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Abstract

In this project, we investigate the possibility of using the Matching Pursuit
algorithm to generate image representations of a pair of correlated images for
distributed source coding. We propose to use constrained dictionaries by ap-
propriately selecting neighbouring atoms to increase the correlation between
parameters, and with this, enable the application of the distributed framework.



Chapter 1

Introduction

Consider a communication system that has as inputs correlated signals X and
Y. Each signal is encoded with separate encoder and reconstructed at common
decoder. If the two signals are encoded with common encoder, the minimum rate
to code the two signals is the joint entropy H(X,Y ). What is not obvious is that
the signals can be encoded with the same rate if encoded separately, which is
the result of Slepian-Wolf theorem [1]. The similar result known as Wyner-Ziv
theorem [2] holds for lossy source coding with side information, where rate-
distortion performance is the same.
The development of sensor network technology, where a number of inde-

pendent sensors are deployed, requires the use of distributed techniques. Dis-
tributed coding exploits the source statistics in the decoder, so the encoder can
be very simple at the expense of a more complex decoder [3]. Recently several
frameworks for distributed encoding have emerged: the DISCUS framework [4]
inspired by algebraic channel codes, and approaches based on turbo and LDPC
codes [5, 6]. In this project we are using the DISCUS framework with memory-
less coset construction. Using more complicated trellis-based coset construction
to obtain better results can be done for future research.
The standard image compression algorithms based on orthogonal linear

transforms are not far from reaching their limits. New breakthroughs rely on
deep changes in signal representations and efficient coding of the transform pa-
rameters. One of the interesting coding methods is a low bitrate image coding
based on a Matching Pursuit expansion over a redundant dictionary. This cod-
ing method generates fully progressive streams, which is important for spatial
and rate scalability. The performance of Matching Pursuit coder at low and
medium bitrates competes with state of the art algorithms like JPEG-2000.
This project describes the possibility of using distributed source coding for

two correlated images that are decomposed using Matching Pursuit algorithm
over a redundant dictionary to get a sparse representation of images. The
material about Matching Pursuit algorithm and redundant dictionaries, as well
as the used distributed framework for encoding the image is presented in Chapter
2.
The independent MP decomposition of two correlated images gives coeffi-

cient magnitudes which are correlated, but other parameters are not. To increase
the R-D performance of compressing the right image, while the left image serves
as reference, the correlation between other parameters should be somehow ob-
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tained. This is the subject of Chapter 3.
In Chapter 4 are presented the results that can be obtained in this system,

and the influence of parameters on R-D performance.
Chapter 5 concludes the report and presents further topics for research.
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Chapter 2

Related Material

In this chapter is presented the Matching Pursuit Algorithm that generates im-
age representations over a redundant dictionary and the distributed framework
used in this project.

2.1 Image representation

To achieve efficient image representation for low bitrate image coding we use
non-linear representations which allow efficient encoding:

s =

N−1
∑

k=0

ckgk,

where gk is the selected element from the dictionary and ck the corresponding
coefficient. The image is approximated using N elements. The algorithm used
to compute this approximation is Matching Pursuit.

2.1.1 Redundant dictionary

The dictionary [7] is designed to capture two-dimensional features of natural im-
ages. The dictionary itself has two subdictionaries. One subdictionary is built
by anisotropic refinement and orientation of contour-like functions in order to
capture edges (AR subdictionary). The other subdictionary contains isotropic
Gaussian functions used to represent the low frequency components of the im-
age (Gaussian subdictionary). The dictionary contains an overcomplete set of
functions spanning the input image space. All atoms in the dictionary have
norm one.

Generating Functions

The AR subdictionary is obtained by varying the parameters of a generating
function g:

g(x, y) =
2√
3π
(4x2 − 2) exp(−(x2 + y2)).
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The choice of generating function is driven by the idea of efficiently approxi-
mating contour-like singularities. However, this generating function is not able
to efficiently represent the low frequency characteristic of the image. To over-
come this, another subdictionary is introduced which has Gaussian generating
function g:

g(x, y) =
1√
π
exp(−(x2 + y2)).

Geometric transformations

Anisotropic refinement and orientation are obtained by applying three types of
geometric operations to the generating function.

• Translations ~b = (b1, b2), to move the atom all over the image.

• Rotations θ, to locally orient the atom along contours.

• Anisotropic scaling ~a = (a1, a2), to adapt to contour smoothness.

The elements of the AR subdictionary (or AR atoms) can be finally expressed
as:

gγ =
2√
3π
(4g2

1 − 2) exp(−(g2
1 + g2

2)),

with

g1 =
cos(θ)(x− b1) + sin(θ)(y − b2)

a1
,

g2 =
cos(θ)(y − b2)− sin(θ)(x− b1)

a2
.

Atoms are indexed by a string γ which is composed of five parameters: transla-
tion (b1, b2), anisotropic scaling (a1, a2) and rotation θ.
Atoms of the Gaussian subdictionary are obtained by applying translations

(b1, b2) and isotropic scaling a to the Gaussian generating function. They can
be expressed in the following form:

gγ =
1√
π
exp(−( (x− b1)

2

a2
+
(y − b2)

2

a2
))

The string γ is in this case composed of three parameters: translation (b1, b2)
and isotropic scaling a.
In practice, all parameters in the dictionary must be discretized. The trans-

lation parameters can take any positive integer values smaller than image dimen-
sions. For rotation parameter we are using 18 different values (θ varies by incre-
ments of π/18). The anisotropic scaling parameters are uniformly distributed
on a logarithmic scale from one up to an eight of the size of the image, with a

resolution of one third of octave. The isotropic scaling varies from min(W,H)
32 to

min(W,H)
4 with a resolution of one third of octave (W - image width, H - image

height).
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2.1.2 Matching Pursuit

The MP algorithm is used to generate image representation. It generates fully
progressive streams, whose energy bounds are computable. The algorithm it-
eratively selects the element of the dictionary that best matches the signal at
each iteration. It starts by setting R0 to a signal we wish to approximate and
at each iteration decompose the residual as

Ri = 〈gγi
, Ri〉gγi

+Ri+1,

gγi
is orthogonal to Ri+1 and the energy of the residual is

‖Ri‖2 = |〈gγi
, Ri〉|2 + ‖Ri+1‖2.

To minimize the energy of the residual at each step, we must maximize the
projection |〈gγi

, Ri〉|. After N iterations signal can be approximated by:

s =

N−1
∑

i=0

〈gγi
, Ri〉gγi

+RN ,

where RN satisfies

‖RN‖2 = ‖s‖2 −
N−1
∑

i=0

|〈gγi
, Ri〉|2.

2.1.3 Quantization

After generating the coefficients, the quantization step takes place before the
entropy encoder. The used quantization is a posteriori adaptive exponentially
upper-bounded quantization [8]. Let Q[ck] denote quantized value of the coeffi-
cient ck. Due to the rapid decay of the magnitude, coefficient cj is likely to be
smaller than Q[cj−1] and is quantized in the range [0, Q[cj−1]]. The algorithm
is completely determined by the choice of the number of bits for the first coeffi-
cient and the number of iterations. The number of bits for the first coefficient is
selected as to give the best R-D performance. The atom coefficients have to be
re-ordered and sorted in the decreasing order of their magnitude, because MP
algorithm doesn’t guarantee a strict decay of the coefficient energy.

2.1.4 MP Image Coder

The block-diagram of MP image coder [7] is shown in Figure 2.1. Matching
Pursuit algorithm selects the best atom from the redundant dictionary, and its
parameters are encoded by entropy coder, for which we are using arithmetic
encoder. The parameters are:

• translation parameters (for x and y direction)

• scaling parameters (for AR atoms anisotropic scaling in x and y direction;
for Gaussian atoms one parameter is isotropic scaling, while the other
parameter is zero

• rotation parameter (18 different values; from 0 to 17)
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• type of atom (to distinguish between two subdictionaries; value 0 and 1)

The MP algorithm also gives the coefficient value for the atom, which has to
be quantized and sent to entropy coder. The sign of the coefficient is encoded
separately.

Matching pursuit
Search

Quantization

Coefficient

Entropy Coder
bitstream

Original
Image

Redundant
Dictionary

Atom

Figure 2.1: Block diagram of MP image coder

2.2 Distributed framework

For distributed data compression two or more sources are compressed using a
separate encoder for each. To encode the source X, a rate of H(X) is needed.
The joint encoding of two sources X and Y requires a rate of H(X,Y ) or their
joint entropy. It is obvious that for separate coding of X and Y the rate region
of RX +RY ≥ H(X)+H(Y ) is achievable. However, the result of Slepian-Wolf
theorem [1] says that the achievable rate region of separately encoded correlated
sources is (Figure 2.2):

RX ≥ H(X|Y )
RY ≥ H(Y |X)

RX +RY ≥ H(X,Y )

or that the separate encoding (with joint decoding) needs the same rate as the
joint encoding of two sources.
The distributed coding with side information at the decoder corresponds to

corner points of the rate region. Source Y (side information) is encoded using
its entropy H(Y ) and for the coding of other source is needed a rate of H(X|Y ).
To encode correlated distributed sources we are using DISCUS (DIstributed

Source Coding Using Syndromes) framework [4], and implement memoryless
coset construction. The decoder has access to the side information Y (Figure
2.3). Suppose that random variable X has 8 possible quantized values, and
we wish to convey the information which value X has by sending only one bit
of information. We can do this by splitting all possible values of X into two
cosets and signal only to which coset X belongs to. To keep the minimum
distance between any two values in each coset as large as possible we group
values r0, r2, r4 and r6 in coset with index 0, and values r1, r3, r5 and r7 in coset
with index 1. If the value Y is close enough to reconstruction level of variable
X, the decoding will be correct (Figure 2.4).
However, since we are encoding correlated images, which are not stationary,

we need to have variable number of cosets. The decoder thus sends also the
utilized number of cosets and for this, there is a feedback from the decoder.

6



PSfrag replacements

RXH(X)H(X|Y )

RY

H(Y )

H(Y |X)

RX +RY = H(X,Y )

Figure 2.2: Slepian-Wolf theorem: Achievable rate region

ENCODER
X

DECODER

Y

PSfrag replacements

Rate ≥ H(X|Y)

Bits at

X̂

Figure 2.3: Communication system: only decoder has access to the side infor-
mation Y

Y

no error

Y

error

X

PSfrag replacements

r0 r1 r2 r3 r4 r5 r6 r7
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Chapter 3

Investigation

We have a pair of correlated images, and use the left image as reference. The
encoder 1 is standard MP encoder and its output serves as side information at
the decoder. The question is: can we encode the right image in a distributed
way? To do that, the parameters of MP decomposition of left and right image
need to be highly correlated. Block diagram of the distributed system is shown
in Figure 3.1.

Encoder 2 Common Decoder

Encoder 1
Left Image

Right Image

Side Information

Feedback

Reconstructed
Right Image

Figure 3.1: Block diagram of the distributed system

Test Images

We have used one frame from stereoscopic sequences Funfair and Tunnel for
test purposes (Figure 3.2). The size of the images is 352x288 pixels. Since MP
decomposition of image of this size is very computationally demanding, we have
split the original image in 4 sub-images, and used for testing corresponding
sub-images of left and right original image. We will establish here a naming
convention for the sub-images: two-letter abbreviation followed by name of
image sequence.

• TL top-left sub-image

• TR top-right sub-image

• BL bottom-left sub-image

• BR bottom-right sub-image
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Figure 3.2: Test image: left and right image of the pair ’Funfair’ split into 4
subimages

3.1 Original MP decomposition

Independent MP decomposition of the left and right images gives correlated
magnitudes of coefficients, while other parameters are not correlated (Figure
3.3). Actually there is also high correlation between other parameters, but
only for the first several iterations, so it can’t be exploited. The correlation
coefficient between magnitudes of coefficients is higher than 0.99, and we would
like to exploit that correlation. The R-D performance is shown in Figure 3.4 for
(a) TR ’Funfair’ with 8 bits for quantization of the first parameter and (b) TL
’Tunnel’ with 11 bits for quantization of the first parameter.
By using only the correlation between coefficient magnitudes, the gain in

PSNR is relatively small. It depends on the quantization of the coefficients, and
typically increases with the number of bits used to quantize the first coefficient.
To further improve the performance, we would need to increase the correlation
between other parameters, while keeping the PSNR at the similar level. To see
if it is possible to do it, we’ll investigate the following steps:

• for each iteration in decomposition of the right image, fix some preselected
atom parameters from the left image in the same iteration

• keep the fixed parameters as in the first step, and constrain other param-
eters (use local MP decomposition; parameters are selected from neigh-
bouring parameter space)

• still keep some parameters fixed, and others constrained, but allow selec-
tion of atoms from the neighbouring iterations

All these steps will be discussed in more detail.

3.2 Step I

In this step we try to fix some parameters and see if it has influence on increasing
the correlation between other parameters. All atom parameters are split into
two groups:
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Figure 3.3: Correlation coefficients for different parameters, Image pair TL
’Tunnel’

• Group 1 contains parameters that can be freely selected by MP algorithm

• Group 2 contains parameters that are fixed beforehand

Group 1 contains translation and rotation parameters, and Group 2 contains
scaling parameters and type of atom. The parameters of Group 2 are not
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Figure 3.4: R-D performance improvement by using only correlated coefficient
magnitudes: (a) TR ’Funfair’, 8 bits for first coefficient, (b) TL ’Tunnel’, 11
bits for first coefficient
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transmitted because they are known at the decoder, which reduces the bitrate
of the image. Encoder 2 receives the needed information from the decoder. The
graphical representation of Step 1 is shown in Figure 3.5.
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Figure 3.6: Step 1 - Correlation coefficients for different parameters, Image pair
TL ’Tunnel’

From Figure 3.6 we see that there is a very small decrease in correlation
between magnitudes, and increase in correlation of translation parameters and
rotation, but this increase is not satisfactory. It is however a good sign, and to
further increase the correlation we need to constrain the range of parameters.
From Figure 3.7(a) we can see that the coefficient magnitudes are not strictly

decreasing, actually they have significant oscillations, which further decreases
the obtained PSNR because of the quantization. This variation will be handled
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Figure 3.7: Step 1, Image TL ’Tunnel’: (a) Behaviour of coefficient magnitudes,
(b) PSNR as function of iteration number

in step 3. The PSNR for step 1 is naturally smaller than that of the original
MP decomposition of the right image because of the imposed constraints.

3.3 Step II

It seems obvious that if we constrain parameter search space for translations,
that the correlation will increase, but at what cost? Since the two images look
similar, there is high probability that the selected atom from the left image
would be a good choice for the right image, just translated and maybe rotated
and scaled (we do not investigate the influence of the scaling parameter here).
This is not true for image edges and areas that are hidden in one of the images.
Hopefully the obtained PSNR would not decrease a lot. Figure 3.8 shows the
graphical representation of Step 2.
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Figure 3.8: Graphical representation of the Step 2

As in Step 1, at each iteration MP algorithm selects the best atom for the
left image. Let’s denote the translation parameters at ith iteration xlefti and

ylefti and rotation parameter as θlefti . The MP algorithm searches for the best
atom for decomposition of the right image in the local parameter space of these
coordinates (Figure 3.9). For this, the constraint parameters ∆x,∆y and ∆θ
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should be specified. The parameter ∆θ = 1 corresponds to search in local space
of ±π/36, because there are 18 different rotations in 180 degrees.

PSfrag replacements
∆x/2 ∆x/2

∆y/2

∆y/2
(xlefti , ylefti )

θlefti
∆θ/2

PSfrag replacements
∆x/2
∆y/2

(xlefti , ylefti )

θlefti

∆θ/2

∆θ/2

(a) (b)

Figure 3.9: Local search space for parameters : (a) translation, (b) rotation
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Figure 3.10: Step 2, Image TL ’Tunnel’: (a) Behaviour of coefficient magnitudes,
(b) PSNR as function of iteration number

The variation in coefficient magnitude is even more visible here, and with
additional constraint of search parameter space, there is a further reduction in
PSNR for the given number of iterations (Figure 3.10). However, the increase in
correlation between parameters is significant (Figure 3.11), and the distributed
framework can be used. The obtained R-D performance is shown in Figure
3.12. It can be seen that the increase in performance can be obtained, but only
for very small bitrates. The reduction in PSNR has more influence than the
reduction in bitrate for the higher iterations. To make things better, we have
to apply Step 3. The optimal values of parameter constraints ∆y, ∆y and ∆θ
depend on the image.

3.4 Step III

To make magnitudes of coefficients behave better, we could use two approaches:
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Figure 3.11: Step 2 - Correlation coefficients for different parameters, Image
pair TL ’Tunnel’
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• reorder the atoms obtained in step 2, and send also additional parameter
that indicates the order of atoms

• allow MP algorithm to select the atom as in step 2, but relax the constraint
of one-to-one correspondence between the iterations. In other words, MP
algorithm will select one of the atoms from the decomposition of left im-
age in the neighbourhood of the current iteration that gives the highest
coefficient magnitude.

The first approach would lead to increased PSNR, but it is better to allow
MP algorithm to select the best value by using second approach. In both cases
there is the need of sending additional parameter, which will increase bitrate,
so we have a trade-off. The question is: can we make R-D performance better
with this? The graphical representation of Step 3 is given in Figure 3.13.
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Figure 3.13: Graphical representation of the Step 3

The correlation between parameters is similar to the one in Step 2 (Figure
3.14), and the behaviour of the coefficients is much better (the curve is much
smoother, Figure 3.15(a)). The increase in PSNR is significant (PSNR in this
step is higher than in step 1, Figure 3.15(b)). By choosing higher value of
parameter ∆sh, we can get smoother behaviour of coefficients and higher PSNR,
but the bitrate also increases, as we have to transmit also the parameter sh which
is in the range [−∆sh/2,∆sh/2].
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Figure 3.14: Step 3 - Correlation coefficients for different parameters, Image
pair TL ’Tunnel’
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Figure 3.15: Step 3, Image TL ’Tunnel’: (a) Behaviour of coefficient magnitudes,
(b) PSNR as function of iteration number
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Chapter 4

Results

The goal was to see if the R-D performance of the distributed encoding can be
better than for the original MP encoder. In Figure 4.1 is shown achieved R-D
performance for TL ’Tunnel’ and TR ’Funfair’. For some images the increase
can be achieved, and it goes up to about 0.5 dB. For comparison are displayed R-
D performances of differentially encoded parameters, which have the additional
increase in PSNR over distributed encoding of about 0.5 dB.
Next we change the constraint parameters to see the influence on R-D per-

formance. For each image it is needed to find optimal constraint parameters.
By varying ∆x,∆y and ∆θ, the R-D performance doesn’t change a lot, and
good results are obtained for taking ∆x and ∆y about one third of the image
size and ∆θ = 8 which corresponds to variation of ±π/8.
Figure 4.2 shows the influence of parameter ∆sh on R-D performance for

TL ’Tunnel’. As can be seen, for lower values of bitrate (or lower number of
iterations) value for ∆sh = 20 give good results, but for higher bitrates, the
increase in parameter ∆sh may be necessary to obtain better results. One of
the effects of higher values of ∆sh is further smoothing of coefficient magnitudes
(especially for higher iterations).
Parameter ∆x need to have value higher than 16 (Figure 4.3), because of the

dominant horizontal displacement of the contents of two images. Good results
are obtained for values around 64.
For parameter ∆y very similar results are obtained for values between 16 and

48, and the higher value is then chosen to avoid reduction in PSNR.Since the
PSNR of the right image is always lower compared to original MP decomposition
of the same image, to get higher values of PSNR the encoder of the right image
would have to require additional atom parameters.
Parameter ∆θ should be smaller for very small iteration numbers, but opti-

mal values are around 8. The unconstrained value of parameter θ gives just a
small increase of PSNR.
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Figure 4.1: R-D performance of : (a) TL ’Tunnel’ with ∆sh = 20, (b) TR
’Funfair’ with ∆sh = 40. The other constraint parameters are ∆x = 64,∆y =
48 and ∆θ for both images.
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Figure 4.2: TL ’Tunnel’, R-D performance as function of parameter ∆sh. Other
parameters are fixed: ∆x = 64,∆y = 48,∆θ = 8
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Figure 4.3: TL ’Tunnel’, R-D performance as function of parameter ∆x. Other
parameters are fixed: ∆y = 48,∆θ = 8,∆sh = 20
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Figure 4.4: TL ’Tunnel’, R-D performance as function of parameter ∆y. Other
parameters are fixed: ∆x = 64,∆θ = 8,∆sh = 20
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Figure 4.5: TL ’Tunnel’, R-D performance as function of parameter ∆θ. Other
parameters are fixed: ∆x = 64,∆y = 48,∆sh = 20
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Chapter 5

Conclusion and Further

Work

In this project we have considered distributed coding of two correlated images,
one of which (left) serves as side information at the decoder and compared the
R-D performance for distributed coding of the right image with the performance
of independent MP coder of the same image. We show that by using constrained
MP decomposition, the gain in PSNR for distributed encoding of parameters
can be achieved. Additional gain could be obtained by using more complex
distributed framework to encode the parameters. However, by using the simple
method for distributed encoding, the gain in PSNR may not be possible for
all images. It is important to notice that the obtained PSNR for distributed
system is always lower than the PSNR for independent MP coder using the
same number of iterations. On the other hand the computational time is much
lower because of used constrained MP decomposition.
As further work the investigation in the region of higher bitrates can be

conducted, but it seems that the gain can’t be increased much further because
the correlation between parameters tends to decrease with iteration number. It
is also needed to see if the additional gain can be achieved by removing the
constraint of using the same scaling parameters for the left and right images.
Finally the distributed encoding of more than two correlated images can be
investigated, by using one image as reference.
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