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ABSTRACT

We address the problem of compressing correlated distributed
video signals that are captured from a dynamic scene. The corre-
lated video signals originate from cameras that are not co-located
or that cannot cooperate to directly exploit their correlation. How-
ever, the decoder is able to exploit the coded information from
all cameras to achieve the best reconstruction of the correlated
video signals. Our distributed coding scheme is based on a motion-
compensated lifted wavelet transform to exploit the temporal cor-
relation of the camera signals. The correlation among the video
signals is considered by coset-encoding the quantized wavelet
transform coefficients. The experimental results demonstrate that
conditional decoding can reduce the bit-rate of one sequence by
up to 20% when compared to independent decoding. Further, we
consider theoretically the associated rate-distortion problem with
side information and determine the optimal conditional Karhunen-
Loeve transform for video coding with side information and out-
line the performance bounds.

1. INTRODUCTION

Scene information that is acquired by more than one sensor can
be coded efficiently if the correlation among sensor signals is ex-
ploited. In one possible compression scenario, encoders of the sen-
sor signals are connected and compress the sensor signals jointly.
In an alternative compression scenario, each encoder operates in-
dependently but relies on a joint decoding unit that receives all
coded sensor signals. This is also known as distributed source
coding. A special case of this scenario is source coding with side
information. Wyner and Ziv showed that for certain cases, the en-
coder does not need the side information to which the decoder has
access to achieve the rate-distortion bound [1]. A practical algo-
rithm for source coding with side information using syndromes is
suggested by Pradhan and Ramchandran [2]. For transform-based
source coding, Vetterli et al. studied the distributed and condi-
tional Karhunen-Loeve transform [3]. Examples of applied re-
search on distributed source coding are enhancing analog image
transmission systems using digital side information, Wyner-Ziv
coding of inter-pictures in video sequences, and distributed com-
pression of light field images. This paper discusses a distributed
source coding scenario where the sensors are video cameras that
capture a dynamic scene. The video signals are encoded with a
motion-compensated lifted wavelet transform which approximates
the temporal Karhunen-Loeve transform for video signals [4, 5].
The distributed video coding scheme employs coset-encoding and
considers the video side information at the decoder.

The paper is organized as follows: Section 2 outlines our dis-
tributed coding scheme for dynamic scenes. We discuss the used
motion-compensated wavelet transform as well as the coset-en-
coding of the quantized transform coefficients. We conclude with
experimental results. Section 3 explores the efficiency of video
coding with side information. With a model for transform-coded
video signals, we determine the temporal conditional Karhunen-
Loeve transform and discuss bounds for the coding gain due to
side information.

2. DISTRIBUTED CODING SCHEME
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Fig. 1. Distributed coding scheme for dynamic scenes.

Fig. 1 depicts the distributed coding scheme for dynamic
scenes. The dynamic scene is represented by the image sequences
sk[z,y] and w [z, y]. The coding scheme comprises of Encoder
1 and Encoder 2 that operate independently as well as of Decoder
2 that is dependent on results of Decoder 1.

2.1. Motion-Compensated Transform

Each encoder in Fig. 1 exploits the correlation between succes-
sive pictures by employing a motion-compensated temporal trans-
form for groups of K pictures (GOP). We perform a dyadic de-
composition with a motion-compensated Haar wavelet as depicted
in Fig. 2. The temporal transform provides K output pictures that
are decomposed by a spatial 8 x 8 DCT. The motion information
that is required for the motion-compensated wavelet transform is
estimated in each decomposition level depending on the results of
the lower level. The correlation of motion information between
two image sequences is not exploited yet. Fig. 2 shows the Haar
wavelet with motion-compensated lifting steps. The even frames
of the video sequence say, are used to predict the odd frames sax+1
with the estimated motion vector Jgk,gkﬂ. The prediction step is
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followed by an update step which uses the negative motion vector
as an approximation. We use a block-size of 16 x 16 and half-pel
accurate motion compensation with bi-linear interpolation in the
prediction step and select the motion vectors such that they mini-
mize a Lagrangian cost function based on the squared error in the
high-band hy. Additional scaling factors in low- and high-band
are necessary to normalize the transform.
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Fig. 2. Haar wavelet with motion-compensated lifting steps.

Encoder 1 in Fig. 1 encodes the side information for Decoder
2 and does not employ distributed source coding principles yet.
It uses scalar quantizers to represent the DCT coefficients of all
temporal bands. The quantized coefficients are simply run-length
encoded. On the other hand, Encoder 2 is designed for distributed
source coding and employs coset-encoding of the quantized DCT
coefficients for all temporal bands.

2.2. Coset-Encoding of Quantized Transform Coefficients

The 8 x 8 DCT coefficients of Encoder 2 are encoded with the
DISCUS framework [2]. Currently, we use uniform scalar quan-
tization and construct the cosets in a memoryless fashion. Fig. 3
explains this coset-coding scheme.
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Fig. 3. Coset-coding of quantized transform coefficients. As-
sume that Encoder 2 transmits with a rate Ro of 1 bit per trans-
form coefficient and utilizes two cosets Co = {00, 02, 04, 06 } and
C1 = {01, 03, 05, 07} for encoding. Now, the transform coefficient
04 shall be encoded and the encoder sends one bit to signal coset
Co. With the help of the side information coefficient z, the decoder
is able to decode o4 correctly. If Encoder 2 does not send any bit,
the decoder will decode 03 and we observe a decoding error.

Decoder 2 receives coset indices from Encoder 2. The binary
representation of these indices reflects the nested construction of
the cosets. If a coset index is represented by 7 bits, the indicated
coset out of 2° cosets is used for decoding with side information. If
the number of cosets doubles, the Euclidean distance between the
representatives in one coset also doubles. This guarantees reliable
decoding if sufficient bits are received. Encoder 2 receives from
Decoder 2 side information for optimal conditional quantization.
With that, Decoder 2 can decode the coefficient without error.

2.3. Experimental Results

For the experiments, we selected the stereoscopic MPEG-4 se-
quences Funfair and Tunnel in QCIF resolution. We divided each
view with 224 frames at 30 fps into groups of K = 32 pictures.

The GOPs of the left view are encoded with Encoder 1 at high
quality by setting the quantization parameter Q P = 2. This coded
version of the left view is used as side information for Decoder 2
to decode the right view.
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Fig. 4. Luminance PSNR vs. total bit-rate of the distributed codec
DSC for the sequence Funfair 2 (right view). The reference coding
scheme SSC does not utilize the side information for decoding.
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Fig. 5. Luminance PSNR vs. total bit-rate of the distributed codec
DSC for the sequence Tunnel 2 (right view). The reference coding
scheme SSC does not utilize the side information for decoding.

Figs. 4 and 5 show the luminance PSNR over the total bit-rate
of the distributed codec Encoder 2 for the sequences Funfair 2 and
Tunnel 2, respectively. These sequences are the right views of the
stereoscopic sequences. The rate-distortion points are obtained by
setting different quantization parameters for the scalar quantizer
in Encoder 2. We observe that the use of side information at the
decoder reduces the bit-rate of Funfair 2 by up to 15% (which cor-
responds to a gain of up to 1.5 dB). Tunnel 2 is stronger correlated
to the side information Tunnel 1 and achieves bit-rate savings of
up to 20% (which corresponds to a gain of up to 2 dB).
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3. EFFICIENCY OF VIDEO CODING WITH SIDE
INFORMATION

In the following, we outline a mathematical model to study video
coding with side information in more detail. We derive perfor-
mance bounds and compare to coding without side information.

3.1. Model for Transform-Coded Video Signals

We build upon a model for motion-compensated subband coding
of video that is outlined in [4, 5]. Let s, = {sk[z, 9], (z,y) € 11}
be scalar random fields over a two-dimensional orthogonal grid 11
with horizontal and vertical spacing of 1. In Fig. 6, we assume that
the pictures sy, are shifted versions of the model picture v and de-
graded by independent additive white Gaussian noise nj [6]. A
is the displacement error in the k-th picture, statistically indepen-
dent from the model picture v and the noise ny but correlated to
other displacement errors. We assume a 2-D normal distribution
with variance 64 and zero mean where the z- and y-components
are statistically independent.
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Fig. 6. Signal model for a group of K pictures.

From [4, 5], we adopt the matrix of the power spectral densi-
ties of the pictures s, and normalize it with respect to the power
spectral density of the model picture v. We write it also with the
identity matrix J and the matrix 117 with all entries equal to 1.

1+ a(w) P(w) e P(w)
Dos(w) P(w) 1+a(w) - P(w)
Dyv(w) : : ’ ;
P(w) P(w) 1+ a(w)
= [14a(w)—-Pw)]I+Pw)11” 1)

a = a(w) is the normalized power spectral density of the noise

®nyny, (w) with respect to the model picture v.

_ Puyn, (W)
Dy (w)

P = P(w) is the characteristic function of the continuous 2-D
Gaussian displacement error.

a(w) for k=0,1,..., K —1 2

Pw)=E {e_ijA‘“'} T 3)

3.2. Rate-Distortion with Video Side Information

Now, we consider the distributed coding scheme in Fig. 1 at high
rates such that the reconstructed side information approaches the
original side information W — wy. With that, we have a Wyner-
Ziv scheme (Fig. 7) and the rate-distortion function R* of Encoder
2 is bounded by the conditional rate-distortion function [1].
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Fig. 7. Coding of K pictures s, at rate R* with side information
of K pictures wy, at the decoder.

‘We model the side information as a noisy version of the video
signal to be encoded, i.e. Wi = sy + uy, and assume that the
noise uy, is also Gaussian with variance o2 and independent of sy.
In this case, the matrix of the power spectral densities of the side
information pictures is simply Pww(w) = Pss(w) + Pyuu(w) with
the matrix of the power spectral densities of the side information
noise Pyu(w) = Y(w)Pyv(w)l. v = ~vy(w) is the normalized
power spectral density of the side information noise @y, u, (w)
with respect to the model picture v.

) = Spls)

With these assumptions, the rate-distortion function R* of En-
coder 2 is equal to the conditional rate-distortion function [1].
Now, it is sufficient to use the conditional Karhunen-Loeve trans-
form [3] to code video signals with side information and achieve
the conditional rate-distortion function.

for k=0,1,.... K1 (4

3.3. Conditional Karhunen-Loeve Transform

In the case of motion-compensated transform coding of video with
side information, the conditional Karhunen-Loeve transform is re-
quired to obtain the performance bounds. We determine the well
known conditional power spectral density matrix ®4}w (w) of the
video signal sy, given the video side information wy,.

Dy (@) = Pas (W) — P (W) Py (@) Pws (W) (5)
With the model in Section 3.1 and the assumptions in Section 3.2,
we obtain for the normalized conditional spectral density matrix
és\w(w) o 1+O¢—P
Oyy(w) 1Jroz+'ny’y
P gl
l1+a+y—-P l14+a+~y+[K-1P

I+

v117. (6)
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For our signal model, the conditional KLT is as follows: The first
eigenvector just adds all components and scales with 1/ VK. For
the remaining eigenvectors, any orthonormal basis can be used that
is orthogonal to the first eigenvector. The Haar wavelet that we
use for our coding scheme meets these requirements. Finally, K
eigendensities are needed to determine the performance bounds:

KP

Aj(w) Lo+ mopymr—ge — P

Doy (w) l14a+v-—P

A (w) l1+a—P

_— = — k=1,2,.... K—-1 (7
¢vv(w) 1+Oé+’)/—PFY ) 4y ) ()

3.4. Coding Gain due to Side Information

With the conditional eigendensities, we are able to determine the
coding gain due to side information. We normalize the conditional
eigendensities A, (w) with respect to the eigendensities Ay (w) that
we obtain for coding without side information as A}, (w) — Ag(w)
for y(w) — oo.

KP
Aj(w) _ ¥ . L+a+ 1+a+:yy+[K—1]P - P
Ao (w) l+a+~y-P l1+a+[K-1]P
Aj(w) gl

- k=1,2,... K1 8
Ak (w) l1+a+~y-P ®)

The rate difference is used to measure the improved compression
efficiency for each picture £ in the presence of side information.

.1 [ [ Al
ARk:H//ilogQ (A:&)dw ©)

—T =T

It represents the maximum bit-rate reduction (in bit/sample) possi-
ble by optimum encoding of the eigensignal with side information,
compared to optimum encoding of the eigensignal without side in-
formation for Gaussian wide-sense stationary signals for the same
mean square reconstruction error. The overall rate difference AR™
is the average over all K eigensignals.

Figs. 8 and 9 depict the overall rate difference for a residual
noise level RNL = 10log,,(c2) of -30 dB over the c-SNR =
101log,,([02 + o2]/0%) and the displacement inaccuracy 3 =
log,(v/1204), respectively. Note that the variance of the model
picture v is normalized to 02 = 1. We observe that side informa-
tion is more beneficial if temporal correlation remains due to small
GOP sizes K. For highly correlated video signals, the gain due to
side information increases by 1 bit/sample if the c-SNR increases
by 6 dB. For K = 32, half-pel accurate motion compensation
(8 = —1), and a c-SNR of 20 dB, the rate difference is limited to
-0.3 bit/sample which corresponds to a gain of 1.8 dB.

4. CONCLUSIONS

This paper discusses the problem of compressing correlated dis-
tributed video signals that are captured from a dynamic scene. We
consider theoretically the associated rate-distortion problem with
side information and determine the optimal conditional KLT.
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