and usually between

5 and 15 iterations are to be performed, leading to

a maximum global time of 1:5þ 15 � 0:5 ¼ 9 s.
This performance is usually acceptable for such

applications.

4.2. Detection of left ventricles

Fig. 5 shows the results for the detection of the
left ventricle. As previously, the rows of the figure

compare the different steps of the proposed HT.

The mean shape of the left ventricle class, com-

posed of 12 previously segmented instances, is

represented on Fig. 5(a) for 50 corresponding

points computed from 5 manually identified

landmarks per training image. The first row of Fig.

5 corresponds to the detection results assuming a
similitude, whereas an affine transformation was

assumed for the second and third rows. In the first

two cases, the mean shape was used for the

reconstruction, while the third row shows the re-

sults using shape variance in the reconstruction

step (Section 3.3). Identical parameters were used

as in the previous experiment, leading to similar

time performances.
5. Concluding remarks

In this paper, an approach for the detection of

non-analytic objects based on the Hough trans-

form is presented. The usual formulation assumed

a similitude mapping between the template and the
shape to detect. Thanks to an adaptive implemen-

tation, the similitude can be extended to the more

general affine transformation, while ensuring arbi-

trary accuracy and low storage requirement. The

use of a brute force voting strategy makes it pos-

sible to detect the objects in complex environments.

Anatomical structures are soft and their defor-

mations cannot only by characterized through
geometric transformations. A significant improve-

ment of the detection is achieved by incorporating

local shape variability directly into the R-table. By

this way, much more general shapes can be ex-

tracted. Moreover, unlike the original approach,

we propose to reconstruct the shape from the peak

of the accumulator array by combining both a

priori shape variance and image fidelity.
Although robust detection can be achieved,

large variations cannot be handled correctly.
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Nevertheless, our algorithm can be seen to be the

initialization of other segmentation algorithms like

active contours. Combining both would be a step

towards full automatic segmentation approaches.
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