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Abstract— This paper addresses the problem of choosing the
best streaming policy for distortion optimal multipath video
delivery, under delay constraints. The streaming policy consists in
a joint selection of the video packets to be transmitted, as well as
their sending time, and the transmission path. A simple streaming
model is introduced, which takes into account the video packet
importance, and the dependencies among packets, and allows to
compute the quality perceived by the receiver, as a function of
the streaming policy. We derive an optimization problem based
on the video abstraction model, under the assumption that the
server knows, or can predict the state of the network. A detailed
analysis of the timing constraints in multipath video streaming
provides helpful insights that lead to an efficient algorithm to
solve the NP-hard streaming policy optimization problem. We
eventually propose a fast heuristic-based algorithm, that still
provides close to optimal performance. Thanks to its limited
complexity, this novel algorithm is finally demonstrated in live
streaming scenarios, where it only induces a negligible distortion
penalty compared to an optimal strategy. Simulation results
finally show that the proposed scheduling solutions perform
better than common scheduling algorithms, and represent very
efficient multipath streaming strategies for both stored and live
video services.

I. I NTRODUCTION

Despite the development of novel network infrastructures,
and constantly increasing bandwidth, Internet media streaming
applications still suffer from limited and highly varying band-
width, and often from packet loss. Multipath Video Streaming
has recently been proposed as a solution to overcome packet
network limitations. It allows to increase the streaming band-
width by balancing the load over multiple (disjoint) network
paths between the media server and the clients. It also provides
means to limit packet loss effects when combined with error
resilient streaming strategies [1]. The efficiency of multipath
video streaming is however tied to the packet transmission
strategies, that aim at offering an optimal quality of service in
delay-constrained video applications.

This work addresses the problem of video packet streaming
in multipath network scenario, under delay and buffer con-
straints. It aims at efficiently distributing the video information
on the available network paths, while judiciously trading off
playback delay and distortion at the receiver. This paper
considers the selection of inter-dependent video packets to be
transmitted (or equivalently the adaptive coding of the video
sequence), and the scheduling on the different network paths,
in order to minimize the distortion experienced by the end-
user. The complex distortion optimization problem is a priori

NP-complete, and no method can solve it in polynomial time
[2]. We however propose fast solutions, that perform very close
to optimal and yield to efficient real time streaming solutions.

Assuming a simple streaming model, that factors in the
unequal importance of video packets, and their dependencies,
we propose a detailed analysis of timing constraints imposed
by delay sensitive streaming applications. This analysis allows
us to identify sets of valid transmission policies, that compete
for the distortion optimized multipath streaming solution. The
optimal solution is computed based on a modified branch and
bound algorithm [3], that applies search and pruning methods
specific to the multipath streaming problem. We then propose
a heuristic-based approach to the optimization problem, that
leads to a polynomial time algorithm, based on load-balancing
techniques. The scheduling algorithm is finally adapted to the
case of real time streaming, with the help of sliding window
mechanisms. Simulation results demonstrate close to optimal
performances of the fast scheduling solution, for a large variety
of network scenarios. Interestingly enough, the performance of
the real time scheduling algorithm stays quite consistent, even
for small video prefetch windows. This shows the validity of
our algorithm in multipath live streaming systems, even with
simple bandwidth prediction methods.

The main contributions of this paper are threefold. First, we
provide a new framework for studying video packet scheduling
in multipath streaming, taking into account possible buffer
constraints in intermediate network nodes, on each path. Sec-
ond, we derive a distortion optimization problem which takes
into account the non-stationary nature of video sequences, the
packet dependencies introduced by the encoding algorithm and
the network status. Last, we propose a novel, fast algorithm,
which solves the optimization problem, and is eventually
adapted to real time streaming scenarios without significant
loss in performance.

This paper is organized as follows: Section II presents
the multipath streaming model and introduces the notations,
that lead to a distortion optimization problem. The packet
scheduling is analyzed in Section III. Based on this timing
analysis, we propose optimal and heuristic algorithms to solve
the distortion optimization problem in Section IV. Simulation
results are presented in Section V. A description of the related
work in multipath streaming is proposed in Section VI and
Section VII concludes the paper.
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II. M ULTIPATH V IDEO STREAMING

A. General Framework
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Fig. 1. Multipath Streaming Scenario. The client accesses the streaming
server simultaneously through two different paths, each one composed of two
segments with intermediate buffers.

We consider the simple multipath network topology repre-
sented in Figure 1. The clientC requests a media stream from
a streaming serverS, that transmits the requested bitstream via
two disjoint paths. Each network path consists in two segments
connected through an intermediate node that simply forwards,
after a possible buffering delay, incoming packets from the
first segment, towards the client on the second segment. The
intermediate nodes, simply called nodes in the remaining
of the paper, represent network streaming proxies, or edge
servers for example. The streaming server is connected to the
channels through buffer interfaces, that can be modelled as
FIFO queues. Thus, the channels drain the packets from the
buffers, in the same order in which the server places them into
the buffers. The network channels between the server and the
client can be represented as variable bandwidth, lossless links.
The variable nature of the bandwidth implies that the rate at
which the channels drain data placed in the server’s buffers,
changes as a function of time. At the other end, the client
waits for an initial playback delay∆ after its request for a
stream. It then starts decoding the media stream, and plays it
continuously.

During the streaming session, the server selects a subset
of the pre-encoded media packets to communicate to the
client, taking into account the available bandwidth on the
different network paths, and buffer fullness in the nodes, or at
the receiver. The work presented in this paper addresses the
selection of the packets that should be communicated to the
client, as well as the network path they need to follow. It has to
be noted that the topology could present several disjoint paths,
and several nodes on each path. Without loss of generality
however, we consider in this paper only the two-path scenario
presented in Figure 1, for the sake of clarity.

B. Streaming Model and Notations

In the multipath streaming topology represented in Figure 1,
each network segmenti is characterized by an instantaneous
rate ri(t) and an instantaneous latencydi(t). The rateri(t)
is the total bandwidth allocated to the streaming application
on segmenti at time instantt. Equivalently, we denote the
cumulative rate on segmenti, up to time instantt, by Ri(t) =∫ t

0
ri(u)du. Additionally, we assume that no packet is lost on

the network segments, except those induced by late arrivals
or buffer overflows, and that the order of the packets is

not changed between two successive nodes. The intermediate
nodes{a, b} have buffers of capacityBa and respectivelyBb,
that are available to the streaming session. The client has a
playback buffer of capacityBc.

The video sequence is encoded into a bitstream using a scal-
able (layered) video encoder. The bitstream is then fragmented
into network packets under the general rule stating (i) that each
network packet contains data relative to at most one video
frame, and (ii) that an encoded video frame can be fragmented
into several network packets. LetP = {p1, p2, ..., pN} be the
chronologically ordered sequence ofN network packets, after
fragmentation of the encoded bitstream. Each network packet
pn is characterized by its sizesn in bytes, and its decoding
timestamptdn. From the client viewpoint, all the video packets
are not equivalently valuable, due to the non-stationary nature
of the video information. Therefore, each network packet can
be characterized by a weightωn, that represents the reduction
in the distortion perceived by the client, in the case where
packetpn is successfully decoded1.
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Fig. 2. Directed acyclic dependency graph representation for a typical MPEG
encoded video sequence (one network packet per frame, with IPBPB format).

Additionally, in most video encoding schemes, packets have
generally dependencies between them. In other words, the
successful decoding of one packetpn is contingent on the
successful decoding of some other packets, calledancestors
of pn. The successful decoding of one packet may depend
on the correct decoding of several ancestors, and we denote
by An, the set of ancestors of packetpn. Such dependencies
can be represented by a directed acyclic dependency graph
[4], as shown in Figure 2. The nodes in the graph represent
the network packets and are characterized by their individual
weights, and directed edges represent dependencies between
packets and their ancestors.

We denote byπ = (π1, π2, ..., πN ) the transmission policy
adopted by the streaming server. The policyπn used for packet
pn consists in a couple a variables[qn, tsn] that respectively
represent the path chosen for packetpn, and its sending time.

1We refer to a successfully decoded packet as a network packet that is
received and correctly decoded by the client before it’s decoding time.



4

It completely characterizes the server behavior with respect to
packetpn under the general policy vectorπ. In the multipath
network scenario presented hereabove, the server can decide
to send packetpn on pathsa or b, or simply to drop the packet
without sending it. Therefore, the action imposed on packet
pn can be written as:

qn =





a if packetpn is sent on patha
b if packetpn is sent on pathb
0 if packetpn is dropped.

Let Π be the set of all the feasible policiesπ, in the network
scenario under consideration in this paper. Remember that
packets are sent sequentially on a path, and that the streaming
strategy aims at avoiding buffer overflows that result in packet
loss.

Finally, in our streaming model, a packet is decoded by
the receiver only if its arrival time,tcn, is smaller than its
decoding deadline, i.e., iftcn ≤ tdn + ∆ where tdn represents
the decoding timestamp of packetpn. We assume here, without
loss of generality, that the client request has been sent at time
t = 0, and that the decoding timestamp of the first packet
p1 is set to0. The decoding time at the receiver is further
neglected. Under these assumptions, and taking into account
packet dependencies, the successful decoding of a packetpn

under the streaming strategyπ ∈ Π, can be represented by
the binary variableϕn(π), where ϕn(π) = 1 if the packet
arrives on time at the decoder, and if all its ancestors have
been successfully decoded. In other words, we can write:

ϕn(π) =





1 if





qn 6= 0
tcn ≤ tdn + ∆
ϕm(π) = 1, ∀pm ∈ An

0 otherwise

The overall benefitΩ of the streaming strategyπ ∈ Π,
that is equivalent to the quality perceived by the receiver, can
now simply be expressed as the sum of the weightsωn of all
successfully decoded packets. We assume that packets whose
ϕn(π) 6= 1 are simply discarded at the client, hence the overall
benefit can be written as :

Ω(π) =
∑

∀n:ϕn(π)=1

ωn.

C. Distortion Optimization Problem

Given the network assumptions and the abstraction of the
encoded video bitstream, the distortion optimization problem
consists in an efficient selection of the subset of video packets
to be transmitted, jointly with their streaming policy. We
assume a server-driven scenario in which the server is aware
of, or can predict using a simple mechanism, the network
conditions (ri(t) and di(t)), at each time instant. Given the
deterministic packet transmission process over the network,
the server will only schedule for transmission packets that can
arrive at the client before their decoding deadline. Note that,
in this scenario, the server needs at most one transmission
attempt per packet.

The distortion optimization problem can be stated as fol-
lows: GivenP , the packetized bitstream of an encoded video

sequence, the maximum playback delay∆ imposed by the
client, and the network state,find the optimal transmission
policy π∗ ∈ Π that maximizes the overall quality measureΩ.
The optimization problem translates into findingπ∗ ∈ Π s.t.:

Ω(π∗) = max
π∈Π

∑

∀n:ϕn(π)=1

ωn.

The optimization problem can be easily reduced to the
more general case of optimal scheduling problems. This family
of problems proves to be NP-complete [2] and an optimal
algorithm that solves them in polynomial time does not exist.
In the remainder of this paper, we present an optimal algorithm
that efficiently finds the distortion minimal streaming strategy
for long video sequences and we propose a new heuristic
algorithm that provides a close to optimal solution in poly-
nomial time. Later we adapt our solution to support real-time
streaming and we implement our solutions along with prefetch
window mechanisms.

III. PACKET SCHEDULING ANALYSIS

A. Unlimited Buffer Nodes

This section proposes an analysis of the scheduling of
packets in the streaming model described above, and computes
the parameters necessary to solve the distortion optimization
problem. We consider first the case where buffering space
in the network nodes and the client is not constrained, i.e.,
Ba = Bb = Bc = ∞. The server has the knowledge ofN
video packets, whereN can be the total number of network
packets of the video stream (in the case of stored video),
or simply the number of packets contained in the prefetch
window in real-time streaming. The server is able to transmit
network packets simultaneously on the two network paths.
Under the assumption of unlimited buffer space, the server
can send packets on each of the paths at the maximum rates
of the first segments (r1(t) for patha or r3(t) for pathb, see
Figure 1).

Under a given policyπ, the sending timetsn of each packet
pn can thus be easily computed. Suppose thatpn is sent on
patha (i.e., qn = 1). Let :

Sa
n(π) =

∑
qm=1;m<n

sm

where Sa
n(π) represents the cumulative size of all the

packets that need to be sent on patha beforepn, under the
policy π.

Under the assumption that the available bandwidth is fully
utilized by the streaming application,tsn is the shortest timet
at whichR1(t) is larger thanSa

n :

tsn(π) = arg min
t

|R1(t)− Sa
n(π)|. (1)

In other words, packetpn can only be sent when all
the previous packets scheduled on the same path have been
transmitted.

Packet pn will then arrive at the client after a certain
delay, caused by the transmission delays (t1n andt2n) on the 2
segments that compose patha, the latencies introduced by the
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two links (d1(t) andd2(t)) and the queuing time at the node
bn. Therefore, the time instant at which packetpn enters the
node buffer can be expressed as :

tβn = tsn + t1n + d1(tsn).

Then, the arrival time of packetpn at the client, can be
written as :

tcn = tβn + bn + t2n + d2(tβn).

The timing representation of the transmission of packetpn

is provided in Figure 3.
The transmission delayst1n andt2n represent the time needed

to send packetpn, at the available bandwidth. They have to
verify the following relation :

R1(tsn +t1n)−R1(tsn) = R2(tβn +t2n +bn)−R2(tβn +bn) = sn,

and can be computed similarly to Eq. (1). The queuing time
bn corresponds to the time needed to transmit theB(tβn) bits
present in the buffer, at timetβn when packetpn enters the
buffer. The buffer fullness can be computed recursively as :

B(tβn) = max[B(tβn−1) + sn−1 −R2(tβn) + R2(t
β
n−1), 0]

Therefore, the queuing time can be computed such that it
satisfies :

R2(tβn + bn)−R2(tβn) = B(tβn),

Note that, even if the previous development only consider
the path a, the extension of the analysis to the packets
transmitted over pathb is straightforward.

The arrival time of packetpn, tcn is thus fully determined.
The playback delayD(π) induced by the transmission policy
π can finally be expressed as:

D(π) = max
1≤n≤N

(Dn(π)) = max
1≤n≤N

(tcn − tdn),

whereDn(π) is the playback delay imposed by the stream-
ing process up to packetpn by the transmission policyπ.
An interesting property can be observed in the behavior of
Dn(π), that will be advantageously used in the scheduling
optimization problem.

Lemma 1:Given that the streaming server sends theN
network packets in parallel on two paths, and that on each path
the packets are sent sequentially, the playback delayDn(π)

under the given policy vectorπ is a non-decreasing function
of n.

Proof: [Sketch] Observe thatDn(π) can be expressed as
a recursive function ofn:

Dn(π) = max(Dn−1(π), tcn − tdn) (2)

Hence,Dn(π) ≥ Di(π), ∀n ≤ N , ∀i ≤ n, with: D0(π) = 0
andD(π) = DN (π).

Let finally define the cumulative qualityΩn(π), resulting
from the streaming policyπ. Starting from the quality of a
perfect transmission whereP is entirely transmitted,Ωn(π) is
decremented each time a packet is dropped. The cumulative
quality, used later in the development of our optimal streaming
algorithm, can be written as :

Ωn(π) =
{

Ωn−1(π) if ϕn(π) = 1
Ωn−1(π)− ωn otherwise

(3)

with: Ω0(π) =
∑N

n=1 ωn andΩ(π) = ΩN (π).
Lemma 2:Ωn is a non-increasing function with packet

numbern.
Proof: [Sketch] Observe thatωn is by definition a non

negative value. Hence,Ωn ≤ Ωi, ∀n ≤ N , ∀i ≤ n.
While Eq. (3) does not explicit the influence of other packets

that have packetpn as their ancestor, the statusϕn(π) of
packetpn, directly affects the status of all packets dependent
on pn.

B. Constrained Buffer Nodes

A similar timing analysis can be performed in the case
where the buffering space in the intermediate nodes on each
path is limited toBa and Bb respectively. Without loss of
generality, assume that the buffering space is larger than any
video packet inP . Ba and Bb represent the buffer sizes
allocated by the intermediate nodes to the streaming process
and they are known by the server. There is no further feedback
on buffer occupancy from the network nodes during the
streaming process. In this case, the server tries to avoid buffer
overflows, and needs to adapt the sending time of each packets,
to the buffer fullness. It may no longer use the full available
bandwidth, without risking to loose packets.

The streaming policy has to take into account these new
constraints. In particular, if packetpn has to be transmitted on
patha under policyπ, its sending timetsn is such that there is
enough buffer space available when it reaches the intermediate
node. Additionally, the packetpn can only be sent when all
the previous packets on the same path have been transmitted.
Using the same notation as defined hereabove,tsn becomes
the smallest value that simultaneously verifies the following
conditions :

{
R1(tsn) ≥ Sa

n(π)
tsn + t1n + d1(tsn) ≥ τn

(4)

where τn represents the earliest time at which there is
enough space in the intermediate buffer to receive packetpn.
Equivalently,τn can be computed recursively since it verifies :
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Ba − (B(tβn−1) + sn−1 −R2(τn) + R2(t
β
n−1)) ≥ sn.

We can also define the maximum buffer occupancy during
the whole streaming process as:

Bmax
a (π) = max

1≤i≤N
(B(tβi )) ≤ Ba.

The timing analysis on pathb follows immediately. The
strategyπ is thus completely defined, and we can compute
D(π) andΩ(π) similarly to the case of unlimited buffers.

In the multipath streaming scenario, the buffer capacities on
the two disjoint paths may significantly influence the optimal
packet scheduling, contrarily to the single path case. Note that
a similar reasoning can be applied in order to prevent buffer
overflow at the client, in case the client also has a limited
storage space.

IV. D ISTORTION OPTIMIZED STREAMING

A. Optimal Solution: Depth-First Branch & Bound (B&B)

We first present an efficient algorithm that finds the optimal
transmission policy vectorπ∗ for a given encoded video
sequence, network topology and playback delay. Since the
sending and arrival times for each packetpn can be computed
for a given transmission policyπ (see Section III), we can now
search for the optimal packet schedulingπ∗ that maximizes
the client video quality given an imposed playback delay. The
optimization problem belongs to the larger set of scheduling
problems that have a combinatorial complexity, hence, is NP-
complete. An optimal polynomial time algorithm that can
solve this problem is not known. However, efficient methods
to solve our optimization problem exist. Our optimal solution
is based on depth-first branch and bound (B&B) techniques
[5].

The scheduling ofN packets on two available paths can
be organized as a decision tree of depthN (Figure 4). At
each stagen in the tree, packetpn can be sent on patha, on
pathb, or can be dropped. Hence, at depthN , the decision tree
will contain 3N leaves, according to the number of scheduling

possibilities of theN packets on the 2 paths. At each stagen in
the tree we can computeDn(π), the minimum playback delay
andΩn(π), the cumulative video quality measure, for a partial
scheduling up to packetpn, according to the recursive Eq. (2)
and Eq. (3) presented in Section III. This computation can be
done for each one of the valid scheduling policies, for the first
n packets. As mentioned in Section III-A,Dn(π) andΩn(π)
are non-decreasing, and respectively non-increasing functions
in n. These two functions are used to establish a fast search on
the decision tree for the optimal transmission policy vectorπ∗.
A depth-first search is performed on the decision tree, starting
with an initial policy vectorπ that satisfies the delay constraint
D(π) ≤ ∆, where∆ is the playback delay imposed by the
client. The policyπ becomes our initial optimal policyπ∗ with
Ω∗ = Ω(π∗). It is computed using a simple Earliest Deadline
First algorithm with a complexity ofO(N), similar to [6], and
adapted for media streaming applications (Algorithm 1 ).
The EDF algorithm schedules frames in FIFO order. Packets
belonging to a given frame are scheduled according to their
importanceωn, on the path that guarantees the earliest arrival
time at the client. If a packet cannot be successfully scheduled,
it is dropped without transmission, along with all his children
packets, to avoid waste of network resources.

Algorithm 1 EDF Algorithm for computing the initialπ∗

Input: N , sn, 1 ≤ n ≤ N , ri(t), di(t), 1 ≤ i ≤ 4,
Output: greedy scheduling policyπ, Ω(π)
1: Initialization: ts1 = 0
2: for n = 1 to N do
3: computetcn(path a) and tcn(path b);
4: if (tcn(path a) ≤ ∆ + tdn and tcn(path a) ≤ tcn(path b)) then
5: qn = 1;
6: else
7: if tcn(path b) ≤ ∆ + tcn then
8: qn = 2;
9: else

10: qn = 0;
11: end if
12: end if
13: end for
14: construct the scheduling policy vectorπ = {π1, π2, ...πN};
15: computeΩ(π).

Once we have the initial optimal policy and the initial
benefit Ω∗, we start searching the decision tree for better
transmission policies. We start with the leftmost transmission
policy represented on the tree (equivalent to sending all
packets on patha) and move through the decision tree towards
right.

For each considered policyπ′, we computeDn(π′) and
Ωn(π′) successively forn = 1...N . At any packetpn for
which Dn(π′) > ∆ or Ωn(π′) ≤ Ω∗, the computation of
Dn(π′) is stopped, and the decision tree is pruned for all
policies that have the same scheduling up to packetpn (i.e.,
{π} s.t. πi = π′i, ∀i, 1 ≤ i ≤ n). If DN (π′) ≤ ∆ and
Ω(π′) ≥ Ω∗, the policy π′ becomes the new optimal policy
π∗ and Ω∗ = Ω(π′). The operation is repeated until the set
of all feasible policiesΠ represented on the decision tree has
been covered. When the search is complete, the optimal policy
π∗ maximizes the video quality at the receiver and fulfills the
playback delay constraints.

The B&B method provides an efficient way of computing
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the optimal transmission policy vectorπ∗. The speed of the
method depends on the pruning efficiency, which in turn, de-
pends on the quality of the initial policy. However, the method
is not scalable withN , since it cannot compute the optimal
solution in polynomial time. The worst case complexity of the
method remainsO(3N ). Also in the more general case ofK
independent network paths between the streaming server and
the client, the complexity grows toO((K + 1)N ).

B. Heuristic Solution: Load Balancing Algorithm (LBA))

Since the B&B algorithm may be too complex in practice,
this subsection presents a heuristic approach to find a close to
optimal solution, in polynomial time. The algorithm is inspired
from load balancing techniques, which offer close to optimal
results in polynomial time for the problem of task scheduling
in multiprocessor systems [7]. In short, the algorithm performs
a greedy scheduling of the most valuable packets first. Less
valuable packets are scheduled only if the network capacity
permits, and only if they do not lead to the loss of a more
valuable packet already scheduled (due to subsequent late
arrivals at the client).

First, the N network packets are arranged in descending
order of their value. Hence, we obtain a new representation
of the encoded bitstream,P ′ = {p′1, p′2, ..., p′N}, such that:
ω1(p′1) ≥ ω2(p′2) ≥ ... ≥ ωN (p′N ). Then, a greedy algorithm
(seeAlgorithm 2 ), similar to the EDF algorithm, schedules
theN ordered packets on the two network paths, taking care of
the packet interdependencies. On each of the two paths, a new
packet is scheduled, and the packets are reordered according to
their decoding deadlines, only if all other packetsp′ already
scheduled on the paths can still meet their deadlines at the
client. In the case where the value of each network packet is
directly proportional to the size of the packet, the algorithm
offers a real load balancing solution for the two network paths.
Algorithm 2 presents the sketch of the complete algorithm,
where, for the sake of clarity, we redefine the action imposed
on packetp′n, q′n as:

q′n =





a if packetp′n is sent onpath a;
b if packetp′n is sent onpath b;
0 if packetp′n is dropped without sending;
∞ if packetp′n is not scheduled yet.

To decide which action to take on each packetp′n, the
algorithm first attempts to schedule all ancestors that have
not been scheduled yet. If one of them cannot be scheduled,
then the algorithm automatically drops packetp′n. This ensures
that our algorithm does not waste network resources on
transmitting network packets that cannot be correctly decoded
at the receiver.

All packets marked to be scheduled on a given path,
are reordered according to their decoding deadlines before
transmission. When a new packet is inserted, it triggers a new
packet ordering. If a packetp′n can be scheduled on both
network paths without interfering with the packets already
scheduled, the algorithm will chose the path that offers the
shortest arrival time for packetp′n. If packetp′n can only be
scheduled on one path, the algorithm will insert the packet

Algorithm 2 Load Balancing Algorithm (LBA) for findingπ
Input: P , ωn, sn, 1 ≤ n ≤ N
Output: Suboptimal transmission policy vectorπ;
1: Initialization : CreateP ′: arrange packets in order of importanceωn;

n := 1;
2: while n ≤ N do
3: if Packetp′n s.t. q′n = ∞ then
4: invoke SchedulePacket(n);
5: end if
6: n := n + 1;
7: end while
8: Procedure: SchedulePacket(n)
9: for all packetsp′k in An s.t. q′k = ∞ do

10: invoke SchedulePacket(k);
11: end for
12: invoke doSchedule(n);
13: Procedure: do Schedule(n)
14: if ∃ packetp′k ∈ An s.t. q′k = 0 then
15: q′n = 0;
16: return;
17: else
18: attempt the insertion of packetp′n on patha and on pathb, ordered ac-

cording to the decoding deadlines, without compromising the decoding
of any other scheduled packet;

19: if tcn(patha), tcn(pathb) ≤ tdn + ∆ then
20: choose the path with shortertcn;
21: setq′n accordingly;
22: else
23: if tcn(patha), tcn(pathb) > tdn + ∆ then
24: q′n = 0;
25: else
26: schedule packetp′n on the path withtcn ≤ tdn + ∆;
27: setq′n accordingly;
28: end if
29: end if
30: end if

on that path. Otherwise packetp′n cannot be scheduled on
any of the two paths, without interfering with the already
scheduled packets, and the algorithm will drop packetp′n
without transmitting it. Hence, the algorithm prevents that
the transmission of one packet forces the loss of a more
important packet previously scheduled because it arrives past
its decoding time at the client.

Algorithm 2 performs an initial ordering of theN
packets in the new setP ′. Any common sorting algorithm
that works with complexityO(N log N) can be employed.
Afterwards, for each packetp′n that must be scheduled, the al-
gorithm requires a search among the packets already scheduled
on each of the paths, in order to insert the new packet accord-
ing to its decoding deadline. The operation requiresO(N)
computations and is repeatedN times, for each packet inP ′.
The complexity of the proposed algorithm is thusO(N2).
For the more general case ofK disjoint paths between the
server and the client, the algorithm requires the computation
of arrival times on all the paths, for all scheduled packets. The
insertion of one packet therefore requiresO(KN) operations,
and is performed for allN packets. The total complexity of
Algorithm 2 grows linearly with the number of network
paths, being ofO(KN2).

In conclusion, the proposed heuristic algorithm for finding a
close to optimal transmission policy vectorπ has a complexity
that grows linearly with the number of network pathsK,
and quadratic with the number of video packetsN . Its low
complexity makesAlgorithm 2 a suitable solution for fast
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multipath packet scheduling, especially beneficial in real-time
video streaming.

C. Real-time streaming: Sliding Window Approach

We now present the adaptation of the hereabove algorithms
in the case of live streaming. In this case, the server does
not anymore have the knowledge of the complete video
sequence. Instead it receives the network packets directly
from an encoder. The server may buffer live streams forδ
seconds, in order to increase the scheduling efficiency. It has
therefore a limited horizon, that we call the prefetch timeδ.
In other words, the prefetch time refers to the look-ahead
window employed by the server. At any given timet, the
server is therefore aware only of the network packetspn whose
decoding deadlinestdn ≤ t + δ.

We assume thatN(t) is the number of packets that are avail-
able at the server at timet, and thatP (t) = {p1, p2, ..pN(t)}
now represents the set of these packets ordered according
to their decoding deadlines.N(t) is equal to the number of
packets containing data from the video sequence up to time
t + δ, minus the packets that were already transmitted to the
client in the time interval[0, t]. N(t) represents the size of the
sliding window available at the server at timet.

The previously defined B&B and LBA methods are now
applied on the setP (t) in order to compute a transmission
policy vectorπ for the N(t) packets under consideration at
time t. Neglecting the computation time, even for the B&B
method, we can start transmitting the packets on the two paths
according to the policyπ, at timet. Let T be the time interval
between two successive video frames, and without loss of
generality, lett andδ be multiples ofT . Hence,t + δ = kT .
At time t, the server can send packets that contain data from
the encoded video sequence up to framek. At time t+T , the
packets containing data from framek + 1 will be available at
the server. At this time, the server will stop the transmission
process of all packets from the previous sliding window that
have not been sent yet, and add them to the new sliding
window, along with the new packets from framek + 1. B&B
and the LBA methods are then applied on the new sliding
window.

The implementation of our algorithms on top of a sliding
window mechanism adapts the scheduling to new packets,
as soon as they are available at the server. We compare
the performance of this solution with the performance of
the previous long horizon mechanisms for different video
sequences in Section V.

It is worth mentioning, that in the case of real-time video
streaming,Algorithm 2 is equivalent to a sequential greedy
packet scheduling algorithm that considers first the most
important packets in the sliding window, while for a sliding
window of just one frame, our LBA method reduces to the
EDF algorithm. This observation emphasizes the low com-
plexity of our proposal.

V. SIMULATION RESULTS

A. Simulation Setup

This section now presents and discusses the performance of
the proposed scheduling algorithms, in stored video scenarios,

as well as in the case of realtime streaming. Video sequences
are compressed with an MPEG4-FGS [8] encoder, at 30 fps.
The chosen encoding format imposes I frames every 5 frames,
and alternates P and B frames between successive I frames.
The large frequency of I frames compared to usual encoding
formats is mainly due to the complexity limitations of the
B&B algorithm, that we use to find the optimal streaming
solution. We use two different CIF video sequences,fore-
man and news, whose base layers are encoded respectively
at 300kbps and 450kbps, and enhancement FGS layers are
encoded at550kbps. Each encoded frame is split into two
network packets, one containing the data referring to the base
layer, and one for the FGS layer information.

We set the weightsωn of the video packets, as a function
of their important relatively to the encoded bitstream. For
example, the base layer packets generally represent the most
important part of the information. In a first approximation, we
choose the following packets weights: 5 for I frame base layer
packet, 4 for the base layer of the first P frame, 3 for the base
layer of the second P frame, 2 for the base layer of B frames,
and 1 for enhancement layer packets. In general, the optimal
transmission policyπ∗ is thus the strategy that successfully
schedules the whole base layer of the video sequence, and the
largest part of the enhancement layer.

Finally, the network latencies are neglected in the simula-
tions (i.e.,di(t) = 0,∀i, ∀t), and the available bandwidth on
the network segments are kept constant for the duration of the
whole sequence (i.e.,ri(t) = ri). Also we concentrate on the
most likely scenarios where buffering is not constrained for
the streaming applications.

B. Stored video scenarios
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Fig. 5. Packet scheduling obtained by the B&B, LBA, EDF, and simple
round robin algorithms for an IBPBPBIB frame sequence (foreman cif
sequence).

The proposed algorithms are first compared in the case of
stored video scenarios, where the whole sequence is available
at the streaming server before running the scheduling algo-
rithms. Figure 5 presents the video rate trace at the decoder,
when the server schedules the network packets according to the
optimal B&B method, the LBA algorithm, the EDF algorithm
[6], and a basic round robin strategy proportional to the
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bandwidth on the two network paths. The segment bandwidth
are set tor1 = 300kbps, r2 = 500kbps, r3 = 400kbps and
r4 = 100kbps and the maximum playback delay imposed by
the client is set to∆ = 150ms.

It can be observed that, while the proposed LBA algorithm
manages to successfully schedule almost the same number
of packets as the optimal B&B solution, the simple EDF
algorithm and the round robin method have clearly worse
performance. This is due to the fact that the proposed LBA
algorithm first schedules the most important packets (the
packets from the base layer starting with theI frames, then
P andB frames), and only later adds the enhancement layer
packets. On the contrary, the EDF or round robin algorithms
schedule as much as possible from any frame, without taking
into account future frames. In this way, entire GOPs could be
lost, because packets of theI frame cannot be successfully
scheduled.

TABLE I

HEURISTIC ALGORITHMS PERFORMANCE COMPARISON

r1 r2 r3 r4 B&B LBA EDF

250 700 100 400 51.88% 47.03% 39.77%
300 700 100 400 58.90% 51.52% 43.44%
250 700 200 400 66.66% 60.65% 48.29%
250 700 250 400 68.26% 60.65% 48.29%
300 700 300 400 88.03% 82.24% 82.24%

A different representation is provided in Table I. It presents
the performance of the LBA and EDF algorithms compared
to the optimal solution for theforeman cif sequence. The
performance here is measured in terms of the percentage of
successfully scheduled data bytes out of the total encoded
stream. We observe that for a large variety of rates, the
proposed LBA algorithm performs much closer to the optimal
than the simple EDF approach. The largest loss in performance
generally happen when the segments bandwidth are either
similar, or very different.

C. Real-time video streaming
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Fig. 6. Packet scheduling obtained by the B&B and LBA methods with
sliding window, compared to the optimal scheduling for an IBPBPBIB frame
sequence (foreman cif sequence).

The proposed solution are now compared in the case of real-
time video streaming, where the server knowledge is limited to

the packets within the prefetch window. The prefetch window
is set to 3 frames, and the maximal playback delay is∆ =
100ms. Figure 6 compares the realtime adapted B&B and the
LBA methods, where the original algorithms are applied on
top of a sliding window mechanism. The performance of the
optimal B&B method applied to the whole sequence is also
provided for the sake of completeness. It can be seen that
the B&B method is no longer optimal when combined with
a sliding window, as expected. The proposed LBA algorithm
can provide better performance.

The algorithms are also compared in terms of the proportion
of transmitted information, for different network conditions,
in Table II. Interestingly enough, the realtime LBA algorithm
has a similar performance to the case of stored video scenario.
The sliding window, even with low prefetch time, does not sig-
nificantly influence the behavior of the scheduling algorithm.
This property, along with the low complexity of the algorithm,
proves that LBA represents a valid solution to multi-path
packet scheduling in the case of real-time streaming.

TABLE II

ALGORITHM COMPARISON WITH SLIDING WINDOW

r1 r2 r3 r4 B&B LBA B&B SW LBA SW

200 700 400 700 75.85% 65.55% 70.48% 65.55%
300 700 100 700 50.68% 47.03% 44.98% 47.03%
300 700 200 700 64.05% 60.87% 60.65% 60.87%
250 700 200 700 57.69% 51.46% 56.14% 51.52%
300 700 250 700 71.01% 60.87% 69.73% 60.87%

The algorithms are also compared in terms of the MSE
perceived at the receiver. Figure 7 presents the distortion due
to the network constraints, computed between the original
encoded video sequence and the sequence available to the
client. The MSE values obtained by the realtime B&B and
LBA scheduling algorithms on two paths are compared to the
ones obtained by using a single network path with equivalent
aggregated bandwidth. Both schemes perform quite similarly
when the aggregate bandwidth becomes large. We observe
that there is virtually no loss in video quality when using
two parallel network paths, instead of a single high bandwidth
channel. This proves the efficiency of the proposed algorithms,
relatively to the distortion lower-bound provided by the single
channel scenario. Note that the EDF algorithm is voluntarily
omitted here due to the high MSE values reached when it fails
to schedule entire GOPs.

Finally, Figure 8 and Figure 9 illustrate the temporal behav-
ior of the scheduling methods, when the minimal bandwidth
on each path is set to400kbps and200kbps respectively. The
instantaneous rate traces of the original encoded bitstream are
presented, along with the traces of packets scheduled on both
network paths, and rate of the reconstructed bitstream at the
receiver. Both the B&B and LBA algorithms perform quite
similarly in general, the rate variations on the paths are slightly
smoother in the LBA method. Finally, it is not rare that frames
are entirely sent on one path only.

D. Sliding Window Effect on Stream Scheduling

We now asses the influence of the size on the Sliding
Window on the packet scheduling process. As seen before, in
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Fig. 7. MSE values between the original encoded sequence and the scheduled one (100 frames)
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bandwidth of600kbps, foreman cif sequence

the case of constant link rates, the packet scheduling process is
barely influenced by the size of the sliding window. However,
it is not the case if we allow the link rates to vary in time.

We test the performance of the LBA algorithm given various
sizes for the slinding window. We use theforeman cif
sequence (the first 100 frames) and the variable network rates
as presented in Figure 10. We omit the results of the B&B
algorithm due to the intractability of the computations for
larger window sizes, and those of the EDF scheduling, since
it is a simple FIFO scheduling that does not take into account
the sliding window size.

The results of the LBA scheduling are presented in Figure
11. We can observe that for small sliding windows, the
LBA algorithm performance is close the the one of the EDF
algorithm, loosing entire GOPs. Results are improving once
the sliding window increases, and the LBA algorithm has
more flexibility in scheduling the video packets. Finally, given
a reasonable sized window (half a second of prefetch), the
results of the LBA are comparable to the performance in the
case of whole sequence scheduling.

Table III presents the size of the scheduled bitstream (in
percentage of the original bitstream) for various network rate
sets and for various window sizes. While for the same rate
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Fig. 10. Variation of network link rates in time

set, the size of the scheduled bitstream does not vary with the
window size, in terms of MSE, the differences are noticeable
(Figure 12).
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TABLE III

BITSTREAM SCHEDULED SIZE FOR DIFFERENT NETWORK RATE SETS, AS A

FUNCTION OF SLIDING WINDOW SIZE

Window Size SET 1 SET 2 SET 3 SET 4
3 57.33% 55.29% 64.54% 71.35%
5 57.14% 54.91% 64.63% 70.97%
7 57.03% 54.66% 64.53% 70.77%
9 56.21% 55.01% 64.53% 70.94%
11 57.62% 54.83% 64.48% 70.85%
13 57.38% 55.59% 64.61% 70.85%
15 57.41% 54.88% 64.26% 70.39%
20 57.80% 55.43% 64.46% 70.32%
100 57.29% 54.62% 63.97% 70.48%
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Fig. 12. MSE values for different network rate sets as a function of Sliding
Window size

E. Constrained Buffer Nodes

We further investigate the effect on scheduling of the size
of intermediate buffers.

For the same network rate set as in Figure 10, we vary
the size of intermediate nodes buffers (Ba and Bb). Figure
13 presents the LBA scheduling for different buffer sizes. We
observe that, for the same network rates, bigger intermediate
buffers allow the scheduling of more video packets, smoothing
better the rate variations.

Table IV presents similar results, in term of scheduled
stream size, for multiple network rate sets. We observe dif-
ferences of up to 10% in the scheduled streams sizes for the
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Fig. 13. LBA scheduling as a function of intermediate buffer size

TABLE IV

BITSTREAM SCHEDULED SIZE FOR DIFFERENT NETWORK RATE SETS, AS A

FUNCTION OF INTERMEDIATE BUFFER SIZE(IN K B)

Buffer Size SET 1 SET 2 SET 3 SET 4
10 kB 57.29% 55.10% 63.97% 73.26%
15 kB 60.17% 59.52% 67.55% 76.65%
20 kB 61.50% 60.00% 68.34% 78.78%
25 kB 63.13% 61.71% 69.61% 80.57%
30 kB 63.13% 62.71% 70.97% 81.74%
35 kB 63.13% 64.09% 70.98% 83.58%

same rate set. The difference is also noticeable in terms of
MSE (Figure 14).

Figure 15 shows the content of the two intermediate buffers
during the streaming process, in case the two buffers are
limited to 10kB. We observe how the two buffers act as
smoothers for the network rate variations on the two paths.

Finally, we study the effect of the intermediate buffer size
on the packet load balancing on the two network paths.
Figure 16 presents the load balancing of the video stream
on the two network paths when there are no intermediate
buffer constraints, while Figure 17 presents the same streaming
scenario in case the intermediate buffer on the first network
path is limited to8kB. We observe major differences in the
packet scheduling on the two paths between the two scenarios.
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Fig. 15. Intermediate buffer content during the streaming process (Ba =
Bb = 10kB)

A smaller buffer size on the first network path will render
it unusable for a considerable period of time. While the
shortage is partially compensated by sending more packets
on the second link during the specific period, the effects
on the received bitstream are noticeable. The scheduling of
the bitstream in the case of unlimited intermediate buffers is
smoother.

F. Rate Prediction

Next we test our proposed scheduling algorithm in the case
of network rate prediction. The server is no longer aware of
the available rates of the links composing the two path. IT
knows only the expected average rate of all the links.

We model each of the intermediate network links as a
discrete-time system, with a sampling interval ofTs seconds.
Therefore, each link can communicate a maximum ofriTs

bits of data in the time interval[iTs, (i + 1Ts)], whereri is
the available bandwidth of the given link in theith time step.

We model the processri as a Gaussian autoregressive
process of the form:ri = µ + (1 − α)

∑∞
j=0 αjni−j , j ∈ Z,

nk = 0, ∀k < 0, where eachnj is an independent zero mean
Gaussian random variable with varianceσ2, µ denotes the
average available bandwidth, andα is a modelling parameter
[9].

For the rate prediction at the server, we use a simple auto-
regressive prediction model, in which, the available bandwidth
of a given link in the next time intervali+1 is given by:ri+1 =

a
∑i−1

j=1 rj

i−1 + bri, wherea and b are the prediction coefficients
satisfyinga + b = 1.

In the following simulations we set all required parameters
to the values presented in Table V.

These values insure a rate variation for al the links of up to
15% of the average value. We schedule the first 100 frames
of foremancif encoded into a base layer at350kbps and
an enhancement layer at500kbps. We compare the results
obtained by our algorithm in the case the server knows the
rates in advance with the case when it predicts the rates based
on the average value and past instantaneous values. We set
the maximum playback imposed by the client atD = 200ms.

TABLE V

PARAMETER VALUES FOR NETWORK PREDICTION

a 0.8
b 0.2
σ2 50
α 0.8
Ts 400ms

µ1, µ2 320kbps
µ3, µ4 250kbps
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Fig. 18. LBA scheduling: real rates vs. predicted rates

For the scheduling based on predicted rates we use a delay of
D1 = 150ms, in order to cope with big shifts in link rates.
The results are presented in Figure 18.

We observe that the performance degradation compared
with the optimal case, when all rates are known, is negligible.
While, in the optimal case, the algorithm correctly schedules
161 packets, out of 200, representing 66.96% of the total
stream, in the case of prediction, it manages the correct
schedule of 158 packets, representing 65.57%. We observe that
no frame is lost due to frame dropping or late packet arrivals at
the client. This gives a similar performance in terms of client
video quality.

G. Complexity Issues

We investigate the complexity of the proposed algorithms
and we try to derive an optimal functioning point for our LBA
method in terms of complexity vs. performance.

Figure 19 presents the complexity of the proposed optimal
B&B algorithm, our LBA algorithm, and the simple EDF
algorithm as a function of the size of the sliding window used.

We observe that, as expected, the EDF algorithm has the
lowest complexity, which does not depend of the size of the
sliding window. Its complexity is linear with the number of
frames scheduled, but in the same time, its performance is very
low compared with the other algorithms. The B&B algorithm
proves to have a prohibitive complexity. I is exponential in
the number of frames schedules. For comparison reasons, we
only present its complexity for a few scheduled frames.

Finally, the LBA algorithm presents a complexity that
depends on the number of frames scheduled and the size of
the sliding window used. Its complexity (C) varies according
to the formula:C = 2(Wnd Size)2(N −Wnd Size).
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Figure 20 presents the performance of the LBA algorithm
for different sizes of the sliding window. We superimpose the
complexity curve in order to find the optimum operation point
of the algorithm as a function of performance and complexity.
We observe that for quite low values for the sliding window,
the performance of the LBA algorithm matches the one of on-
demand scheduling when all frames are known in advance.
For low values of the sliding window, the complexity of the
LBA algorithm is also low.

Its low complexity and good performance, even for small
sliding window sizes, make the LBA a suitable candidate for
real time packet scheduling in multimedia streaming.

VI. RELATED WORK

Multi-path video streaming has recently drawn the attention
of the scientific community. The benefits of multi-path routing
in multi-path media streaming are presented in [10] and [11].
Among the main benefits of using multiple paths between a
media server and a client we enumerate: (i) the reduction in
correlation between packet losses, (ii) increased throughput,
and (iii) ability to adjust to variations of congestion patterns
on different parts of the network. Ongoing research is directed
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towards solving problems associated with multipath streaming
scenarios, as presented in [12].

An experimental approach on path-diversity is provided in
[13]. The authors select the optimal pair of servers contain-
ing complementary video descriptions for each client while
accounting for path lengths, jointness and disjointness. A
receiver driven rate-distortion optimization framework with
server diversity is presented in [14] and [15]. The authors
solve a R-D problem in a Markov Decision Process (MDP)
framework, for the case of multiple servers containing data
from the same requested video stream. The problem of finding
the optimal set of network paths between the server and
the client, that ensures a minimum startup delay is solved
in [16]. The authors of [17] present a path-diversity system
with FEC for packet switched networks, while the authors
of [18] compare multi-path streaming solutions implemented
at the transport and application layer. Multi-path streaming
solutions for wireless networks are proposed in [19], [20].

Our approach to multipath streaming is different than the
previous work. We search for optimal transmission policies
for sets of sequential video packets given the network scenario
and the encoded bitstreams. By extensive simulations in which
we consider variable network parameters, we emphasize the
conceptual issues concerning the optimization problem, and
we highlight the major differences between the proposed
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solutions. The new framework proposed in this paper, permits
the analysis of scheduling stored sequences as well as live
streams.

Perhaps the closest existing work to our approach is the
one presented in [6]. The authors present a heuristic algorithm
for packet scheduling on multiple heterogenous networks. The
algorithm performance is similar to the one of scheduling
packets on a single network path with the same aggregated
bandwidth and outperforms other algorithms that derive from
round robin schemes. The presented Earliest Deadline First
algorithm is adapted for media streaming scenarios in our
work, and is used as basis of comparison along Round Robin
schemes in our simulations. However, unlike the heuristic
approach in [6], we derive an optimal approach to packet
scheduling, and our heuristic approach outperforms the EDF
algorithm in the case of stored video and live stream schedul-
ing.

A single path optimal packet scheduling mechanism for
multiple description coded video sequences is presented in
[21]. In [22], the authors solve an optimization scheduling
problem specific to wireless networks, using a partially observ-
able MDP, while the authors of [23] propose an opportunistic
traffic scheduling algorithm for multiple network paths. An
analysis of optimal layered video streaming is also provided
in [24].

Finally, unlike the work done in network striping [25] and
traffic dispersion [26], our work implements packet scheduling
algorithms on multiple network paths, towards the final goal
of achieving an optimal video quality at the receiver. We do
not only take advantage of the increased aggregated bandwidth
of multiple network paths, but in the same time, we also use
the different paths to reduce the client playback delay.

VII. D ISCUSSION ANDCONCLUSIONS

This work addresses the problem of the joint selection
and scheduling of video packets on a network topology that
offers multiple paths between the streaming server and the
media client. We use an encoded video abstraction model
that factors in the variable importance of video packets, as
well as their interdependencies. An optimization problem is
then formulated, that aims at maximizing the video quality at
the client under a given playback delay. A formal analysis of
packet transmission timing leads to the derivation of efficient
algorithms to find the transmission policy that maximizes the
video quality at the client. Because of the complexity of the
optimal method, we propose fast, polynomial time algorithms
that still offer close to optimal solutions. Both methods have
been implemented in the case of stored videos, and real-
time streaming with the help of a sliding window mechanism.
Simulation results in both scenarios prove that our proposed
heuristic-based solution performs well in terms of final video
quality, and is moreover suitable for the case of real-time
streaming under strict delay constraints. They also show that
our methods outperform other common scheduling algorithms
from the literature.

Our method can be easily adapted to network scenarios
characterized by weaker assumptions in terms of server knowl-
edge about link rates and loss processes. We show how the

algorithms perform in the case of predicted network rates,
when the server uses a simple auto-regressive prediction mech-
anism. By using more conservative scheduling parameters, our
scheduling methods cope with large variations in instantaneous
network rates, with a negligible increase in the client perceived
distortion. Furthermore, link loss can be effectively addressed
by implementing FEC schemes on top of our scheduling mech-
anisms. In our future work we will extend our analysis and
experiments for the case of more complex network scenarios,
and release the assumption of lossless packet transmission.
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