
DISCRETE WAVELET FRAMES ON THE SPHERE

I. Bogdanova and P. Vandergheynst (1)

J.-P. Antoine, L. Jacques and M. Morvidone (2)

(1) Signal Processing Institute (ITS), Shool of Engineering
(FSTI), Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne, Switzerland
email:{pierre.vandergheynst, iva.bogdanova}@epfl.ch

(2) Institut de Physique Th́eorique (FYMA), Universit́e
Catholique de Louvain (UCL),

B - 1348 Louvain-la-Neuve, Belgium.
email:{antoine, ljacques, morvidon}@fyma.ucl.ac.be

ABSTRACT

In this paper we exploit the Continuous Wavelet Transform
(CWT) on the sphere introduced in [1, 2] to build the as-
sociated Discrete Wavelet Frames. We first explore half-
continuous frames, i.e, frames where the position remains
a continuous variable, and then move on to a fully discrete
theory. This forces us to introduce the notion of controlled
frames [5], which reflects the particular nature of the under-
lying theory, particularly the apparent conflict between dila-
tion and the compacity of theS2 manifold. We conclude with
some numerical illustrations and future work.

1. INTRODUCTION

Many examples in physics and medicine require the exis-
tence of suitable tools for analyzing data on spherical mani-
folds. As an analysing tool, the CWT has many advantages
over the Fourier transform, namely a locality controlled by
a dilation and a translation of the wavelet. Given the CWT,
designing discrete spherical wavelet frames is of paramount
importance and is the main contribution of this paper.

1.1 Continuous Wavelet Transform on the Sphere

The CWT on the sphere is based on affine transformations
on the sphere, namely: rotations, defined by the elementρ

of the groupSO(3); and dilations, parametrized by the scale
a ∈ R∗

+ [1]. If f ∈ L2(S2) ≡ L2(S2,dµ), with the rotation
invariant measure on the spheredµ(θ ,ϕ) = sinθdθdϕ, we
have the following unitary operators:
• rotationRρ(ρ ∈ SO(3)):

(Rρ f )(ω) = f (ρ−1
ω), ω ≡ (θ ,ϕ). (1)

• dilationDa(a∈ R∗
+):

(Da f )(ω) = λ (a,θ)
1
2 f (ω1/a), (2)

whereωa ≡ (θa,ϕ) with tanθa
2 = atanθ

2 ; a > 0,θ ∈
[0,π],ϕ ∈ [0,2π); andλ is a normalization factor. This
factor is given by

λ (a,θ) = 4a2 [(a2−1)cosθ +(a2 +1)]−2. (3)
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Intuitively, the action of dilationDa on a functionf ∈ L2(S2)
corresponds to a Euclidean dilation of the function in the
plane tangent the North Pole obtained by a stereographic
projection from the South Pole, and lifted it back to the
sphere by inverse stereographic projection. In the language
of group theory, these two affine transformations, which do
not generate a group neither commute, belong to the con-
formal group of the sphereS2 - the Lorentz groupSO(3,1),
where each subgroup is isolated using the Iwasawa decompo-
sition (see [1] for details). Using these definitions, a square-
integrable functionψ on S2 is called anadmissible wavelet
if there is a finite constantc∈ R∗

+, such that, for alll ∈ N,

Gψ(l) =
8π2

2l +1 ∑
|m|6l

∫
R∗

+

da
a3 |ψ̂a(l ,m)|2 < c, (4)

whereψ̂a(l ,m) = 〈Ym
l |ψa〉 is the Fourier coefficient ofψa =

Daψ. Even though this condition seems complicated and
difficult to check, it can be proved that any admissible 2-D
wavelet inR2 yields an admissible spherical wavelet by in-
verse stereographic projection. In particular, forφ(θ ,ϕ) =
exp(− tan2( θ

2 )), which is the inverse stereographic projec-
tion of a Gaussian on the sphere, a simple example of admis-
sible wavelet is theDifference of Gaussian (DOG)spherical
wavelet

ψ(θ ,ϕ) = φ(θ ,ϕ)− 1
α
[Dα φ ](θ ,ϕ), (5)

for α ∈ R∗
+.

Thus, with the given action of rotations and dilations, to-
gether with an admissible waveletψ ∈ L2(S2), the CWT of a
function f ∈ L2(S2) is:

Wf (ρ,a) = 〈ψρ,a| f 〉=
∫

S2
dµ(ω) f (ω) [RρDaψ]∗(ω). (6)

This last expression is nothing else but a spherical correla-
tion, i.e.,Wf (ρ,a) = ( f ∗ψ∗

a)(ρ).
The following proposition shows that the family of ro-

tated and translated wavelets forms a continuous frame in
L2(S2), from which we derive a reconstruction formula:

Proposition 1 Let f ∈ L2(S2). If ψ is an admissible wavelet
such that

∫
S2 dϕψ(θ ,ϕ) 6= 0, then

f (ω) =
∫

R+∗

∫
SO(3)

dadν(ρ)
a3 Wf (ρ,a) [RρL−1

ψ Daψ](ω), (7)

where the coefficients are given by (6), Lψ is theframe oper-
ator defined by

[̂Lψh](l ,m) = Gψ(l)ĥ(l ,m), ∀h∈ L2(S2), (8)
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and Gψ(l) is defined by (4).

The spherical CWT defines an approximate isometry,
given by the following result :

Corollary 1 Under the condition of the previous proposi-
tion, the following Plancherel relation is satisfied

‖ f‖2 =
∫

R∗
+

∫
SO(3)

dadν(ρ)
a3 Wf (ρ,a)W̃∗

f (ρ,a) (9)

with
W̃f (ρ,a) = 〈ψ̃ρ,a| f 〉= 〈RρL−1

ψ Daψ| f 〉. (10)

The proof of these results and more details on the CWT
on the sphere and its implementation can be found in [2]

Since the stereographic dilation is radial around the North
Poleη ∈ S2, anaxisymmetricwaveletψ onS2, i.e., invariant
under rotation aroundη , remains axisymmetric through di-
lation. So, if any rotationρ ∈ SO(3) is decomposed in its
Euler anglesϕ,θ ,α ∈ S1, i.e.,ρ = ρ(ϕ,θ ,α), thenRρ ψa =
R[ω]ψa, where[ω] = ρ(ϕ,θ ,0) ∈ SO(3) is the result of two
consecutive rotations movingη to ω = (θ ,ϕ) ∈ S2. Conse-
quently, the CWT is redefined onS2×R∗

+ by

Wf (ω,a)≡ ( f ∗ψ
∗
a)([ω])≡ ( f ?ψ

∗
a)(ω), (11)

with a∈ R∗
+.

In that particular case, the reconstruction (9) becomes

f (ω) =
∫

R∗
+

∫
S2

dadµ(ω ′)
a3 Wf (ω ′,a) ψ̃ω,a(ω ′), (12)

with ψ̃ω,a = R[ω]L
−1
ψ Daψ, and whereLψ is the frame opera-

tor defined in (8) withGψ reducing to

Gψ(l) =
4π

2l +1

∫
R∗

+

da
a3 |ψ̂a(l ,0)|2. (13)

2. DISCRETE WAVELET FRAMES ON THE
SPHERE

In this section, we describe under which conditions the pa-
rameters of the continuous wavelet transform can be dis-
cretized. We focus on the case of axisymmetric wavelets.

2.1 Half-continuous Spherical Frame

2.1.1 First Approach

We propose now to discretize the scale of the CWT on the
sphere as we let the position vary continuously. In other
words, we choose therefore

ω ∈ S2 (14)
a ∈ A≡ {a j ∈ R∗

+ : j ∈ Z,a j > a j+1} (15)

which generate the half-continuous grid

Λ(A) = {(ω,a j) : ω ∈ S2, j ∈ Z}. (16)

In order to have a reconstruction of every functionf ∈
L2(S2), a first possible approach would be to impose

m‖ f‖2
2 6 ∑

j∈Z
ν j

∫
S2

dµ(ω)|Wf (ω,a j)|2 6 M‖ f‖2
2, (17)

with m,M ∈ R∗
+ independent off , and for some weights

ν j > 0 taking into account the discretization of the contin-
uous measureda

a3 . In this case, the family

{ψω,a j = R[ω]Da j ψ : (ω,a j) ∈ Λ(m)}, (18)

constitutes a half-continuous frame inL2(S2). The follow-
ing proposition translates this last condition into the Fourier
space (as identified by spherical harmonics).

Proposition 2 If there are two constants m,M ∈ R∗
+ such

that

m 6
4π

2l +1 ∑
j∈Z

ν j |ψ̂a j (l ,0)|2 6 M (19)

for all l ∈ N, then (17) is fulfilled.

Let us choose a DOG wavelet(α = 1.25) and a discretized
dyadic scale with a certain number of voicesK ∈N0, namely

a j = a02−
j

K , j ∈ Z. (20)

For the sake of simplicity, we replace the indicesa j by j.
Moreover we choose weightsν j that take into account the
discretization of the continuous measureda

a3 , which means

ν j = a j−a j+1

a3
j

= 2
1
K −1

2
1
K a2

j

. (21)

We have estimated the boundsm andM respectively based
on minimum and maximum of the quantity

S(l) =
4π

2l +1 ∑
j∈Z

ν j |ψ̂ j(l ,0)|2, (22)

over l ∈ [0,31] and forK ∈ [1,4]. The results are shown in
Table 1(a).

K m M M/m
1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

(a)

K m M M/m
1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

(b)

Table 1: Estimation of the boundsm and M as a function
of the extremum ofS(l) for some values ofK. (a) First ap-
proach. (b) Second approach.

We can see that forK > 2, the relationM/m converges
toward the value 1.8107. So, it does not converge toward a
tight frame, for whichm= M. This is mainly due to a non
vanishing “gap” in the graph ofS(l) for small values ofl .

2.1.2 Second Approach

Trying to converge to a tight frame, we adopt now a sec-
ond approach for our half-continuous discretization. We start
from the Plancherel relation as defined in Corollary 1. In
other words, we will observe under which conditions we ob-
tain acontrolled frame [5]. That is, for two frame bounds
m,M ∈ R∗

+, we want

m‖ f‖2
2 6 ∑

j∈Z
ν j

∫
S2

dµ(ω)[Wf W̃∗
f ](ω,a j) 6 M‖ f‖2

2, (23)



where f ∈ L2(S2), W̃f (ω,a j) = 〈R[ω]L
−1
ψ Daψ| f 〉, and where

the brackets mean multiplication of two functions. The op-
eratorLψ controls the frame and it is bounded with bounded
inverse if and only if the waveletψ is admissible.

Proposition 3 If there exist two constants m,M ∈ R∗
+ such

that

m6
4π

2l +1
Gψ(l)−1 ∑

j∈Z
ν j |ψ̂ j(l ,0)|2 6 M, (24)

with Gψ(l) given by (13) and for all l∈ N, then(23) is veri-
fied.

By using the same scale discretization, the same wavelet
and the same weightsν j as in the first approach, we find now
(see Table 1(b)) that forl ∈ [0,31[, the ratioM/mtends to 1 as
K increases. A tight frame is thus reachable by considering
the controlled frame approach.

2.1.3 Construction of a tight half-continuous frame

It is possible to build a tight half-continuous frame on the
sphere using the previous considerations.

Proposition 4 Let {a j : j ∈ Z,a j > a j+1} be a sequence of
scales. Ifψ is an axisymmetric wavelet such that

gψ(l) =
4π

2l +1 ∑
j∈Z

ν j |ψ̂ j(l ,0)|2 6= 0, ∀l ∈ N, (25)

then,
f (ω) = ∑

j∈Z
ν j [Wf (·,a j)?ψ

#
j ](ω), (26)

with ψ#
j = l−1

ψ Da j ψ and lψ is an operator defined in the

Fourier domain by ̂l−1
ψ h(l ,m) = g−1

ψ (l)h(l ,m). In other
words, the frame controlled by lψ is tight.

The new operatorlψ is nothing else but the discretization of
Lψ defined in (13).

Notice that a scaling functionζ s.t.

|ζ̂ (l ,m)|2 = δm,0

−1

∑
j=−∞

ν j |ψ̂ j(l ,0)|2. (27)

can be introduced so that

f (ω) = [Sf ?ζ
#](ω)+ ∑

j∈N
ν j [Wf (·,a j)?ψ

#
j ](ω), (28)

with Sf (ω) = 〈R[ω]ζ | f 〉 andζ # = l−1
ψ ζ .

2.2 Discrete Spherical Frames

In this section, we will completely discretize the CWT on the
sphere. The scales are discretized as previously, namely

a∈ A = {a j ∈ R∗
+ : a j > a j+1, j ∈ Z}, (29)

and the positions are taken in an equi-angular gridG j indexed
by the scale level, related to the scale in such a way thatω ∈
G j , with

G j = {(θ jp,ϕ jq) ∈ S2 : θ jp = (2p+1)π
4B j

,ϕ jq = qπ

B j
}, (30)

p,q∈ N j ≡ {n∈ N : n < 2B j} and for some range of band-
width B = {B j ∈ 2N, j ∈ Z}. Actually, θ jp form a pseudo-
spectralgrid and are localized on the knots of a Chebishev
polynomial of order 2B j [3, 4]. With this choice, for certain
weightsw jp > 0 and on every gridG j , the following quadra-
ture rule is verified [4]∫

S2

dµ(ω) f (ω) = ∑
p,q∈N j

w jp f (ω jpq), (31)

with ω jpq = (θ jp,ϕpq) and for every band-limited function
f ∈ L2(S2) of bandwidthB j , i.e., such that̂f (l ,m) = 0 for all
l > B j .

The complete space of discretization is finally

Λ(A,B) = {(a j ,ω jpq) : j ∈ Z, p,q∈N j}. (32)

In this case, for an axisymmetric and admissible mother
waveletψ ∈ S2, the family of wavelets

{ψ jpq = R[ω jpq]Da j ψ : j ∈ Z, p,q∈N j} (33)

constitutes a weighted frame controlled by the operatorLψ , if
there exist two constantsm,M ∈ R∗

+ such that, for any func-
tion f ∈ L2(S2), we have

m‖ f‖2
2 6 ∑

j∈Z
∑

p,q∈N j

ν jw jp [Wf W̃∗
f ](ω jpq,a j) 6 M‖ f‖2

2,

(34)
In the last expression, the valuesν jw jp replace the measure
da
a3 dµ(θ ,ϕ).

Proposition 5 Let the discretized gridΛ(A,B) be given as in
(32). Letψ be an axisymmetric and admissible wavelet on
S2, and

S′(l) = ∑
j∈Z

4πν j
2l+1 1l[0,B j [(l) G−1

ψ (l) |ψ̂ j(l ,0)|2, (35)

δ = ‖X ‖ ≡ sup
(Hl )l∈N

‖X H‖
‖H‖ , (36)

with the infinite matrix(Xll ′)l ,l ′∈N s.t.

Xll ′ = ∑
j∈N

c j(l , l ′)1l[2B j ,+∞[(l + l ′)|ψ̂ j(l ,0)||ψ̂ j(l ′,0)| (37)

and cj(l , l ′) = 2πν j
B j

G−1
ψ (l)

[
(2(l +B j)+1

)(
2(l ′+B j)+1

)] 1
2 .

If we have

0 6 δ < K0 6 K1 < ∞, (38)

with K0 = inf l∈N S′(l) and K1 = supl∈N S′(l), then the family
(33) is a weighted spherical frame controlled by the operator
Lψ with frames bounds K0−δ , K0 +δ .

A detailed proof of this proposition can be found in [5].
The evaluation of‖X ‖ could be complex when the size

of X is infinite. However, in practice, we work with band-
limited functions f ∈ L2(S2) of bandwidthb ∈ N0. Conse-
quently, ‖X ‖ could be changed by the norm of the finite
matrix (Xl ,l ′ )06l ,l ′<b.



We have estimated the bounds of a spherical DOG
wavelet frame in the caseb = 64, using a dyadically dis-
cretized scale (withK = a0 = 1 in (20)), while the bandwidth,
associated to the grid size supporting each resolutionj, was
fixed to

B j = B02| j|, B0 ∈ N, (39)

whereB0 is the minimal bandwidth associated toψ1. The
last equation takes into account the particular nature of the
stereographic dilation onS2. Indeed, for the DOG wavelet,
we may show that the (essential) support ofψ̂ j increases with
j if j > 0, and growths with− j if j 6 0 [5].

Table 2 presents the results of the evaluation ofK0, K1
andδ as well as the bounds of the associated frames.

K0 K1 δ m= K0−δ M = K1 +δ M/m
B0 = 2 0.6807 0.7700 84.1502 − − −
B0 = 4 0.7402 0.7790 0.0594 0.6808 0.8384 1.2314
B0 = 8 0.7402 0.7790 0.0014 0.7388 0.7804 1.0564

Table 2: Evaluation ofK0, K1 and δ on the fonctionsf ∈
L2(S2) at bandwidth 64.

One can see that forB0 > 4, condition (38) is reached. A
tight frame cannot be obtained while we increaseB0. Actu-
ally, if B0 tends to infinity, the spherical grids at each resolu-
tion get finer and finer and we approach the half-continuous
frames, but as seen in the previous section, the one voice dis-
cretization of the scale is not sufficient.

3. EXAMPLES AND IMPLEMENTATIONS

The next application shows the advantages of the half-
continuous frame decomposition over methods constructed
completely in the frequency domain. We work on a cartog-
raphy of the surface of Jupiter and we would like to locally
enhance the details in a neigborhood of its “red spot”. All the
spherical correlations defining the wavelet coefficients and
the reconstruction (28) have been performed in Fourier space
using the spherical correlation theorem [4]

f̂ ?g(l ,m) =
√

4π

2l+1 f̂ (l ,m) ĝ(l ,0), (40)

for f ∈ L2(S2) and for any axisymmetric functiong∈ L2(S2),
and by using the SpharmonicKit [6] which performs fast (for-
ward and inverse) spherical harmonics transforms. All these
methods are integrated into the Matlabc©YAWtb toolbox1.

We consider an equi-angular grid of size is 512×512 and
the data bandwith is set tob = 256. In this context the DOG
wavelet is properly discretized for a scale range with| j| 6 7
anda0 = 1.

We proceed as follows: before reconstruction the coeffi-
cients at the finer scaleWf (ω,a7) are multiplied by a mask
function that increases their amplitudes in a vicinity of the
red spot. The rest of the coefficients are not modified.

Results after reconstruction are shown in Figure 1. We
show a zoom over the red spot of the reconstructed signal
without any processing (left) and the modified version where
the red spot’s details are clearly sharper (right).

1Developed by some of us and freely (GPLly) available at
http://www.fyma.ucl.ac.be/projects/yawtb.

Figure 1: Enhacement of the details of Jupiter’s red spot:
zoom over the spot (left); zoom over the spot with sharper
details (right).

4. CONCLUSIONS AND FUTURE WORK

Conditions on the existence of half-continuous and discrete
spherical frames have been established from the (stereo-
graphic) spherical CWT [1]. The last section illustrates the
efficiency of a particular DOG (half-continuous) tight frame
with a simple Jovian image enhancing. An example of a dis-
crete frame using the results of Proposition 5 has still to be
designed. These techniques could serve for instance to dis-
cover the Gaussian anisotropies in the astronomicalCosmic
Microwave Background[7], or to track the orientations inR3

of fibre in the human brain connectivity [8]. Work in these
directions is currently in progress.
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