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Abstract

Alterations of the thalamus are implicated in a great number of brain diseases
such as Parkinson’s disease or schizophrenia, among others. Some of those
diseases must be surgically treated, others need deep-brain electrical stimulation
or similar treatments. A need arouses to be able to clearly see the thalamic
region and its cytoarchitecture.

Diffusion Tensor Magnetic Resonance Imaging provides a non-invasive tech-
nique to observe molecular diffusion in brain tissues. Making use of this tech-
nique, we have developed a method to segment the thalamus as a whole by
means of active contours. Several brain maps can be obtained from DT-MRI,
such as the Fractional Anisotropy map or the Diffusion Coefficients. Regarding
such maps, statistical data is extracted for the different regions of the brain, and
the probability of a voxel being in a certain region can be determined. Then,
the front propagation, implemented with level sets methods, is based on those
statistics and a curvature term which helps provide smoothness. Coupling sur-
faces are used to assure interaction between the different curves and help define
each region’s boundaries.

The results show that the method can be used to segment the thalamic region
together with the subthalamus. This will be useful in presurgical planning of
the mentioned diseases and future generation of thalamic and subthalamic nuclei
atlases.



Chapter 1

Introduction

The thalamus can be considered the central relay station for nerve impulses in
the brain. It acts as the gatekeeper for anything that wants to get up to the
cortex. Axons from every sensory system (except olfaction) synapse here as the
last site before the information reaches the cerebral cortex. The thalamus sends
to it the information received from diverse brain regions.

Anatomically, it is a large, dual lobed mass made up mainly of grey matter
cells, located in the center of the brain. Each lobe measures approximately
4 centimetres. It is part of the diencephalon and we find it deep inside the
cerebral hemispheres and next to the ventricles. The third ventricle shares
its lateral walls with the thalamus, as it separates the two thalamic bodies.
These are connected by a piece of thalamic white matter tissue called massa
intermedia. This is not the only white matter in the thalamus, since several
fibers pass through and around it. The thalamus, situated at the top of the
brainstem, superior to the hypothalamus, communicates sensory, motor and
associative brain regions.

Some parts of the thalamus play a major role in the regulation of conscious-
ness, alertness, arousal, and possibly attention, which partially explains why the
thalamus is considered to be part of the limbic system.

The thalamic cytoarchitecture is divided into different clusters, a heteroge-
neous group of nuclei, each with a specific function. The thalamic nuclei have
traditionally been studied with histological methods and their number varies
depending on the method used. However most studies identify 14 major nuclei,
some of them being subdivided.

The importance of generating an exact map of the thalamus comes from
the fact that thalamic changes are involved in a large number of diseases, such
as schizophrenia, Parkinson’s disease or multiple sclerosis, among others. The
thalamic atlases are used to target the pertinent nucleus in presurgical planning
of these diseases. However there is a high inter-subject variability in the location
and size of the thalamic nuclei and therefore generic thalamic atlases may be
highly inaccurate.

Resolving thalamic nuclei by noninvasive imaging would be a great step
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forward as it would enable, among other things, more accurate neurosurgical
planning for the diseases mentioned above, giving the possibility of generat-
ing a personal thalamic atlas for each patient. Unfortunately current imaging
methods such as CT! and conventional Magnetic Resonance Imaging do not
provide the necessary image contrast to differentiate the nuclei so radiological
identification of individual thalamic nuclei is not currently possible.

M.R. Wiegell et al. [18] have shown how DT-MRI can differentiate the
principal thalamic nuclei, noninvasively, basing on the characteristic fiber ori-
entation, which is assumed to stay the same all along one certain nucleus and
varies from one nucleus to another.

The present work aims to be a first step in the process of resolving the
thalamic nuclei. It’s objective is to accomplish the segmentation of the thalamus
as a whole by the process through which the nuclei will be later segmented.

The recovery of shapes of the human body is more difficult compared to other
imaging fields. This is mainly due to factors as the large variability in shapes,
complexity of medical structures and several kinds of artifacts. However, we will
try to overcome the mentioned complications and propose a method based on
the class of deformable models known as level sets and geodesic active contours.

First we will present the concept of Diffusion Tensor and how diffusion is
present in the different parts of the brain. We will also introduce the segmenta-
tion theory of Geodesic Active Contours and the front propagation implemented
with Level Set Method and Geometric Flows. That is done in chapter two.

In the third chapter the initial objectives of this work are presented, along
with the method developed. We will show how to use the statistics in the
different images in order to obtain the speed which will help propagate the
surface. And how the Level Sets Method should be applied to this case.

The fourth chapter is dedicated to explaining the actual implementation.
We present our signed distance function, explain how the probabilities for the
different regions are calculated and show how the coupling forces are imple-
mented for this case. Details are also given on the data images used and the
treatment applied to some of them before being used.

The results are presented in chapter 5, both for synthetic and for real images.

The last chapter is dedicated to the conclusions that can be extracted from
this work and possible future work on the subject.

1CT: Computerized Tomography



Chapter 2

Background Theory

In this chapter we will introduce the concept of Diffusion Tensor and the math-
ematics in it. We will also explain how diffusion is present in the different parts
of the brain, how it can help classify them and how DT-MRI! can be used. The
theories of Geodesic Active Contours and Level Sets are introduced as they will
be used further on.

2.1 Diffusion Tensor Imaging

The diffusion tensor (DT) provides information about the intensity of the water
diffusion in any given direction, at a certain point, when applying a magnetic
field [7]. Water diffusion is described by what is called Brownian motion. The
Brownian motion is an irregular motion exhibited by minute particles of matter
when suspended in a fluid. This effect, independent of all external factors, is
ascribed to the thermal motion of the molecules of the fluid.

Diffusion in tissue is dependent on the tissue’s characteristics. Because DT
becomes highly anisotropic in areas of compact nerve fiber organization, it pro-
vides an indirect way of fiber tract identification and tissue classification.

2.1.1 Diffusion in the brain

Water diffusion in the brain is highly affected by the tissues’ cellular organiza-
tion. In white matter, the values for diffusion can be extremely variable, but
its direction is mainly the same as the fibers. This means that it is highly
anisotropic.

On the other hand, in regions with fluid, like CSF? filled ventricles, diffusion
is mainly spherical.

The values of diffusion in grey matter stand in the middle, as this region
shows nearly no anisotropy but diffusion is not spherical either. Moreover,

IDiffusion Tensor Magnetic Resonance Imaging
2CSF: Cerebro-Spinal Fluid
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some regions made of grey matter are difficult to classify since they also have
white matter or other kinds of tissue inside them, like fibers going through them.
That is the case of the thalamic region, which concerns us.

The value and type of diffusion directly depends on the relative orientation
of the fibers and the gradient direction [6]. For example, myelin sheath is one
of the main components restricting water mobility: diffusion is dependent on
the orientation of myelin fiber tract. The measured DT in it becomes highly
anisotropic and orientated in the same way as fiber organization. When measur-
ing molecular displacements perpendicular to the direction of the myelin fiber
tracts, diffusion is significantly decreased. On the other hand, the diffusion
measured parallel to myelin fiber direction can be about three times larger than
the one measured in the perpendicular direction. Hence, diffusion helps identify
fiber tracts and distinguish different types of tissue.

Density of fibers, degree of myelinisation, presence of fluid and the directional
similarity of fibers in a voxel are some of the factors which would affect the shape
of the apparent DT in different parts of the brain.

2.1.2 DT-MRI

Through DT-Magnetic Resonance Imaging (DT-MRI), the averaged self-diffusion
tensor (or effective diffusion tensor) in each voxel of a 3D image can be mea-
sured. While conventional MRI cannot provide information on fiber orientation,
DT-MRI allows to see the orientation of the fibers, and can therefore be used to
make a classification of the different tissues depending on the type of diffusion
in them. It is therefore, a non-invasive, indirect way of fiber tract and tissue
classification.

Diffusion can be measured by diffusion weighted MRI along at least six
independent axis. That means we require six different diffusion weighted images.
A normalizing image without diffusion weighting is also needed.

The diffusion tensor in each voxel is obtained to create a 3D field of diffusion
tensors. Anisotropic diffusion can also be measured. Modeled by an anisotropic
Gaussian that can be parametrized by the diffusion tensor in each voxel [3] it
can provide a 3D map of Fractional Anisotropy values.

2.1.3 Mathematics in The Diffusion Tensor

Mathematically, the DT is a symmetric, second order tensor, represented by a
3x3 semi-positive definite matrix. It represents the diffusion in each direction
of a voxel and enables us to obtain the value for the diffusion in any direction,
as follows:

D(#) = " Dz, (2.1)

where Z is the unit vector representing the direction for which we want to
know the diffusion.

D(Z) is proportional to the rate of transfer of water molecules across a plane
perpendicular to .
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We can also calculate the mean diffusivity, which is:

Trace(D) D11+ Daa+ D33
3 B 3

The DT can be interpreted by its eigenvectors and eigenvalues, obtained by
diagonalizing the DT matrix. Each eigenvalue is a quantitative measure of the
diffusion in its corresponding direction. The eigenvector corresponding to the
highest eigenvalue describes the direction of the principal diffusion.

In 3D, the DT can be thought of as an ellipsoid with the principal axes
having a length proportional to the eigenvalues (to v/X) and coinciding with the
directions of the eigenvectors.

Having calculated the diffusion tensor’s eigenvalues and eigenvectors, the
type of diffusion can be classified after the geometry of the diffusion ellipsoid as
follows:

1) Linear, where: A1 > A2 ~ A3. Diffusion is present only along one direc-
tion. Therefore, it is anisotropic diffusion.

2) Planar, where: Ay ~ Ay > A3. Diffusion of this type is restricted to planes.

3) Spherical, where: Ay ~ A2 ~ A3. This means diffusion is similar in all
directions, it is therefore, isotropic.

Through the eigenvalues we can also calculate the diffusion coeflicients,
which give a measure of how close the diffusion tensor is to the generic cases.
The coeflicients are:

MeanD =

(2.2)

e Linear case:
AL = A2

= ‘- ' 2.3
A Vi) Vi (23)
e Planar case:
2(A2 = A3)
==z =7 2.4
“ A+ A+ A3 ( )
e Spherical case:
33
o 2.5
¢ AL+ A2+ A3 (2:5)

There are several measures of diffusion anisotropy. They measure the direc-
tional bias of a DT. They have higher values for more anisotropic, less spherical,
diffusion tensors.

One of the most popular of this measures is the Fractional Anisotropy. The
Fractional Anisotropy (FA) index measures the fraction of the magnitude of the
diffusion that can be ascribed to anisotropic diffusion [6]. It is quantitative and
dimensionless, and is calculated as follows:

3 O — )2+ Q2= )2+ (A3 — (N)°
FA:VEJ : .ﬁig+xg - (26)

where () is the average of the eigenvalues.
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2.2 Geodesic Active Contours (Snakes)

The geodesic active contours approach for object segmentation found in [5]
allows to connect the classical “snakes” approach, based on energy minimization,
with geometric active contours, based on the theory of curve evolution.

The classical “snakes” approach is based on deforming an initial contour Cy
towards the boundary of the object. It has been used so far for edge and curve
detection, segmentation and shape modelling, among others.

In order to get the deformation of the curve we must minimize a functional
designed so that its minimum is achieved on the boundaries of the object. This
is the energy functional and it is basically composed of two terms. One of
them controls the smoothness of the curve whereas the other attracts the curve
towards the boundary. The drawback of this model is that it is not able to
handle topology changes of the evolving contour, so the topology of the final
curve will be the same as the one of Cy. This is a problem when the number of
objects to be simultaneously detected is unknown.

In the geometric active contours model, based on curve evolution and ge-
ometric flows, the curve propagates by means of a speed. This speed is also
composed of two terms. One of them is related to the regularity of the curve.
The other term shrinks or expands the curve towards the boundary. The model
is given by a geometric flow (in PDE form) and it is not dependent on energy
minimization. If implemented using the level-sets algorithm [12], explained in
Section 2.3, it allows the handling of topology changes. Hence, it can be used for
detection of several objects simultaneously without knowing their exact number
a priori.

Caselles, Kimmel and Sapiro [5] presented a way of object boundaries detec-
tion based on active contours evolving in time according to intrinsic geometric
measures of the image. The evolving contours are designed to split and merge,
so detection of several objects, and both interior and exterior boundaries, can be
possible. They also proved a particular case of the classical energy snakes model
to be equivalent to finding a geodesic curve in a Riemannian space. This means
that, under certain conditions, object boundary detection can be considered
equivalent to finding a curve of minimal weighted length in a new metric.

Assuming that this geodesic active contour is represented as the zero level-set
of a 3D function, the geodesic curve computation is reduced to a geometric flow
similar to the one obtained by curve evolution approaches. The main difference
is that this flow includes a new speed term which is based on image information,
that improves the previous models. This way, geodesic active contours allow to
track boundaries with high variation in their gradient and give a unique and
stable solution.

To get to this solution, we first have to show the connection between energy
based active contours (snakes) and the computation of geodesics or minimal
distance curves in a Riemannian space.

We will start describing the classical energy based snakes.

Let C(q) : [0,1] — R? be a parametrized planar curve and 7 : [0,a] x [0,b] —
Rt be a given image in which we want to detect the object boundaries. The
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classical snakes approach (Kass et al., 1988) associates the curve C' with an
energy E(C), composed by two terms for internal energy and another term for
external energy:

—a/|C' |dq+B/|C’" )2 dg — )\/|VI Ndg  (@27)

The first two terms are the ones for internal energy and control the smooth-
ness of the contours to be detected. The third term is the one corresponding
to external energy and it is responsible for attracting the contour towards the
object in the image (this term is dependent on the image). However, it has been
previously proven that curve smoothing can also be obtained with g = 0. So
that will reduce (2.7) to

—a/|C' )2 dg — /\/|VI ) dg (2.8)

To perform segmentation, we need to find the curve C' that minimizes the
energy E(C).The problem is that, having more than one object in the image,
it is not possible to detect all of them. In other words, the classical snakes
approach cannot directly deal with topology changes.

The solution to this problem is given by a geodesic curve in a Riemannian
space induced from the image I. A geodesic curve is a minimal weighted distance
path between given points. Following Caselles, Kimmel and Sapiro’s studies, we
find that the problem of minimizing (2.8) can be transformed into a problem of
geodesic computation in a Riemannian space, which is minimizing;:

'/gOVIaxwﬂ)Kfmﬂdq (2.9)

In a different Riemannian space, this gives a new length definition:

@:/ﬂwummMO@Mq (2.10)

We can therefore see that, when trying to detect an object, we are inter-
ested not only in finding the path of minimal classical length, but the one that
minimizes a new length definition which bears in consideration the image char-
acteristics.

The minimization of (2.10) is done by the steepest descent method, so we
will search for the gradient descent direction in the equation. Calculating Euler-
Lagrange of this, we find the curve evolution equation:

agt = g(DkN - ( ﬁ)ﬁ, (2.11)

being C} the flow, k the Euclidean curvature and N the unit inward normal.
This equation is represented using the level-sets approach and shows how each
point in the active contour C should evolve to minimize the length L. The

detected object will then be given by the steady state solution of (2.11), which
is Ct =0.
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Figure 2.1: A curve can be thought of as a level set of some discretely sampled
2D function or as a level set of a surface

2.3 Level Sets and Geometric Flows

The Level Set Method Let’s assume we have an image in which an interface
separates one region from another, and there is a speed for each point of the
interface. The level set method can be used to know how to evolve the surface.

Introduced by Osher and Sethian, the level set approach takes the original
curve and builds it into a surface, called the level set function.

Given a function v : [0, a] x [0, b] — R. Assuming that C is a level-set of that
function, then C coincides with the set of points u =constant. Therefore, u is
an implicit representation of the curve C' and has one more dimension.

This function accepts any point in the plane as an input, and hands out
its distance. Instead of moving the initial front, which could result in strange
shapes, we calculate the position in the surface of any given point. The built
surface intersects the x-y plane exactly at the location of the initial curve. The
initial curve is called the zero level set, because it contains all the points with
distance zero.

One of the main advantages of the level sets algorithm is that this repre-
sentation is not dependent on topology since different topologies of the zero
level-set do not imply different topologies of u. So it easily handles topology
changes of the given surface.

The level set methods are very useful in problems where the speed of the
curve can be either positive or negative, which means that the front can either
propagate or shrink.

If we take the evolution of the planar curve according to:

C, = BN
for any given function 3, then the function v will deform as: [11]
ug = 3|Vul.

By considering C as the zero level-set of the function u, all topological
changes of C(t) are automatically handled and an accurate and stable solution
can be achieved.

Even though some parts of the level set theory in two dimensions, such as
the property of a curve shrinking to a point under a curvature flow, cannot be
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extended to the 3D case, the greater part of it remains valid and gives good
results for segmentation of 3D objects. So the level set approach will take the
original curve in 2D and build it into a 3D surface, which will be the level set
function.

A curvature flow is a curve or surface that evolves at each point
along the normal with a speed depending on the curvature at that
point. This evolution leads to a smoothing of the curves or surfaces,
which helps to eliminate the effects of noise. When trying to segment
an image, the evolution of the curve or surface, if geometrical flows are used,
will be dependent on external properties, determined by the image features. An
example is segmentation of grey scale images using a classical speed function
based on the gradient of the images. The speed tends to zero when the surface
approaches an edge [5].

We will describe briefly here how geometric flows work and their formulation
as level sets. A curvature flow for a 3D closed surface can be described as:

oS

5 = GN (2.12)
0S5 /0t is the derivative of the surface through time, and represents the cur-

vature flow. G is an intrinsic speed dependent on the curvature of the surface,

S is the surface and N is the normal to the surface.

This time dependent PDE can be solved using the level set method.

In our case, the function of higher dimension is the signed distance function,
¢ (t), of the evolving surface. Being so, the evolution of the zero level set
coincides with the evolution of S (¢).

What we have is then:

¢ (S (t)) = constant. (2.13)

And the evolution of the signed distance function is therefore:

d

d—‘f =i+ S Vg =0, (2.14)
where S; = %. If we insert equation (2.12) in (2.14) and consider:

N=_Y®
Vol
we obtain the following flow:
. [ V¢
= |V¢|G = |V¢|div (—) 2.15

This is the level set formulation of the mean curvature flow.
An extension of the mean curvature flow is the geodesic active contours [5].
These are used for image segmentation by trying to find an harmonic map which
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minimizes a functional. In the 3D case, the harmonic map is a minimal surface
and the functional to minimize is defined as a weighted area:

A= [ [oa,

where g(I) is an image dependent function. In image segmentation, the aim
is to locate the object boundaries, so this function is usually defined as one which
approaches zero as the image gradient increases. For example, a commonly used
function is g(I) = 1/(1 + |VI|).

To minimize the weighted area, the procedure described above is followed.
In this case, it leads to the following minimizing flow:

aa—f = (gG ~Vg- ﬁ) N (2.16)

which is equivalent to equation (2.11).

On the right side of the equation, the first term is the mean curvature flow
multiplied by the image dependent function. This term will stop the front
propagation at edges. The second term forms an attraction valley that pushes
the front towards the edge when the first is close enough to the second. If a
balloon force is added to the propagation speed, this is especially useful. The
balloon force leads to a constant speed and is added to increase the convergence
speed. This can sometimes have the drawback of the front being pushed too far
and pass the edge. It is in this situation where the second term starts acting to
push the front back to the edge.

The level set implementation for the above flow will now be:

o = g(I) V| div (%) +Vg(I)-Vé. (2.17)

2.4 Geodesic Active Regions and their Statistics

Paragios presented a unified approach for image segmentation [13] which in-
corporates boundary and region information under a curve-based minimization
framework, exploited directly from the Geodesic Active Region model.

It consists on segmenting an image into different regions by calculating the
probability of every intensity value in the image of being in each region.

On a first stage, an analysis of the image histogram (where the global inten-
sity properties of the image are reflected) is made. This analysis is based on the
Minimum Description Length criterion and the Maximum Likelihood Principle.
It associates a Gaussian component, and therefore a Gaussian probability, to
each region of the image.

Let I be the input image and H(I) its observed density function (histogram).
Considering a partition of the image into N non-overlapping regions, let {R; : 7 € [1, N]}
be the regions and {OR; : i € [1, N]} be the region boundaries.
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The key hypothesis that is made to perform segmentation relies on the fact
that the image is composed of homogeneous regions. Hence, the intensity prop-
erties of a given region can be determined using a Gaussian distribution.

Let p(.) be the probability density function with respect to the intensity space
of the image. Assuming that this probability density function is homogeneous,
then an intensity value z is derived by selecting a component k with a priori
probability P, and then selecting this value according to the distribution of this
element py, (). This hypothesis leads to a mixture model of Gaussian elements:

p(x) = Pipi () (2.18)
1 _ (2;:%)2
pr (2) = \/Q_Take k (2.19)

where k corresponds to one of the regions, R;.

According to the Geodesic Active Region model, the best segmentation map
is determined using a set of regular curves, where each curve:

1) Is attracted by the boundaries of a specific region,

2) Defines an interior region with maximum joint segmentation probability
given the observed intensities.

This map is obtained by minimizing an Energy function using a gradient
descent method. A system of Euler-Lagrange motion equations with respect to
different curves, as in Section 2.2, is obtained (one equation for each region).

The system is given by:

Vi € [1,N],
20R; = alg(p: (I1(0R:)),0r) — g (pk, (I (OR:)) ,0r)] Ni (OR;) +
(1-a)(9(pB,i (OR:),0oB) Ki (OR;:) + Vg (pB,i (OR:) ,08) N; (OR;)) N; (?Ri) )
2.20
where K is the Euclidean curvature (respect to the normal) with respect to
the curve OR;, g is an image dependent function and p;(z)are the probabilities
in equation (2.19).

Each equation is composed of a Region-based force (which is the first term)
and a Boundary-based force (second and third terms), both acting in the direc-
tion of the inward normal.

The region-based force aims at moving the curve towards the direction that
maximizes the a posteriori segmentation probability. The boundary-based force
aims at shrinking the curve towards the region boundaries constrained by the
curvature.

The whole system of equations relies on a multi-phase curve propagation
since several curves are propagated simultaneously, one for each region. The
interaction between the different curves is obtained thanks to the region-based
term.



Chapter 3

Methodology

The following pages are dedicated to explaining the purpose of this work, the
approach followed and the method developed. We will show how the theory
presented in chapter two is used and how we obtain the equations which will
determine the evolution of our curves.

3.1 Objectives

The principal aim of this paper is to find a way of segmenting the thalamus as
a whole from the rest of the brain, using coupling level sets. The segmentation
will be based on the diffusion properties of the different parts of the brain. This
means that the different values and types of diffusion in different areas of the
brain will be considered.

In order to do this, we propose a method which consists on the propagation
of several surfaces, each in a different part of the brain and on different images
but still coupled. The propagation of the surfaces responds to the theories of
level-sets and geodesic active contours.

3.2 Initial Approach

The starting point of this work was an implementation of image segmentation
with a single surface evolving in the image. The evolution of the surface was
based on the region-based term, calculated from a tensor similarity measure, the
Tensor Scalar Product. The data images were also diffusion tensor MRI, and
to calculate the speed of each voxel, the similarity was looked for in neighbour
voxels.

The speed term being proportional to a TSP means that the more similar the
tensors are in two neighbour voxels, the higher the speed with which the surface
evolves. On the other hand, the more similar two tensors are, more probable
it is that they lie in the same region. This is where the connection between

12
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the similarity measure and calculating the speed term from the probabilities is
found.

3.3 Geodesic Active Contours

From the point of view of image segmentation, in order to detect the object
boundaries in the image, we will use the geodesic active contours theory together
with level sets implementation. Following the theory explained in Section 2.2
we will initialize u to be the signed distance function. Solving the geodesic
problem is then equivalent to searching for the steady state solution (%—’; =0)
of the following evolution equation: (using the curve evolution equation (2.11)

together with u)

Ou
5= g(I) |Vulk+Vg(I) - Vu (3.1)
This is the main part of the active contour model we are using. Then,
considering boundary detection, the model is developed further and another

term is added. The resulting model proposed in [5] is:

ou

5 g(I)(c+ k) |Vu| + Vg(I) - Vu

So the curve evolution equation in (2.11) will now be:

Cy = g(I)(c+ k)N — (Vg(I) : ﬁ) N. (3.2)

In this equation:

i) ¢ is a positive real constant which, together with ﬁ, gives a constant
velocity. This term introduces a balloon force that pushes the curve inwards (or
outward) with a constant speed.

ii) k is the curvature. The product kN is the regularization curvature flow,
which provides smoothness.

iii) g(I) is a stopping function which gives the external image dependent
force. Its aim is to stop the evolving curve when it arrives to the objects bound-
aries. For that reason, it should approximate to zero when the curve is getting
close to an edge.

iv) Vg(I) - N pushes the curve towards the boundaries of the objects, as
Vg(I)points towards the middle of the boundaries. It is necessary to restrict
the g values so that the propagating curve is guaranteed to stop, because real
images don’t contain ideal edges.

The term corresponding to (¢ + k) acts as the internal force in the classical
energy based snakes model.

In the present work, we will use a model partially inspired by the one ex-
plained above.

Equation (3.2) can be seen as a speed evolving in the direction of the inward
normal, N. Then, we have:
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C,=FN (3.3)

as the evolving curve.

In the model we propose, the speed will consist of two terms. One corre-
sponding to the curvature and the other one, region-based, dependent on the
image. So, in (3.5), the speed will be:

F=v+k, (3.4)

where k is the curvature term and v is the region-based term.

We will then need a force to stop the surfaces evolving when they come across
each other, the coupling force. When the curves meet next to a boundary, they
should push each other so both of them end up defining the boundary. Then,
our evolving level sets will be:

Ci = (F+H)N, (3.5)
being H the coupling force.

3.4 Level Sets Implementation

Implementing the motion equations, which define the evolution of the curves,
with the level sets method has many advantages. The level sets theory pro-
vides stable numerical approximations for the normal and the curvature, ability
of handling topology changes in the curvature (splitting, merging) and stable
implementation schemes.

Using this implementation and considering the signed distance function ¢
as our function of higher dimension, the system of equations in (2.20), which
represents the evolution of the different curves, is transformed into:

Vi € [1,N],
L ¢i(s) =alg(pi(I(s)),0r) — 9 Pk (I(s)),0r)]|Vé: (s)| + (3.6)
(1-a)(9(pB,i(s),08) Ki(s)|V¢i ()| + Vg (pB,i(s),08) - Vi (s))

The first term is the region-based force and the two following ones correspond
to the boundary-based force, being K; the Euclidean curvature respect to the
normal.

This system represents the coupled surfaces evolution. However, with our
speed being (3.4) and introducing the coupling forces, this system will be mod-
ified. In the next section we explain how.
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3.5 Image Segmentation

3.5.1 Regions’ Statistics

As seen before, our segmentation of the brain images is based on associating a
Gaussian component to every region in the image and then finding the proba-
bilities of one certain intensity value in a voxel, belonging to a certain region.

That way, we will find the region-based force for every curve. This term,
which is actually the propagation speed, aims at propagating the curve towards
the most probable region and will also provide the interaction between different
curves.

Following [13], let’s consider the propagation of the curve OR; (region R;
boundaries). The region-based term will be proportional to:

i (1
—atog[2L)]
p; (I(s))
where p; (I (s)) is the intensity probability density function followed by re-
gion R;. It is therefore the Gaussian distribution that determines the probability
of the intensity value corresponding to voxel s, of being in region R;.

Using this function we obtain that when voxel s in effect, belongs to region
R;, then:

(3.7)

pi (I(s)) pi(I(s))
p; (I(s)) p; (I(s))

and so, the speed term is negative and aims at expanding the curve.
If, on the contrary, the voxel s doesn’t belong to R;, then:

pi (I(s)) pi(I(s))
p; (I(s)) p; (I(s))

and therefore the speed is positive and the force is applied to shrink the
curve, so that voxel s can be attributed to another region.

In our case, the intensity values correspond to the fractional anisotropy val-
ues or some of the diffusion coefficients values in the voxels.

i (1(s)) > p; (I (s)) = >1;»_a10g[ ] <0

pi(I(s)) <p;j (I(s)) = <1=>—a10g[ ] >0

3.5.2 Coupling Forces

When propagating several curves, the overlapping between some of them is al-
most inevitable. When that occurs, it means that a voxel has been initially
attributed to two different regions. This is an undesired situation and a con-
straint to solve or avoid it from the beginning has to be applied. This is done
by adding an artificial force in the direction of the normal, to the correspond-
ing level set motion equations. The force will penalize voxels which have been
attributed to more than one region. And if necessary, also those voxels which
haven’t been labeled yet (which don’t yet belong to a region).
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Inspired by Paragios and Deriche [14], our coupling forces for a given voxel
s and a region i, are given by:

D Hili, 5 (5) Vi ()] (3-8)

JE[LN]

where the function H; (,¢()) is:

0, ifm=i

H;i (m, ¢y, (s)) = { —sign (¢j (s)), ifm#i

Analyzing the force added, we see it can have two possible effects. The first
one is expanding the corresponding curve. If the voxel hasn’t yet been attributed
to any region, the new force is negative and helps region R; to expand, occupying
the given voxel. The other effect is the shrinking of the curve. If the voxel has
been attributed both to region R; and to some other region Ry then the force
will be positive and aim at shrinking region R; so that overlapping is avoided
and voxel s ends up belonging to just one region.

However, the function presented above, which defines the coupling force,
presents some problems. To start with, it penalizes the non-attributed voxels in
the same way as the ones attributed to more than one region. Another problem
is that the function is not continuous and that may create stability problems
during the level sets evolution.

To achieve a more suitable coupling function, we should consider two more
properties for it. The first one is the fact that, when a voxel is already attributed
to a region j and it is far away from that region’s boundaries, the evolution of
the level set ¢; () (being R; another region) should be discouraged to include
that voxel in R;. The second one is that a certain overlapping between two
neighbour regions should be tolerated for voxels inside a region which stand
very close to its boundaries.

For that purposes, we define the following function:

+1, ifr>a
Ha(a;'):— —1 lf$<—a
fnm tan (z/a), if |z]<a

which will be the basis of the coupling force, defined as:

H; (j, ¢ (5)) = Ha($5(5)), if j#iand ¢;(s) <0
J
Nt Ha (65 (5)), if j# i and [0y 6k (5) > 0]

The result of introducing this coupling force is that, considering a voxel s
and a level set function ¢; (), if the voxel is already belonging to another region
R;, then ¢; () < 0, and the coupling force will be positive, so it will have a
shrinking effect, proportional to the distance of the voxel to the boundaries of
Rj:
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+1, ifr<—a
tan(l) tan (z/a), if |z|<a

HiG.oy o) ={

On the other hand, if the voxel is not attributed to any region we will find:

1

83 (5) > 0= Hi (1,85 (5)) = 1 Ha (61 (5)

and therefore:

H, Gy 6 (5)) = ~— { T ifz>a

N_-1 tan(l) tan (z/a), if |z|<a

This force also allows the overlapping when the curves are on top of the real
region boundaries.

3.5.3 Motion Equations

The system of equations representing the evolution of the coupled surfaces in
(3.6) has now been modified due to our concept of the speed and to the coupling
forces that we want to introduce.

At this stage, the system of level set motion equations is given by:
Vi € [1,N],

9 = B Hi (065 () [V (5)] -
[log ( M’}(:’;))] Vi (5)] + (3.9)
K (s) Vs (5)

where 3, 7, & are positive constants and 8 + v + & = 1. The first term is
the coupling force. Looking at equation (3.6) we can see it corresponds to the
boundary term which pushes the curve towards the edges when necessary. The
second one is the region-based term (v in (3.4)) and the third one corresponds
to the function which calculates the curvature in 3D (k in (3.4)).




Chapter 4

Implementation

In this chapter we will explain how the whole procedure to segment the thala-
mus was implemented. Our signed distance function is presented, along with
explanations on how we calculate the probabilities for every region and all the
forces involved in the evolution of the curves. Details are given on the data
images used, and the treatment applied to some of them when necessary.

The method for the segmentation of the thalamus has been implemented in
Matlab 6.1.

4.1 Algorithm

When starting to implement the explained method, we first developed the fol-
lowing algorithm, on which the implementation should be based.

1.

The first thing to do is choose in which images (fractional anisotropy, or
the different diffusion coefficients) are we going to look for each part of
the brain and into how many regions do we want to divide each image.
We then calculate the probabilities for each region.

. Once in the program, we define the initial surfaces from where the prop-

agation will start. They will evolve at a certain speed until they find the
boundaries of the different regions.

Then, for every surface:

The signed distance function is calculated (that is our zero level set) and
a feature map is created.

The curvature is then calculated in the whole feature map.

We define a band around the contour of the surface to evolve which will
comprise all the voxels around the contour where phi is smaller than 3.
(It is just to give it a band so that it doesn’t take a lot of time to compute
the whole map unnecessarily).

18
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The speed is calculated for every voxel in the band:

— First, we obtain the value in side that voxel.

— For that value, the probabilities for being in each of the different
regions in which the image is divided are calculated.

— The speed is obtained through a relation between the two higher
probabilities (most probable regions containing that value).

We calculate a coupling force between every surface and all the others,
which will help them stop each other at the edges.

Then the propagating curve is recalculated.

After some iterations, the signed distance function is reinitialized.

Back to third step.

4.2 The signed distance function

When segmenting images by propagating curves with the level sets method, the
surface introduced evolves as the zero level set of the signed distance function
(SDF). If the signed distance function is not correctly chosen, irregularities can
appear when the non-zero level sets evolve, which can deform the SDF until it
is no longer a signed distance function.

Along with that, we should also consider that the calculation of the normals
depends directly on the SDF.

The fast marching method is used to implement the solving of the equation:

¢ = sign(do)(1 - [V¢|) (4.1)
The reinitialization program, implemented in C and compiled with the mex-
library, so it can be called from Matlab, follows the procedure explained herein:

1. First, it finds the zero level set.

2. Then, all voxels surrounding the zero level set are marked as the next level
to update. (The voxels lying inside the zero level set will not be updated
so that the exact position of this level will not be changed.)

3. Start front propagation. Values in voxels that were marked in the previous
stage are updated using the PDE. They are then marked as updated.

4. Continue the front propagation until all voxels have been updated, except
for the zero level set.

This implementation is very fast compared to other methods, but it is not 100%
exact since the update of some voxels can depend on others which may have not
yet been updated. However, it has been chosen because the error is very small
and the high speed is worth it.

(For details on the program, refer to [8].)
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4.3 Calculating the probabilities and the speed
term

In order to calculate the region-based term as in (3.7), we will first have to
calculate the density probability functions which determine, for each value, the
probability of being in a certain region.

The first step is determining into how many regions do we want to divide
the image. Once that is clear, we proceed to associate a Gaussian component
to each region.

A Matlab function has been implemented to calculate all the necessary pa-
rameters. It follows the procedure explained herein:

1. The histogram of the 3D image is calculated. With this, we are binning all
the possible values in the image into a more treatable number of values.
This is necessary since in one single image we can have as many different
values as voxels, so it is a very big number to deal with (or can be dealt
with at a very high computational cost). This number will be determined,
in this case, by a vector that goes from zero to the maximum value in
the image, and can have as many elements as we want. When generating
the histogram we will also obtain the number of voxels in the image, with
each value.

2. The probability of each region in the image is computed by adding up all
the voxels in the region and dividing them by the total of voxels in the
image.

3. Then a conditioned probability is calculated for each of the possible values
in the image of being in each of the regions. The reason why the calculated
probability is conditioned is that when calculating the speed, we start from
the supposition that the given voxel belongs to a certain region. This
probability is calculated with the total number of voxels with the same
value, inside each region.

4. The mean and variance are then calculated, with the usual formulas:
p=2zip(xi), o’ = P (i) (zi — ,u)2

5. The Gaussian distribution is computed for every region, from the mean
and variance.

6. Finally every Gaussian will be multiplied by the total probability of the
corresponding region in the image.

With this procedure, we obtain the Gaussian probability function for every
region and we can therefore calculate the probability for value in a certain voxel
of belonging to a certain region.

With those probabilities we will be able to obtain the speed term as in (3.7).
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This procedure is repeated for all the images used.

Initially, to start from simple to complicated, we divided the images into only
two regions. So the values in every voxel were either in or outside one region.
The speed was then calculated as explained above, having just one hypothesis
where every value had a probability of being in region one and a probability of
being in region two. But that doesn’t give us the parts we are looking for.

When more regions are introduced, the problem becomes more complicated,
because before calculating the speed, we have to decide the probabilities of which
two regions are the correct ones to use. Assuming the evolution of OR; (region
R;’s boundaries) the first probability will clearly be p;. The other probability
will be the one corresponding to the most close neighbour region, which will be:

maz {p;, Vj # i}

4.4 Coupling the level sets

Basing on the theory for coupling forces explained in Section 3.5.2, we have
implemented a coupling force which will help a curve representing the evolution
of region R;’s boundaries to expand when finding a voxel that certainly belongs
to R;. And will force it to shrink when the voxel found belongs to another
region. What we want to accomplish with this force is avoiding the overlapping
of surfaces evolving in different regions and, along with that, helping the curves
to find exactly the boundaries of the region they are looking for.
The coupling force is implemented as follows:

0, ifj=i
sign (5 () if j#iand ¢;(s) < —

Hi (j, ¢ () = —{ Tany t0 ( if j#iand —a<¢;(s) <0
Nlltanl(l) n( ): ifj#iand0< ¢;(s)<a
worsign (95 (s)) if j#iand ¢;(s) >a

(4.2)

Having experimented, we found that the best value for a in this case was
a = 0.5.

4.5 Weighting factors

As seen in the theory explained before, the speed with which our propagating
curve evolves is based on what corresponds to the internal force in the classical
snakes model. That is, the combination of two terms. One of them represents
the constant speed with which the curve is pushed towards the contours. The
other one represents the curvature and is a regularization term. It is important
to weight these two terms properly, as the correct propagation of the surface
will depend on them.
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The regularization effect is necessary, but the appropriate weighting terms
must be found. When evolving the curve, for example, along a fiber, we want
the curve to evolve regularly in the normal direction and the curvature shouldn’t
inhibit the propagation. On the other hand, we need the regularization for those
parts where the propagation is slower, due to irregularities in the way.

Our geometric flow will therefore be:

%_f = (v + 6k)N, (4.3)

When including the coupling forces in the equation, another weighting factor
will be needed, since every force has to have the appropriate influence in the
evolution of the curve. Therefore, the flow is actually:

aa—f = (yv + 6k + BH)N, (4.4)

as stated in Section 3.5.3. Following the theory explained, the weighting
factors should add one.

Different combinations of weighting factors will provide different results,
which are shown in chapter 5. For example if £ is not high enough compared to
the others, the influence of the coupling forces will not be enough. In that case,
we can find that two surfaces evolving, looking for the same region, may not
merge when they find each other, or if looking for different regions, they may
go over each other. On the other hand, if this term is too high surfaces may
not evolve enough to reach the boundaries of the region. The same happens
with the other two factors. If the curvature term has too much influence, the
function may result in curve close to the one we are looking for, but much more
rounded, while if it is too low, the resulting shape may be too angular.

One of the things we try to do, is consider every region in which we divide
an image, as a whole. This means that we may find a voxel inside a certain
region, whose probabilities would say it belongs to a different region, but if it is
a single, left alone voxel, we want the regularization term to help omit that voxel
so it doesn’t break the regularity. +, the term which determines the influence
of the region-based term, when being too high with regard to the other two,
may inhibit the function of the coupling forces or the regularization term. This
can be disadvantageous since then, those isolated voxels we were describing may
be had in consideration, causing for example the starting of small new surfaces
(due to the property which enables to handle topology changes) where they
shouldn’t.

4.6 Stability Condition

To assure stability, the time-step for the front propagation is calculated accord-
ing to the CFL condition, as in [8]. This criteria states that when looking for
stability in a numerical scheme, the domain of dependence for each point should
comprise the domain of dependence of the PDE itself.
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The time-step obtained following the above is:
1

ars max (’yv +0kN + ,BH)

In order to keep our signed distance function as what it is, and not having
to deal with strange behaviour of it, a very small time step has been chosen for

this case. We have observed that At = 0.1/max ('yv +0kN + BH) is the best

choice. The time-step being so small is a consequence of the way of fixing the
level set in the reinitialization algorithm.

4.7 Surface initialization

The idea is to initialize surfaces in several parts of the brain. It would be
very inaccurate to initialize just one surface inside the thalamus because its
boundaries are not very clear. However, if we have various different surfaces
propagating, due to the coupling forces, the surfaces will force each other to
define the exact borders of the different parts. Every surface will evolve with its
own speed. The best way of choosing the parts where surfaces will be initialized
is to look for adjoining parts. This way, they will help define each other.

In our case, the best parts to look for, as will be later explained, are the
thalamus itself, the ventricles, and the fibers which, in the axial slices, can be
seen lying next to the thalamus. The method was tested initializing 3, 4 and 6
different surfaces in the same and in different images.

As explained earlier on, the method used can handle topology changes.
When initializing three different surfaces, each one of them looks for one of
the parts mentioned above. Once found the corresponding area, the surface
jumps onto the next area with the same characteristics. Hence, if we initialize
a surface on the left lobe of the thalamus, once completed, the level sets start
another surface on the right lobe, as it considers it the same type if region.

When six surfaces are initialized, two of them look one for the left and one
for the right thalamic lobes. Two of them look for the left and right side fibers,
a fifth one looks for fibers behind the thalamus, which are next to the ventricles,
and the last one looks for ventricles.

4.8 Data Images

The images used in this project are diffusion tensor magnetic resonance images
obtained from healthy volunteers.

29 axial slices in a 128 by 128 matrix covering the center of the brain were
acquired. Diffusion weighting was performed along 6 independent axes and a
normalizing image without diffusion was also required. The resulting images
were those of the diffusion tensor.
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| Brain Compartment | Diffusion coefficient (-10~3mm? /seg.) |

CSF 2.94 + 0.05

Gray Matter 0.76 £ 0.03
White Matter:

Corpus Callosum 0.22 £0.22

Axial Fibers 1.07 + 0.06

Transverse fibers 0.64 £ 0.05

Table 4.1: Diffusion coefficients of water in several human brain compartments.

As seen in the theory explained in Section 2.1.3, the diffusion tensor for
each voxel is a 3x3 matrix. Therefore, we cannot see it as a value, so we must
calculate the mean diffusivity or some other scalar measure.

With the diffusion tensor images, using the diffusion tensor theory, we can
also calculate the diffusion coefficients and therefore obtain the brain maps for
¢, ¢p, ¢s and FA (equations (2.3) to (2.6)).

It is from the values in these images that we calculate the different proba-
bilities for the regions. The difficulty lies on the fact that not all the regions are
clear in all the images. And, above all, the main problem is that the values and
type of diffusion in the thalamus are not clearly defined.

We will now explain the procedure through which we differentiate the regions
to obtain the probabilities and further segment the thalamus.

The first thing to do is determine in which image we will best find each
region. In order to do that, let’s evaluate the information we have on diffusion
coeflicients in the brain.

Table (4.1) [15] resumes the diffusion coeflicients of water in several human
brain compartments.

Analyzing the information on diffusion and images obtained, we find that
each one of them shows most clearly the components detailed herein:

e Mean Diffusivity: As can be deduced from the table above, the most
easily distinguishable component when using the mean diffusion images is
the CSF. Because the diffusion values in this component are much higher
than the rest, we’ll find a visible difference. This fluid is what fills the
ventricles, so that will be the part that we will most clearly see. In fact,
looking at the mean diffusivity, we can see that the images can only be
clearly separated into two regions: the ventricles and the rest of the brain.

e Fractional Anisotropy: The parts better distinguished in the FA images
are mainly the fibers found next to the thalamus. Fibers are part of white
matter, where diffusion is extremely variable. However, inside the fibers
diffusion tends to be highly anisotropic as it is mainly in the direction of
the fiber tracts, while grey matter and fluid don’t exhibit high anisotropy.
So the values for the fibers in the FA images are much higher than the
rest and therefore, easier to differentiate.
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Figure 4.1: Normalized Mean Diffusivity maps of a DT-MRI, axial slices. Same
cut (slice #20) in black and white, and colours. The thalamus is the area inside
the red (black and white image) and blue (colour image) contours, in the center
of both images.
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e Linear diffusion (¢;): The only part which can be clearly differentiated in
these images are the fibers, as they are highly anisotropic, and the values
for ¢; are higher than in the rest of the brain. However, for that matter,
FA images are clearer, so we discard ¢; ones in favour of FA.

e Planar diffusion (¢,): There are intermediate values of planar diffusion all
over the brain, so these images are not very useful for the purpose of this
study.

e Spherical diffusion (¢s): The highest values of spherical diffusion coef-
ficients are found inside the ventricles, since there, diffusion is totally
spherical. The next values in the scale are in the thalamus, since it is
made of grey matter and the diffusion there is not highly spherical but
not highly anisotropic either.

Having said all the above, it seems clear that the appropriate images to look
for the thalamus are both the FA and the spherical diffusion maps. In both of
these two maps, the values in the thalamic region will stand in the middle. In
the fractional anisotropy they will be closer to the lower values, which in this
case will correspond to the ventricles. And in the spherical diffusion coefficients
map, the values in the thalamic region will also be closer to the ventricle ones,
but in this case, these will correspond to the highest values. Obviously, when a
region has a high anisotropy, the values for the spherical diffusion are low, and
vice versa. These characteristics can be appreciated in Figures (4.2) and (4.3),
where maps of the fractional Anisotropy and Spherical Diffusion are shown. The
thalamus is shown by a manually drawn contour in red (blue for the spherical
diffusion in colours). These contours were handled by a neurosurgeon who has
segmented the thalamus by hand.

Inasmuch as its situation in the brain is concerned, the thalamus is sur-
rounded by ventricles (lateral ventricles on the sides, and third ventricle going
through the middle of the thalamus) and white matter (mainly the corpus cal-
losum going over it).

This is useful information for the segmentation because, as explained above,
there are images where those parts appear clearer than the thalamus. Then,
we can look for them and in finding those other parts, we will also be defining
the thalamus’ limits. That is the sense of using coupling level sets for this
application.

A surface can be initialized in a region different from the thalamus, but
which is next to it. Due to the coupling forces, when that surface reaches the
one evolving inside the thalamic region, they will stop each other and adapt
until they find the boundaries of both regions.

From the images obtained from the magnetic resonances we also concluded
that the thalamus could be found, in this case, somewhere between the 11th
and the 25th axial slices (out of the 29 initial ones). Using this information we
were able to zoom the images in order to better see the area of interest.
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Figure 4.2: Fractional Anisotropy maps of a DT-MRI, axial slices. Same cut
(slice #19) in black and white, and colours. The thalamus is the area inside the
red contours, in the center of both images.
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Figure 4.3: Spherical diffusion coefficient (¢;) of a DT-MRI, axial slices. Same
cut (slice #19) in black and white, and colours. The thalamus is the area inside
the small contours, in the center of both images.
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4.9 Image Treatment

Given we are working with real brain images and the purpose of this project is to
obtain an application suitable for medical surgery, the idea is to accomplish our
aim using directly the real data, without modifying the images before making
use of them. However, we still want to obtain the best possible results, and
to do that, there are some problems we can solve. Therefore, as a part of the
process, some treatment can be done to the real images if we are sure not to
lose any information.

First, to reduce noise and smooth some edges, the images used as data can
be pre-processed. For this case, we can convolve them with a Gaussian filter
before being used. A rotationally symmetric Gaussian low pass filter of size 3x3
and with a standard deviation sigma of ¢ = 0.5 will do.

The first difficulty with which we have to deal is the fact that the thalamus
is, in some images, very difficult to distinguish from other parts of the brain
when using diffusion measures. Its boundaries are not clear.

We can try to highlight the differences between the values in neighbour
regions. A very simple way to do it is using the square root or second power
of the values in the data images. One or the other solution depending on if we
want to differentiate the higher or the lower values in the image.

For example, in the Fractional Anisotropy maps we will try to segment the
axial fibers. Inside this region we find the highest FA values (Section 4.8), which
go approximately from 0.55 to 0.9 in a scale from 0 to 1. That makes them very
difficult to group in just one region. The difference between a value in that
region and one in a neighbour region could be smaller than between two values
inside the fibers. If we calculate the square root of the fractional anisotropy,
we find that the thresholds separating the gaussians which correspond to the
three different regions are nearly the same as for the fractional anisotropy image
(Figure 4.4). However, because the values are between 0 and 1, when computing
their square root, they augment. So now, some values for which it wasn’t clear
if they belonged to the second or the third region, are now confined clearly to
the third region. In Figure 4.4 we can see an amplified image of the square root
of the fractional anisotropy in the thalamic region and neighbour zones. The
gaussians are also presented, for three regions in the fractional anisotropy map
(blue plot), and its square root (red plot).

It would also be helpful to remove from the images the parts which we know
for sure are not the thalamus. For this purpose we will use, as in the rest of the
segmentation process, the probabilities for the different regions.

The first and easiest part to remove, as seen in Section 4.8, are the ventricles.
In the images of mean diffusivity we can clearly distinguish this part from the
rest of the brain as the values for mean diffusivity are much higher. We also
know that the thalamus is found next to the ventricles, and therefore, in the
axial cuts, they share their contours. Hence, we will use the mean diffusivity
image to make a mask where the ventricles are segmented, removed from the
image. The thalamus will be contained in the remaining zone and some parts
of its boundaries will be already defined.
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Figure 4.4: (a) Amplified image of the square root of the fractional anisotropy
in the thalamic region and neighbour zones (axial slice #20). (b) Probabilities
for three regions in the fractional anisotropy map (blue), and its square root
(red).

To do that, we calculate the probabilities for the mean diffusivity images,
separating two different regions. With those we can make a probability map for
each region, where the probability of each voxel being in that region is repre-
sented. Taking the probability map for the region in which we are interested
(the part which is not ventricle) we find that there are very low values inside the
ventricle part, and very high values for the rest. A mask can then be extracted
by eliminating the parts with probability under a certain threshold. Having
tested, a threshold of 0.01 was found to fit the needs of this case.

The mask is then multiplied by any of the images we want to use, and that
way, removes the unwanted parts (in this case, the ventricles) according to the
most probable regions. The result applied to the spherical diffusion coefficient
image can be seen in Figure 4.5.

Another of the problems we find arouses from the fact that there are other
areas, near the thalamus, which are also made of grey matter. Inside those
areas, values and diffusion properties will be quite similar to the ones in the
thalamic region. We stand in front of one of the drawbacks of using a method
which can deal with topology changes. Because surfaces can split and merge
if needed, the initialization surface or surfaces looking for the thalamus, once
found it, will probably jump onto some other nearby grey matter zone.

For that reason, it seems a good idea to restrict the zone in which we look for
the thalamus. Given we know approximately where in the brain is the thalamus
found, what we can do to restrict that zone is make a map which highlights
the voxels standing inside that zone or its surroundings, and attenuates the
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Figure 4.5: Amplified image of spherical diffusion in axial slice #19, having
removed the ventricles with a probability mask. The thalamic lobes are the two
semi-rounded volumes in the center of the image, with values between0.6 and
0.7.
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Figure 4.6: Amplified image of Fractional Anisotropy multiplied by a Gaussian
centered in the thalamic region. Axial slice #20. The thalamus is shown by the
black contours drawn by a neurosurgeon.

ones outside. With that purpose, we will use a pulse (centered in the middle of
the image) convolved with a Gaussian filter, and that will be multiplied by the
image we want to use to find the thalamus. The pulse is a 40x40 matrix with a
rectangle of 35 by 30 ones in the center of the matrix, and zeros in the rest. The
filter is a normalized 8x8 Gaussian, with standard deviation sigma of ¢ = 15.
We can see the result applied to the fractional anisotropy image in Figure 4.6.
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Results

All along the present chapter we are going to show the segmentation results
obtained with the method developed in this work. We will first present the
results obtained when trying the method on synthetic images (Section 5.1).
Once the method was found to work for those, we went on to try it on real
brain images, results of which are shown in Section 5.2.

The shapes for which we looked for in the synthetic images and the values
we were dealing with, were different to those in the real images. Therefore,
the parameters needed are not the same for ones and for the others, and even
if they were correctly chosen for the synthetic images, they would have to be
readjusted for the real ones. For that reason, experimentation on real images
started before having accurately found the exact parameters for the synthetic
fields.

When testing the method with real brain data, first we used directly the
fractional anisotropy and diffusion coefficients images. Then some of them were
processed, to see if better results were obtained.

We will now proceed to show the results.

5.1 Synthetic Images

On a first stage, the method was tested on synthetic images, created from syn-
thetic tensor fields. The images consist of two regions, one with isotropic and
another with anisotropic tensor values, taken from real data of DT-MRI from
a healthy human brain. The isotropic region is used as a background for the
anisotropic one, which represents fibers in the brain. A non-identical tensor
field is closer to the real case, so uniformly distributed random noise was added
to the isotropic tensors. The anisotropic tensors were rotated to obtain the de-
sired direction and an approximation of Rician noise was added. After that, the
tensor images were recreated. Then, the diffusion coefficients were calculated
from the image, following equations (2.3), (2.4) and (2.5), as would have been
done for real images. The synthetic images were created to have an isotropic
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background and an anisotropic region representing a fiber. Therefore, the two
regions will be clearly differentiated in the linear diffusion coefficient and the
spherical diffusion coefficient images. Let’s take, for an example, the linear
diffusion coefficient one. The image can be seen in Figure 5.1 (a).

Linear anisotropy coefficient

0.2 0.4 0.6 0.8 1 12 14

(a) Synthetic Linear Diffusion Coefficient (b) Probabilities for two regions

Figure 5.1: Map of synthetic linear diffusion coefficient and probabilities when
separated in two regions.

The method was then tested on this synthetic image, to distinguish two
different regions.

First, the probabilities were calculated for the two regions, using the function
probab_whole. The obtained probabilities are shown in Figure 5.1 (b), being
the means 0.0329 and 0.8404, and the variance 0.0178 and 0.0686 (respectively,
for the first and second region). It can be clearly seen that for this case two
very differentiated regions are obtained.

Then, to start the segmentation, three surfaces were initialized in the image.
A small one inside the fibers and two slightly bigger ones in the isotropic region,
all of them rectangular shaped.

The surfaces evolved normally and an acceptable segmentation was obtained,
finding the whole synthetic fiber tract in 500 iterations. Figure (5.2) shows one
of the results. The contour of the ¢ function once having found the fiber tract
can be seen (shown by a thin line in magenta). It is visibly not the exact contour
of the synthetic fiber. However, the adjustment is a matter of finding the right
weighting factors. Once at this point, we decided to start trying the method
in the real brain images, since finding the right parameters for the synthetic
images wouldn’t assure having them for the real images.

Several simulations were made to see the dependency on the placement and
size of the initial surface, and no significant difference was observed between
them.



CHAPTER 5. RESULTS 35

5 10 15 20 25 30 35 40

Figure 5.2: Image shows the contour found by the surface initialized inside the
synthetic fiber tract (contour in magenta).
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Spherical Diffusion?
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Figure 5.3: Spherical diffusion raised to the 2nd power of an amplified image of
the thalamic region (axial slice #20). The zone with the higher values (approx.
from 0.7) are the ventricles, the lower values (up to 0.3) correspond to the fibers,
and the middle values (zone in light blue) represent the thalamus.

5.2 Real DT-MRI

Having tested the method with synthetic images, we went on to try it on real
human brain images. The data images used, as explained in Section 4.8, are
obtained from DT-MRI. Before doing anything else, we zoomed the images in
the axial slices so the zone in which we want to work remained centered and
could be seen better. The resulting amplified images were 40x40x15. So, from
this point on, we worked with 15 axial slices of 40x40 voxel matrices obtained
from the brain of one subject.

Except for the mean diffusivity images, where only two zones can be differ-
entiated (the ventricles and the rest of the brain), in all the other images we can
visibly distinguish at least three zones with different values. The three main
regions correspond to the thalamus, the ventricles, and the axial fibers, as can
be seen in Figure 5.3.

The image also shows some other parts, surrounding that group of elements,
which have got similar values to the ones in the thalamus, as they are also
composed of grey matter. So, inevitably, when doing any kind of separation
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between regions, those areas will be included within the thalamic one.

We must say that in all simulations, carried out both on the data images and
on the treated images, we looked for the thalamus, the fibers which surround it,
and the ventricles next to it. So at least one surface was initialized inside each
one of these regions. This way, the coupling forces can have their effect on the
evolving surfaces. Not all the contours found are shown in all of the images, so
the reader can see more clearly the ones that do appear.

First we carried out the segmentation on the data images, without giving
them any previous treatment. We looked for the thalamic region in the frac-
tional anisotropy image. To do so, we divided it into three different regions,
since it seemed the most logical thing to do as there are three different types of
tissue we are looking for. Because the values for the fractional anisotropy in the
thalamic region are between the ones in the fibers and the ones in the ventri-
cles, the second region corresponded to the thalamus. The fibers and ventricles
were searched in the spherical diffusion images. These were separated into four
regions because we observed that this way, the values inside the corresponding
gaussians fitted more accurately the ones in the real areas.

The target was then finding the appropriate weighting factors. The weight-
ing factors, 3, 7, &, determine how much influence does each force has on the
evolution of the curve (Section 4.5). The 7 corresponds to the region-based
term, that is, the speed dependent on the probabilities. The 3 represents the
influence of the coupling force, and the & corresponds to the curvature term.
Several combinations of these factors were experimented in different simula-
tions, following the theory explained in Section 4.5 and trying to find the best
set of factors by experimenting and regarding the results. We observed that
some good results were obtained for: v = 0.03, § = 0.8, 8 = 0.17. We also
observed that the thalamus was entirely segmented in 500 iterations although,
depending on the proportions of the weighting factors, the other regions were
not always completely segmented and required 100 or 200 more iterations. The
best frequency to reinitialize the signed distance function was found to be every
two iterations. If this number was increased, small unwanted surfaces started to
develop in different areas. If we put this number to one, not a great difference
is observed, but computational time increases.

Another important thing we noticed was that in the segmentation, even
though being able to distinguish the shape of the thalamus in the middle axial
slices, in the bottom slices the shape wasn’t correct. The resulting curve at the
end (bottom) of the thalamic region was much bigger than the one drawn by
the neurosurgeon. This, we observed later, occurs in all segmentations and is
due to the fact that under the thalamus we find the subthalamic region, whose
diffusion values are very close to the thalamic ones.

We proceeded then, with the same input parameters mentioned above, to
experiment segmenting the thalamic region in the spherical diffusion image,
dividing it into four different regions as before, but now we would look for the
third region. The fractional anisotropy image was then used to segment the
fibers and ventricles, assuming again a division of the image in three regions.

So, being the weighting factors: v = 0.03, § = 0.8, 8 = 0.17, with 500
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iterations and reinitializing the signed distance function every 2 iterations, we
obtained the results in Figure 5.4 (a). We can see an axial slice with a contour
showing the result of the function which evolved inside the thalamic region
(contours in blue), and another contour (in green) which shows the ventricles.
The surface inside the thalamic region hasn’t grown enough, probably due to
a low 8. In (b), the same slice using different weighting factors is shown. The
surface looking for the thalamus has, in this case, grown too much and gone over
the fiber region. This may be due to the fact that + is higher, and therefore
small surfaces are initialized on the outer side of the fibers (opposite to the
thalamus), quickly merging with the ones inside the thalamic region because 8
is also higher. Weighting factors are for this case: v = 0.05, § = 0.7, 8 = 0.25.

(NOTE: In all images, from now on, the white contours are the handmade
segmentations handled by the neurosurgeon.)

Considering that the shape of thalamus tends to be more spherical, whereas
the fibers, for instance, have got a much linear shape, we thought it would be
helpful to have a higher curvature factor for the surface searching the thalamus,
than for the others. So, several simulations were experimented, doubling the
curvature factor only for the surface evolving in the thalamic region. Better
results were obtained. Figure 5.5 shows an example.

Later, simulations were made on treated images. In the first place, we looked
for the thalamic region in the spherical diffusion raised to the 2nd power, consid-
ering three different regions in the image. The fibers and ventricles were searched
in the square root of the fractional anisotropy, which was also divided into three
regions. Under the same conditions (weighting factors, iterations, frequency of
reinitialization of the signed distance function) as with the non-processed data
images, slightly better results were obtained.

For example, for the weighting factors: v = 0.03, 6 = 0.8, 8 = 0.17 some
good results were obtained for 500 iterations. In Figure 5.6 we can see an axial
slice where the thalamus and the fibers (contours in blue) have been segmented
with those (a). The bottom image (b) represents the same slice of segmentation
using the same maps, but with inadequate weighting factors. The surfaces
inside the thalamus haven’t grown enough, probably due to a bad proportion of
coupling force to region-based term.

In Figure 5.7 we have the same segmentation as in 5.6 (a), but showing the
thalamus (contours in blue) and the ventricles (contours in green), in another
axial slice. Underneath it, the same slice, segmented with the inadequate set
of weighting factors. As seen in Figure 5.6, the contours found in the second
segmentation are not as close to the handmade segmentation as the ones in the
first segmentation.

Image treatment previous to the segmentation has also been tested on several
simulations. Segmentation was tried using a probability map as a mask on the
fractional anisotropy image, as explained in Section 4.9. Results came out better
than the ones shown previously, since the parts outside the thalamus which
have similar FA values are no longer there. So the surfaces evolving inside the
thalamic region, once found it, don’t go any further. Results can be seen in
Figure 5.8 for weighting factors: v = 0.03, § = 0.8, g = 0.17.
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Figure 5.4: (a) Automatic segmentation of thalamus (in blue), ventricles (in
green) and fibers (not shown on the image) with weighting factors: v = 0.03, § =
0.8, 8 = 0.17, together with handmade segmentation (in white). Axial slice
#20. (b) Same axial slice showing segmentation of thalamus (in blue) with
weighting factors: v = 0.05, § = 0.7, 8 = 0.25, together with handmade
segmentation (in white).
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Figure 5.5: (a) Automatic segmentation of thalamus shown by blue contours,
having doubled § for the surface evolving inside the thalamic region. Hand-
made segmentation in white. Axial slice #20. (b) Fibers found in the same
segmentation.
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Figure 5.6: (a) Automatic segmentation of thalamus performed on spherical
diffusion raised to the 2nd power. Axial fibers segmented in square root of
fractional anisotropy. The handmade segmentation is in white. Axial slice #18.
(b) Same axial slice of automatic segmentation on same images, with inadequate
weighting factors, together with handmade segmentation (in white).
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Figure 5.7: (a) Automatic segmentation of thalamus performed on spherical dif-
fusion raised to the 2nd power (blue contours). Ventricles segmented in square
root of fractional anisotropy (green contours). The handmade segmentation is
in white. Axial slice #21. (b) Same axial slice of another automatic segmenta-
tion on same images. Contours found for the thalamus (in blue) and ventricles
(in green) with inappropriate weighting factors, together with handmade seg-
mentation (in white).
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Figure 5.8: Automatic segmentation of thalamus and axial fibers (contours
in blue) in fractional anisotropy image, treated with a probability map mask.
Handmade segmentation of the thalamic region in white. Axial slice #19.
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Figure 5.9: 3D segmentation of thalamic and subthalamic regions.

We can see that no new surfaces have been initialized on the outer side of
the fibers.

All results shown in this chapter belong to DT-MRI of the brain of the
same subject in order to keep a reference when evaluating them. However,
simulations have been done on DT-MRI from the brains of other subjects to
verify the method. Similar results were obtained.

To conclude this chapter, we proceed to show the 3D representation of one
of the segmentations (Figure 5.9). The whole thalamic region, including the
subthalamus, has been segmented. The axial, coronal and sagittal slices of the
same segmentation are shown in Figure 5.10.
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(b) Coronal (c) Sagittal

Figure 5.10: Axial, coronal and sagittal slices of segmentation in Figure 5.9.
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Conclusions and Future Work

6.1 Conclusions

In the present work a new method has been introduced to segment the thalamus
as a whole. It uses the statistics obtained from the water diffusion characteristics
in the different areas of the brain.

As it has been shown in Section 5.2, the segmentation results are sensitive
to parameters’ choice. The function obtained may vary considerably depending
on several elements.

The weighting factors, for instance, which determine how much influence
does each force have in the evolution of the surfaces play a very important role.
If they are not correctly chosen, the curve obtained could result very different
from the contour we are looking for.

The kind of measures used have their influence too. It won’t be the same
trying to segment the thalamus on an image where the voxels reflect the frac-
tional anisotropy values than on one which shows the linear diffusion coefficients.
Moreover, the number of gaussians that are fitted for each image, that is, the
number of regions in which each image is divided, can make a difference.

The segmentation will also depend on whether we use the direct values or
we treat them before, for example, using a probability map mask.

Once having found the right parameters, the results obtained using the
method presented were found to be highly accurate in some parts of the brain,
mainly in the center of the thalamus. The middle axial slices of the data images
used show very clearly the thalamic shape, and therefore the resulting curve of
our function stands very close to it. However, it is not like that for the lower
axial slices, where the thalamus gets confused with the subthalamus and it is
difficult to distinguish. This is possibly due to the fact that some of the matter
which composes the thalamus is also present in the subthalamus. Therefore the
diffusion values and coefficients in both areas are very similar and when sepa-
rating the images into regions, there is no distinction between the thalamic and
the subthalamic zones.
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It is true that the current segmentation results and accuracy were also limited
by the image resolution. With higher resolution, the difference between the
values in the thalamus and the regions standing next to it could be clearer.

Due to the reasons stated above, we could conclude that the chosen method
is not yet ready to segment the thalamus on its own, since it doesn’t yet give
the high level of accuracy needed for neurosurgery purposes. Nevertheless it
would be suitable to segment the thalamus together with the subthalamus, or
even the whole diencephalon, and with some improvements it will be able to
reach its purpose.

6.2 Future Work

On a first stage, there are several things that could be done to improve the
present method. For a start, images with more resolution would help accom-
plish a better segmentation. Incorporation in the algorithm of an automatic
procedure for determining the number of regions in every image would also be
interesting, as well as detecting automatically which region should be searched
by every initialization surface. A condition could be introduced to restrict the
new surfaces which start in a new region after having found the area of interest,
for example by volume. If we are looking for a region which is not smaller than
a certain volume, we could ban new surfaces starting in regions smaller than
that volume.

Finding a more accurate way of obtaining statistical data on the images
could also give better results. Experimentation is being done to test the method
using probabilities calculated using a finite Gaussian mixture model based on
the Expectation Maximization Algorithm (EM), instead of the ones presented
in Section 4.3.

Another thing that could be done to improve this work is incorporate in the
algorithm a method to calculate the error in the segmentation once it is finished.
Up to the moment, the results have been evaluated by visual comparison with
the contours drawn by a neurosurgeon.

In addition to all that, we should bear in mind the initial idea of this project,
which was to segment the different thalamic nuclei individually.

Even though the presented method is not appropriate to segment the thala-
mus on its own, when coming to resolve the thalamic nuclei inside the thalamus,
the method can be used. The subthalamus is also composed in part by grey
matter and divided into sub-thalamic nuclei. When looking for thalamic nuclei,
the importance lies on distinguishing small nuclei on their own, independently
of them belonging to the thalamus or the subthalamus, so resolving these two
parts as a whole instead of separately would be an interesting starting point.

As far as segmentation of the individual thalamic nuclei is concerned, the
method introduced in the present work wouldn’t provide acceptable results. A
more suitable method should be employed. Progress is being done on develop-
ing a method based on tensor similarity measures. Using a measure which is
sensitive to differences in size, shape and orientation of the diffusion tensors in
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the different voxels, the different nuclei could be distinguished. Then coupling
level sets could be used to evolve the surfaces in different regions.

Finally, I believe the present method should be compared to other segmen-
tation methods in order to find the most accurate way of accomplishing our
purpose. Combining it with some other method could help to overtake the
drawbacks mentioned above.

The improvement of the segmentation of the thalamus with DT-MRI and,
further on, of its nuclei, would allow non-invasive morphological analysis and
would be very helpful in the detection and further treatment of Parkinson’s dis-
ease, schizophrenia and other illnesses which manifest in changes of the thalamic
structure.

No matter how small the step is, when collaborating with medicine, it is
always a big progress.
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