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Abstract—This paper proposes a rate-distortion optimal a
posteriori quantization scheme for matching pursuit (MP) coeffi-
cients. The a posteriori quantization applies to an MP expansion
that has been generated offline and cannot benefit of any feedback
loop to the encoder in order to compensate for the quantization
noise. The redundancy of the MP dictionary provides an indicator
of the relative importance of coefficients and atom indices and,
subsequently, on the quantization error. It is used to define a
universal upper bound on the decay of the coefficients, sorted in
decreasing order of magnitude. A new quantization scheme is then
derived, where this bound is used as an Oracle for the design of an
optimal a posteriori quantizer. The latter turns the exponentially
distributed coefficient entropy-constrained quantization problem
into a simple uniform quantization problem. Using simulations
with random dictionaries, we show that the proposed exponen-
tially upper bounded quantization (EUQ) clearly outperforms
classical schemes. Stepping on the ideal Oracle-based approach, a
suboptimal adaptive scheme is then designed that approximates
the EUQ but still outperforms competing quantization methods
in terms of rate-distortion characteristics. Finally, the proposed
quantization method is studied in the context of image coding. It
performs similarly to state-of-the-art coding methods (and even
better at low rates) while interestingly providing a progressive
stream that is very easy to transcode and adapt to changing rate
constraints.

Index Terms—Compression, image coding, matching pursuit,
progressive stream, quantization, redundancy.

I. INTRODUCTION

COMPRESSION has now reached a turning point
where new algorithms have to meet simultaneous new

constraints as robustness, adaptivity, and sparsity of the
representation. In this context, nonorthogonal transforms
present several interesting properties that position them as
an interesting alternative to orthogonal transforms like the
discrete cosine transform (DCT) or wavelet-based schemes.
Decomposing a signal over a redundant dictionary improves
the compression efficiency, especially at low bit rate, where
most of the signal energy is captured by only few elements. The
main limitation of nonorthogonal transforms is, however, the
encoding complexity, since the number of possible decompo-
sitions becomes infinite. Matching pursuit (MP) algorithms [1]
provide an interesting way to iteratively decompose the signal
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in its most important features with a limited complexity. They
output a stream composed of both atoms or basis functions
(more practically a reference index in a dictionary of functions)
and their respective coefficients.

The aim of this paper is first to study the effects of quanti-
zation onto reconstruction of MP streams. Since the MP coeffi-
cients generally take on real values, quantization is necessary to
reduce the bandwidth needed to transmit them. Quantization er-
rors have been studied in [2]–[4] in the context of overcomplete
frame expansions and consistent MP. This new study focuses
on the transmission of multiresolution MP streams with a pos-
teriori quantization. A posteriori quantization refers to a scheme
that codes an MP expansion that has been generated offline. On
the contrary, an a priori quantization scheme is included in the
MP algorithm itself, which can thus compensate for quantiza-
tion errors. The resulting stream is in this case targeted for a
particular bit rate. In some practical cases, a genuine stream is
however computed once and then quantized several times to sat-
isfy possibly different rate constraints. This particular choice is
driven by applied considerations: When using MP for coding
images or videos, the decomposition itself is a bottleneck. The
application simply cannot afford the price of running MP sev-
eral times with different quantizer settings. Contrary to in-loop
quantization schemes [5], [6], where the encoder uses the quan-
tized coefficient to update the residual signal, the a posteriori
quantized version of the coefficients indeed does not influence
the MP expansion.

As usual, in overcomplete expansions, the set of functions
that form the dictionary plays a crucial role in MP coding. A
very redundant dictionary generally allows to capture the main
features of the signal with only a few dictionary elements. How-
ever, the coding rate of the function parameters obviously in-
creases with the size of the dictionary. Meanwhile, the relative
importance of each component of the decomposition also di-
rectly depends on the dictionary. The chances to find a function
that closely fits the input signal, and thus most of its energy,
grows with the dictionary size. The redundancy of the dictio-
nary therefore leads the energy decay rate of the residual signal,
which has been proven to be upper bounded by an exponential
curve [7], [8] in MP decompositions. The contribution of each
MP coefficient therefore clearly depends on its position within
the signal representation.

Based on the characterization of the energy decay curve, an
exponentially bounded quantization (EUQ) scheme is proposed
for the MP coefficients, which are sorted in decreasing order
of magnitude. The EUQ scheme turns the exponentially dis-
tributed coefficient entropy-constrained quantization problem
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into a simple uniform quantization problem by dynamically re-
ducing the coefficient quantization range along with increasing
iteration numbers. This theoretically optimal scheme is shown
to outperform previously proposed MP quantizers, especially
at low bit rates. We refer to this scheme as Oracle based be-
cause it assumes that the upper bound is given for the dictio-
nary in use. Unfortunately, the redundancy factor can be very
difficult to compute in practical situations, i.e., for large dic-
tionaries. We thus introduce a modified scheme that, although
suboptimal, still achieves very good performances. This scheme
adapts to the actual MP coefficient value to provide the quan-
tization algorithm with heuristics parameters. It is shown to fa-
vorably compare with other quantization algorithms on random
signals. Finally, in the practical case of image coding, it pro-
vides results similar to state-of-the-art coders [9], while addi-
tionally providing the advantage of generating a progressive
stream, where coefficients are sent in decreasing order of mag-
nitude. This worthy feature enables a very easy transcoding to
adapt to changing rate constraints.

The paper is organized as follows: Section II first overviews
the MP algorithm and its convergence properties. Section III
studies the a posteriori quantization of MP coefficients and
proposes a theoretically optimal exponentially upper bounded
quantization (EUQ) algorithm that benefits from the properties
of the encoding. Section IV builds on the optimal scheme
to design an adaptive, but suboptimal, quantizer, which per-
forms efficiently in practical algorithms. Section V provides
comparisons between the adaptive quantization scheme and
state-of-the-art coders, in the case of random signals, as well
as natural images. Finally, concluding remarks are given in
Section VI.

II. MP EXPANSIONS

A. MP Overview

In contrast to orthogonal transforms, overcomplete expan-
sions of signals are not unique. The number of feasible decom-
positions is infinite, and finding the best solution under a given
criteria is a NP-complete problem. In compression, one is in-
terested in representing the signal to be coded with the smallest
number of elements, that is, in finding the solution with most of
the energy on only a few coefficients. MP is one of the subop-
timal approaches that greedily approximates the solution to this
NP-complete problem.

MP is an adaptive algorithm that iteratively decomposes any
function in the Hilbert space in a possibly redundant dictio-
nary of functions called atoms [1]. Let be such a
dictionary with , and let represent the set of possible
indices. The function is first decomposed as follows:

(1)

where represents the projection of onto , and
is a residual component. Since all elements in have by

definition a unit norm, it is easy to see from (1) that is or-
thogonal to , and this leads to

(2)

To minimize , one must choose such that the projec-
tion coefficient is maximum. The pursuit is carried out
by applying iteratively the same strategy to the residual compo-
nent. After iterations, one has the following decomposition
for :

(3)

where is the residual of the step with . Sim-
ilarly, the energy is decomposed into

(4)

When the dictionary is complete, the original function can be
exactly decomposed as

(5)

Designing complete dictionaries is a critical task in the
MP-based algorithm [10]. Although MP places very few
restrictions on the dictionary, the latter is strongly related to
convergence speed and, thus, to coding efficiency. In this paper,
convergence speed has to be understood as the ability for MP to
capture most of the input signal energy in just a few iterations.
Any collection of arbitrarily sized and shaped functions can
generally be used as dictionary, as long as completeness is
respected, but the convergence of the MP expansion depends
on the signal characteristics and the size and structure of the
dictionary.

B. Convergence of MP

The convergence speed of MP corresponds to its ability to
extract the maximum signal energy in a few iterations. In other
words, it corresponds to the decay rate of the residue. Since the
convergence speed directly depends on the dictionary, the decay
rate of the residual energy can be bounded once the dictionary is
known, even without a priori information about the input signal.

The approximation error decay rate in MP has been shown to
be bounded by an exponential [7], [8]. In other words, the decay
of the residue norm is faster than an exponential decay curve,
whose rate depends on the dictionary only. From [7], there exists
a decay parameter such that, for all

(6)

or, equivalently

(7)

The decay rate1 can be written as [7]

(8)

1The decay parameter � decreases when the size of the signal space
increases. However, at the limit of infinite dimensional spaces, the convergence
is no longer exponential [11].
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where is the redundancy factor, and represents
an optimality factor. This latter factor depends on the algorithm
that, at each iteration, searches for the best atom in the dictio-
nary. The optimality factor is set to one when MP browses
the complete dictionary at each iteration. The parameter de-
pends on the dictionary construction. It represents the ability
of the dictionary to capture features of any input function .
The upper bound on the coefficient norm is reached in the worst
case, where the input function is the farthest from any dictionary
vector. Hence, is defined by

(9)

It can be interpreted as the cosine of the maximum angle be-
tween any direction in and the closest element of the dictio-
nary, which we simply assume to be a -dimensional subspace
of in the finite-dimensional case [1]. This parameter charac-
terizes the redundancy of the dictionary and tends to one when
the size of the complete dictionary increases. A geometrical for-
mulation of is provided in [12].

Finally, the parameter characterizes the redundancy of the
dictionary for uniformly distributed atoms, independently from
the function to approximate. At the same time, character-
izes the importance of the atom itself in carrying information.
Indeed, the importance of the atom index increases with the re-
dundancy of the dictionary (i.e., the value), whereas the rel-
ative importance of the coefficient decreases. In contrast, most
of the information is carried by the coefficients in orthogonal
transforms.

III. QUANTIZATION OF MP COEFFICIENTS

A. A Posteriori Coefficients Quantization

Recall that the interest of the a posteriori quantization scheme
lies in the context of asymmetric applications. Due to the en-
coding complexity, the MP stream is computed only once and
then differently quantized to match various receiver require-
ments. An optimal coefficient quantization cannot be included
in the MP decomposition, in contrast to [2]–[6] and [13], since
this would imply dedicated encoding for each end-user. While a
posteriori quantization provides flexibility regarding the coding
rate, the associated distortion is, however, not compensated for
by further MP iterations, contrary to in-loop quantization. The
quantization error propagation can nevertheless be kept small
for sufficiently fine quantization. Fig. 1 shows that distortion re-
sulting from a posteriori quantization is slightly higher than that
of the in-loop quantization, depending on the quantization step
size, however. The bitstream size is directly proportional to the
number of MP iterations since all iterations have the same size,
for a uniform quantization scheme and random signal and dic-
tionary. With in-loop quantization, MP adapts to the quantized
coefficient, and the residue corresponds to the stream used for
reconstruction. It therefore generally performs better than the
a posteriori quantization, even if the MP decay can be slightly
slower. The difference between both quantization schemes is,
however, very small for large coefficients (where the relative
quantization error is kept small). For very small coefficients

Fig. 1. Comparison of a priori and a posteriori uniform coefficient
quantization of the MP expansion of ten-sample random real signals over a
dictionary of 128 random vectors. The distortion have been averaged over 10
independent encodings.

(i.e., high stream size), the quantization step size is too large to
capture the coefficient value. The a posteriori quantization error
can thus even increase with the number of iterations (i.e., very
small coefficients), as in the case of a mid-step uniform quan-
tizer used in Fig. 1. However, an in-loop quantization scheme
stays less flexible than the a posteriori quantization since the
stream is generally targeted for a given rate.

The aim of quantization is to offer the best possible recon-
struction quality for a given bit budget. We propose a rate-distor-
tion optimal solution taking benefit from the exponential decay
of the residual energy. This interesting property directly drives
the quantization of the coefficients in two ways. Intuitively, the
quantization error on an MP element depends first on the it-
eration number. The highest iteration number elements indeed
bring less energy than the first elements. Their quantization can
thus be relatively coarser than for the high energy coefficients.
Second, the number of MP elements can also be adapted to the
available bandwidth by dropping the lowest energy elements.

Let represent the scalar product . From (6), its
norm is upper bounded by an exponential function, which can
be written as

(10)

The upper bound depends on both the energy of the input func-
tion and the construction of the dictionary. Since the coefficient
obviously cannot bring more energy than the residual function,
the norm of the coefficient is strongly related to the residual en-
ergy decay curve. Fig. 2 represents the energy of the MP coef-
ficients for the expansion of random signals over a 128-random
vector dictionary ( ). It clearly illustrates that the coeffi-
cients norm can be upper bounded by an exponentially decaying
curve. This qualitative result depends neither on the signal nor
on the dictionary. However, the decay rate directly depends on
the redundancy factor , as presented in Section II.

B. Redundancy-Driven Uniform Coefficients Quantization

The exponential upper bound on the coefficients is now used
to design an efficient quantization scheme. In the following
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Fig. 2. Coefficient norm versus the iteration number for the MP expansion of
three random signals of length 10 over a 128-random vector dictionary (� = 1).

discussion, we assume that an Oracle has computed the struc-
tural redundancy factor of the MP dictionary, and we use it to
derive an efficient quantizer. Later on, we will see how one can
drop this sometimes illusory requirement through an adaptive
algorithm. Our starting point is the observation we already
made: There is clearly no need to quantize all coefficients on
the same range since their values decreases exponentially. In
other words, the quantization applied to the first coefficients
is certainly not efficient on the last ones, as their range is
(exponentially) smaller. Bits can thus be saved by simply
limiting the quantization region between 0 and the exponential
decay curve given by the parameters (i.e., and ), after
possible coefficient reordering. The quantized coefficients are
then sent to the decoder together with an additional bit of sign.

The following paragraph proposes to compute the optimal
number of coefficients, as well as the optimal number of bits per
coefficient in EUQ. The distortion at decoding can be bounded
by the sum of the quantization error and the approximation error
due to the limit on the number of MP iterations. Let

denote the error on the coefficient. The total distortion
can thus be written as

(11)

where the energy of the residue at iteration is bounded thanks
to (6).

Assume now that the distribution of the coefficients norm is
uniform between 0 and the exponential upper bound given by
(10). This is clearly an oversimplified hypothesis, but, as can be
seen on Fig. 3, the exact distribution depends on the iteration
number, and its properties dramatically change for different co-
efficients. The first coefficients are quite narrowly distributed
close to the upper bound, whereas the others tend to be increas-
ingly more compactly distributed near small values. This be-
havior is mainly due to the very conservative upper bound de-
fined in (10), which assumes no a priori knowledge on the input
signal. The simplified uniform distribution model therefore re-

Fig. 3. Distribution of coefficients n = f0; 4; 9; 19g relatively to the
exponential upper bound for the MP expansion of 1000 ten-sample random
signals over a random dictionary of 128 atoms (� = 1).

flects the lack of a real structure of coefficients distribution in
this particular context. The uniform quantization is, moreover,
justified in a generic algorithm, where the only available pa-
rameters are the signal energy and the dictionary redundancy,
without considering neither the particular relation between the
signal and the dictionary or dependency among successive co-
efficients. For example, one could assume a Gaussian coeffi-
cient distribution around an average value decaying faster than
the exponential upper bound. However, the evolution of this
average value clearly depend on the efficiency of the dictio-
nary to decompose a particular signal , and such an analysis
is left for a future study. Finally, it can be observed that succes-
sive coefficient norms are likely to be close, and the distance
to the upper bound increases with the coefficients order since
the upper bound is clearly conservative. The adaptive algorithm
proposed in the next section will take benefit from these obser-
vations.

Under the previous assumption, the coefficient is
uniformly quantized within the exponentially decaying quan-
tization range , where . Let

be the number of quantization steps within [0, ] for the
quantization of the coefficient. Similarly, let represent
the number of bits needed to code the atom index. The atom
indices can be entropy coded to improve the compression and

represents in this case the average length of atom codewords
without loss of generality. The coding rate for MP atoms is
therefore given by

(12)

In addition, in the case of fine uniform quantization, the distor-
tion can be written as

(13)

The optimal quantization problem, which minimizes the distor-
tion for a given bit budget , can now be formulated as
follows.
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Problem 1: Given an MP expansion represented by a set of
coefficients and their respective atoms coded on code-
words of length . Find , which is the number of atoms, and

, with , which is the number of bits needed
to code their respective coefficients, such that the distortion is
minimized, while the coding rate is smaller than the bit budget,
i.e., .

The Lagrangian multiplier method [14], [15] is well suited for
this kind of constrained optimization problem. It defines a cost
function as the sum of the objective distortion function and
the constraint on the rate, weighted by the Lagrangian multiplier

. This formulation provides a solution to the hard constrained
problem of finding the optimal set of and by converting it
to a set of unconstrained problems driven by . In our case, the
cost function can be written as

(14)

The optimal quantization is obtained by differentiating
with respect to both and . First, solving

(15)

for positive and finite yields

(16)

The solution of (16) is a minimum of the Lagrangian since the
second derivative is positive at this point, regardless of the value
of . Hence, the optimal quantization imposes an exponential
law on the number of quantization levels

(17)

Interestingly, this previous relation leads to an equivalent par-
ticipation of each iteration to the total distortion. Indeed, the av-
erage distortion per coefficient is equal to

(18)

independently of the iteration. Notice, however, that the La-
grangian formulation provides only an approximation to the op-
timal quantization. Indeed, in a practical case, can only take
integer values, which are often limited to integer powers of two.

The coding rate can also be limited by transmitting only part
of the MP expansion. On the one hand, even if small coeffi-
cients can be efficiently approximated by the exponential upper
bound, the quantization scheme may decide not to code them
because the cost of the atom index is too expensive. On the
other hand, it can be seen from (14) that atoms may be trans-
mitted alone, even if no coefficient is coded ( ). De-
pending on the redundancy of the dictionary, atom indices often

carry more information than coefficients. With efficient entropy
coding, the atom indices may, moreover, become very cheap to
code. One can, therefore, imagine a scheme where the coeffi-
cients are simply interpolated from the exponential decay curve,
especially for high order iterations (i.e., small coefficients). The
optimal number of iterations is thus given by minimizing the
Lagrangian cost function of (14), where has been replaced
by its optimal value from (16):

(19)

with

if

otherwise.
(20)

Because indices can be transmitted without coefficients, the La-
grangian is defined as a piecewise function. The breakpoint oc-
curs at (i.e., ), where

from (16). Notice that is posi-
tive only if . Otherwise, the weight on the
rate in the Lagrangian cost function becomes much more im-
portant than the distortion, and the best scheme would be not to
transmit any coefficient. Without loss of generality, let us now
assume that is constant, where corresponds to the
average size of the atom indices after possible entropy coding.
The optimal number of iterations is given by the following
theorem.

Theorem 1: The Lagrangian cost function of (19) has a
unique minimum in terms of the number of MP iterations, and
this optimal solution is given by

if
otherwise

(21)

where

(22)

(23)

are the optimal values of on both sides of the piecewise func-
tion (i.e., for, respectively, and ). In (22),

represents the second branch of the Lambert func-
tion [16].

The choice between and depends only on the relation
between and . Indeed, the atom index size and the decay
rate of the coefficient norm drive the decision of coding an atom
without coefficient. Finally, the solution of (21) is a minimum
of the Lagrangian cost function since the second derivative is
positive at . A detailed proof is given in the Appendix for
completeness.
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Fig. 4. Average R-D curve for the MP expansion of ten ten-sample random
real signals over a 50-vector random dictionary in the case of both exponential
and uniform quantization.

Now that the unconstrained problem of (14) has been solved
optimally for an arbitrary , the next step is to find the optimal

that guarantees a bit budget . The solutions of the
optimization problem form a convex hull of the achievable rate-
distortion curve, and the bit budget constraint imposes a
that represents the slope of the rate-distortion function at

. Several bisection methods have been proposed to solve
this second problem [17]–[19]. Since, in our case, the bit rate
is expressed as a function of the Lagrangian multiplier , the
constraint on the bit budget directly imposes an approximated
value for from

if

otherwise

(24)
where , , and are functions of from the above equa-
tions. Recall that the approximation is due to the constraint of
integer number of bits for each coefficient. The values of
can finally easily be computed through numerical methods.

Fig. 4 shows the rate-distortion characteristic of the MP ex-
pansion of a ten-sample random signal over a 50-vector dictio-
nary. The redundancy-driven quantization scheme is compared
with different lower step uniform quantization schemes, which
simply quantize the coefficients over a range defined by the
energy of the signal. The proposed EUQ clearly outperforms
the uniform quantization since it adapts to the rate and to the
range of the coefficients to provide the best approximation for
the available rate. Uniform quantization schemes provide good
results for low rate since the first coefficients are finely quan-
tized. For high rates, however, the coefficients become too small
compared with the quantization steps, and they are set to zero.
The error may even increase in the case of mid-step quantiza-
tion since the quantized coefficient becomes larger than the true
value computed by the MP (see Fig. 1).

Finally, it can be noted that the exponentially upper bounded
uniform quantization is equivalent to the division of the coeffi-

cients by an exponential quantization table factor, multiplied by
a quantizer scale factor, which is given by the bit budget. Practi-
cally speaking, the only parameters to pass to the decoder are ,

, and or, equivalently, the quantizer scale factor. The op-
timal number of iterations thus only depends on the bit budget
and the design of the input dictionary. The redundancy-driven
quantization becomes particularly interesting for highly redun-
dant dictionaries, where the coefficient value decreases very
rapidly. In this case, the distribution of bits among coefficients
is particularly efficient compared to uniform quantization.

The scheme proposed above heavily relies on the knowledge
of the structural redundancy factor or, equivalently, . We call
this scheme Oracle-based because, in practical situations, it can
be too demanding to compute this parameter. Moreover, its in-
fluence is mixed with the suboptimality factor brought in by
MP implementation choices. This additional factor is, moreover,
very difficult to control. In the next section, we develop an adap-
tive algorithm that uses the previous theory to dynamically es-
timate the quantization parameters, therefore relaxing assump-
tions on the a priori knowledge of the redundancy factor.

IV. PRACTICAL SCHEME: ADAPTIVE QUANTIZATION

The previous optimal quantization scheme has several lim-
itations, particularly in the practical case of large dictionaries.
Moreover, the accuracy of the exponential upper bound is highly
dependent on the MP algorithm implementation. To overcome
these limitations, we now propose a suboptimal but very effi-
cient algorithm based on the development of the previous sec-
tion. The key idea lies in a dynamic computation of the redun-
dancy factor (i.e., the parameter ) from the quantized data.
Since this information is also available at the decoder, it will be
able to perform the inverse quantization without any additional
side information. As in the previous section, we only focus on
the magnitude of coefficients, reporting their sign on an sepa-
rate bit.

The MP coefficients are first reordered and sorted in the de-
creasing order of magnitude. This operation may be necessary
since the MP algorithm does not guarantee a strict decay of
the coefficient energy, but rather an upper bound. The adap-
tive quantization scheme then performs as follows. Let ,

denote the quantized counterparts of the
first coefficients. Due to the rapid decay of the magnitude, coef-
ficient is very likely to be smaller than . It can thus be
quantized in the range [0, ]. The number of quantization
levels at step is theoretically driven by the redundancy factor,
as given by (17). The adaptive quantization uses an estimate of
the redundancy factor to compute the number of quantization
levels as

(25)

The estimate of the redundancy factor is recursively updated,
replacing the quantization range of the optimal quantization
scheme (see Section III-B) with the quantized coefficient
as

(26)
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The adaptive quantization is described by Algorithm 1. The
quantization is completely determined by the choice of , the
number of bits for the first coefficient, and a positive value of

. The algorithm iteratively quantizes each of the coefficients
and updates, at each step, the estimated value of the redundancy
factor. It finally stops after a predefined number of atoms has
been reached or when it determines that the number of bits to
code a coefficient becomes null (i.e., ).

Algorithm 1 Adaptive Quantization
Require: , ,
while max iterations do

Quantize on levels with
range

{update }

end while

When the bit stream has to conform to a given bit budget, the
parameter is computed as follows. First, is estimated with
(26) by training the dictionary on a large set of signals (e.g., im-
ages), encoded with the adaptive quantization algorithm. It can
be shown empirically that the estimation quite rapidly tends to
the asymptotic value of the redundancy factor. The estimation
of is then used to compute as a function of the given bit
budget with (24), where is given by (21) (for highly redun-
dant dictionaries, we generally have ). The value of
determines the number of bits of the first coefficient , and the
number of atoms to be coded, , using appropriately (22) or
(23). The adaptive quantization algorithm is finally completely
determined and generally yields bit rates very close to the bit
budget. For high bit rates, it sometimes underestimates the quan-
tizer efficiency, due to the fact that the quantization range esti-
mated from the quantized coefficient values is more accurate
than the one obtained from the theoretical exponential upper
bound. In this case, the actual bit rate becomes smaller than the
bit budget, which can anyway be reached by coding additional
coefficients.

Notice that a loose estimation of or will not impair the
efficiency of the quantization algorithm but rather displace the
resulting encoding on the working rate-distortion curve. Finally,
several coefficients could be used for the computation of in
Algorithm 1. Such a modification will improve the accuracy of
the estimation of quantization parameters and avoid potential
oscillatory effects.

V. EXPERIMENTAL RESULTS

A. Random Signals

In this section, we now compare the adaptive entropy-con-
strained quantization scheme with an exponential quantization
scheme [20] used in MP coding [9]. The exponential quantiza-
tion is clearly expected to provide better results than uniform
quantization [21] due to the particular distribution of the MP

Fig. 5. Rate-distortion curve for adaptive and exponential quantization of the
MP expansion of ten-sample random real signals over a 128-atom dictionary.

coefficients. Both the exponential and the adaptive entropy-con-
strained quantization schemes, which are comparable in terms
of complexity, are used for a posteriori MP coefficient quanti-
zation. In the particular case of coding of random signal coding,
the distortion is reported to the coding rate that is estimated as
the sum of the quantized coefficients entropy and the index av-
erage size. Note that the exponential quantization is similar to
the one proposed in [9], where the dead zone is adapted to the
statistics of the coefficients.

Fig. 5 shows the evolution of the MSE distortion versus the
coding rate for both the adaptive entropy-constrained and the
exponential quantization. The curve has been averaged on 100
MP expansions of a random source. The adaptive scheme
clearly provides better results since it optimally distributes bits
among MP coefficients. Moreover, it allows us to reach much
lower coding rates since the number of coefficients is adaptively
chosen according to the bit budget.

B. Image Coding

This section finally proposes the analysis of the behavior of
the adaptive quantization scheme in the practical case of MP
image coding. To this aim, an encoder has been built that uses ei-
ther the adaptive EUQ scheme proposed in the previous section
or the quantization scheme proposed in [6]. Note that in both
cases, the quantization is performed a posteriori on a stream
generated by an offline MP expansion.

The encoder used in these experiments is composed as fol-
lows: A low-frequency part that is 1/16th the size of the image
is first coded through a combined DPCM and entropy coding
scheme. This low-frequency part, whose coding rate is equiva-
lent to 0.03 b/pixel in the experiments below, is then subtracted
from the image. The residual high-frequency image is coded
through MP, using a dictionary built on anisotropic refinement
and rotation of two-dimensional functions [22]. Unlike most of
the proposed coders, the proposed MP scheme does not search
atoms on a block-by-block basis but rather in the whole image
in order to improve the localization of the signal energy.

The main difference between image coding and the MP ex-
pansion of random signal presented above resides in the coding
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Fig. 6. PSNR-rate characteristic of the MP coding of Lena with the adaptive
exponentially upper bounded and the exponential quantization.

of the atom positions. In order to limit the size of the dictionary,
the atom positions have to be coded separately from the atom in-
dices. Since the adaptive EUQ scheme heavily relies on the co-
efficient ordering along their decreasing magnitude, the coding
of the atom position is, in this case, quite expensive. There are
indeed no obvious statistical properties in the distribution of the
atom positions. A small coding gain is, however, obtained by
coding the position coordinates and with an arithmetic coder.

On the other hand, the uniform threshold quantizer proposed
in [6] is totally independent of the atom order. The atoms are or-
dered along their position in the image.2 The atom positions are
then differentially coded on an image row through an arithmetic
coder. A end-of-line symbol is then sent, followed by the number
of empty lines to the next atom. Such a differential coding is very
efficient when the number of atoms becomes large.

Fig. 6 represents the evolution of the PSNR as a function of
the coding rate for the two MP encoders described here and
above. Recall that the only differences between them are the
coefficient quantization and the position coding. It can be seen
that both schemes perform very similarly. The coder based on
the adaptive exponentially upper bounded quantizer performs
slightly better at low rates, where the penalty of raw position
coding is not too important compared with differential coding.
At high rates, the proposed method provides a slightly lower
PSNR quality than the coder based on a uniform threshold quan-
tizer. In this case, the benefit of the adaptive quantization is com-
pensated by an expensive position coding. The visual quality is
also very similar for both encoders, as shown in Fig. 7.

While the coding performance is comparable in both coders,
the adaptive exponentially upper bounded quantizer offers
a very important advantage in terms of scalability. The MP
stream is intrinsically progressive and can be simply truncated
to meet lower rate constraints by discarding the least important
coefficients at the end of the stream. The quantization can also
be easily adapted by changing the quantizer parameters. On the
contrary, the differential coding of the position in the second
encoder imposes decoding/recoding operations in the case of
bit rate adaptation. In addition, the design of the corresponding

2The coding of the positions does not take into account block limits, whereas
[6] codes the atom positions per block

(a) (b)

(c) (d)

Fig. 7. MP coding of a 128� 128 pixel Lena image, at 0.19 and 0.37 b/pixel
with the adaptive exponentially upper bounded (AEUQ) and the uniform
threshold (UTQ) quantizers. (a) AEUQ 0.19 b/pixel, PSNR = 21.85 dB. (b)
UTQ 0.19 b/pixel, PSNR = 21.62 dB. (c) AEUQ 0.37 b/pixel, PSNR = 23.94
dB. (d) UTQ 0.37 b/pixel, PSNR = 23.89 dB

quantizer (e.g., the dead-zone, see [6]) has to be modified
according to different bit budget constraints.

VI. CONCLUSIONS

A new quantization for MP expansion has been proposed
in this paper. It describes an a posteriori quantization of the
MP stream to meet the constraints of asymmetric applications
targeting heterogeneous decoders. The encoder takes advantage
of the exponential decay of the MP coefficients, which has
been shown to be directly driven by the dictionary structure.
Depending on the parameters of this exponential upper bound,
an optimal redundancy-driven coefficient quantization scheme
has been proposed. This scheme clearly outperforms uniform
quantization schemes since it adapts to the coefficient decay to
provide the best possible approximation with the lowest coding
rate. Following what has been taught by the Oracle-based
approach, we derived an approximate entropy-constrained
scheme that outperforms previously proposed MP quantizers.
The performance of the adaptive scheme has finally been
shown to favorably compare to state-of-the-art quantization in
low bit-rate MP image coding, while additionally providing an
advantageous progressive bitstream.

APPENDIX

OPTIMAL NUMBER OF ITERATIONS

Proof of Theorem 1

The Lagrangian cost function of (19) has two pieces con-
nected at a breakpoint defined by the first noncoded co-
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efficient. The first derivative of the right-hand side part of the
Lagrangian (i.e., for ) can be written as

(27)

This expression has a zero given by

(28)

However, (28) is by definition valid only for . The
condition for to be larger than is given by

(29)
or, for and positive

(30)

The second derivative of the right-hand side part of the La-
grangian cost function is given by

(31)

and is positive for . Hence, is a minimum of the
Lagrangian cost function, provided that the constraint of (30)
is satisfied. The constraint indicates whether it is worth trans-
mitting the atom indices without coefficients and depends only
on the size of the atom codewords and the coefficient energy
decay rate . The first derivative of the left-hand side part of the
Lagrangian cost function (i.e., for ) is given by

(32)

For the sake of clarity, let us rewrite (32) as

(33)

with

•

• ;
• ;
• .

The zeroes of (33) are given by

(34)

where is the Lambert function [16]. It is a well-defined
function of the complex variable and has two real branches

for , , and . When , which
simply means that an atom index is specified by more than one
bit, the argument of in (34) satisfies

(35)

for . This ensures the existence of two solutions,
and hence, the Lagrangian cost function presents two ex-
trema, which are further studied below. Let and
denote the solutions of (34) for, respectively, the first and
second branches of the Lambert function. Respectively,
this yields and .
Since the definition of the Lambert function implies that

and , the solution given by the
first branch of the Lambert function is, moreover, strictly larger
than the solution given by the second branch, i.e., .

The second derivative of the left-hand side part of the La-
grangian cost function is given by

(36)

where and for , and . The second
derivative is therefore positive when

(37)

or equivalently

(38)

From (34), we easily check that

(39)

Since, by definition, for , we have

(40)

From (38)

(41)

and

(42)

since, by definition, and . The
second derivative is therefore positive for and neg-
ative for , and the Lagrangian cost function presents
a minimum at and a maximum at . Since

, the Lagrangian cost function is first a decreasing
function of , for small. Moreover, the maximum of the
left-hand side part of the function (i.e., ) is always
after the breakpoint since

(43)

for and positive. It can thus be omitted in further
analysis. It remains to be shown that the optimal solution for the
left part of the Lagrangian function is positive and falls before
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. Positivity at is guaranteed if and only if the following
condition is respected:

(44)

This means that in the worst case for the Lambert function, we
have a limit on the rate in the Lagrangian cost function

(45)

In addition, is smaller than if

(46)
Since is equivalent to by definition, the
previous condition is equivalent to

(47)

Conditions of (30) and (47) are mutually exclusive. If one con-
straint is respected, the other cannot be satisfied, and this ensures
the existence of one and only one minimum to the Lagrangian
cost function. This can be shown by proving that the product of
both conditions is always positive

(48)
Indeed, if

(49)

then

(50)

Furthermore, if (49) is respected, then

(51)

From (50), the last relation can be rewritten as

(52)

Setting , for is equivalent to proving that

(53)

where both left and right terms are zero for . The left
term increases with with a slope 1. The right term also in-
creases with since its first derivative is always positive, but
the increasing rate is always smaller or equal to 1. This proves

the inequality of (53). It can be shown in the same way that if
one of the factor of (48) is negative, the other one is negative as
well. Altogether, we thus have a unique solution for the optimal
number of iterations.
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