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Abstract

In this technical report we build Discrete Wavelet Frames on the
sphere S2, discretizing the existing Spherical Continuous Wavelet
Transform (CWT). We first explore the spherical half-continuous
frames, i.e. where the position remains a continuous variable; and
then we proceed to the fully discrete frames. We introduce the
notion of controlled frames, which reflects the particular nature
of the underlying theory, namely, the apparent conflict between
dilation and the compacity of the spherical manifold. We conclude
with our perspectives for future work.

1 Introduction

Many examples in (astro-)physics, geodesics and medicine require existing of
suitable tools for analysing data on spherical manifolds. As an analysing tool,
the main advantage of CWT is operating by dilation and translation of the
wavelet on the analyzed data. Existing of CWT on the sphere, is a challenge
for verifying existing of its discetized form, namely spherical discrete frames.
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1.1 Continuous Wavelet Transform on the Sphere

The CWT on the sphere is based on the affine transformations on the sphere,
namely: rotations, defined by the element ρ of the group SO(3); and di-
lations, parametrized by the scale a ∈ R∗

+ [2]. In other words, if f ∈
L2(S2) ≡ L2(S2, dµ), with the rotation inavarient measure on the sphere
dµ(θ, ϕ) = sin θdθdϕ, we have

• rotation Rρ(ρ ∈ SO(3)):

(Rρf)(ω) = f(ρ−1ω), ω ≡ (θ, ϕ). (1)

• dilation Da(a ∈ R∗
+):

(Daf)(ω) = λ(a, θ)
1
2f(ω 1

a
), (2)

where ωa ≡ (θa, ϕ) with tan θa

2
= a tan θa

2
; a > 0, θ ∈ [0, π], ϕ ∈

[0, 2π); and λ is a normalization factor associated to the cocycle and
needed for making the dilation dµ dilation-invariant. This cocycle is
given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
. (3)

Intuitively, the action of dilation Da on a function f ∈ L2(S2) corresponds to
an Euclidean dilation of the projected function in the tangent to the North
Pole plane, by a stereographic projection trough the South Pole, and lifting
it back to the sphere by inverse stereographic projection. In the language
of group theory, these two affine transformations, which do not generate a
group neither they commute, are found in the conformal of the sphere S2

group - the Lorentz group SO(3, 1), where each subgroup is isolated using
the Iwasawa decomposition. The convenience of this approach is existing
of unitary irreducible representation of SO(3, 1) in L2(S2) from where the
square-integrable representation on |R∗+ × SO(3) is found. Using so defined
schema for construction of wavelets on the sphere, an wavelet ψ ∈ L2(S2) is
admissible if there is a constant c ∈ R∗

+, such that for all l ∈ N

Gψ(l) =
8π2

2l + 1

∑
|m|≤l

∫
R∗

+

da

a3
|ψ̂a(l,m)|2 < c, (4)

where ψ̂a(l,m) = 〈Y m
l |ψa〉 is the Fourier transform of ψa = Daψ. In particu-

lar, for φ = exp(− tan2( θ
2
)), which is the inverse stereographic projection of
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The Gaussian on the sphere, We obtaine the Difference of Gaussian (DOG)
spherical wavelet

ψ(θ, ϕ) = exp(− tan2(
θ

2
))− 1

α
λ(α, θ)

1
2 exp(− 1

α2
tan2(

θ

2
)). (5)

Thus, with given rotation, dilation and an admissible wavelet ψ ∈ L2(S2),
the CWT of a function f ∈ L2(S2) is:

Wf (ρ, a) = 〈ψρ,a|f〉 =

∫
S2

dµ(ω)f(ω)[RρDaψ]∗(ω). (6)

Since the stereographic dilation is radial around the North Pole, an axisym-
metric wavelet on the sphere ψ is such that

Wf (ρ, a) = (f ∗ ψ∗a)(ρ) = (f ? ψ∗a)(ω) ≡ Wf (ω, a) (7)

with a ∈ R∗
+, ρ ∈ SO(3) and ω ∈ S2.

The reconstruction of a spherical function from its coefficients Wf is spe-
cific since the wavelet ψ is such that

∫
S1
dϕψ(θ, ϕ) 6= 0, then the familly

{ψρ,a : ρ ∈ SO(3), a > 0} constitute a continuous frame in L2(S2). Conse-
quently, we give the following proposition

Proposition 1.1.1 Let f ∈ L2(S2). If ψ is an admissible wavelet such that∫
S2 dϕψ(θ, ϕ) 6= 0, then

f(ω) =

∫
R∗

+

∫
SO(3)

dadν(ρ)

a3
Wf (ρ, a)[RρL

−1
ψ Daψ](ω), (8)

where the coefficients are given by (6), L is the frame operator defined by

[̂Lψh](l,m) = Gψ(l)ĥ(l,m), ∀h ∈ L2(S2), (9)

and Gψ(l) defined by (4)

Corollary 1.1.2 Under the condition of the previous proposition, the fol-
lowing Plancharel relation is satisfied

‖f‖2 =

∫
R∗

+

∫
SO(3)

dadν(ρ)

a3
Wf (ρ, a)W̃

∗
f (ρ, a) (10)

with
W̃f (ρ, a) = 〈ψ̃(ρ, a)|f〉 = 〈RρL

−1
ψ Daψ|f〉. (11)

The proof of this proposition and corollary and more details on CWT on
the sphere and its implementation can be found in [3]
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2 Discrete Wavelet Frames on the Sphere

In this section we describe under which conditions the parameters of the
continuous wavelet transform can be descretized. We will study only the
case of axisymmetric wavelets.

2.1 Half-continuous Spherical Frame

2.1.1 A Frame

For a frame, with a given function f : S2 7→ R and an axisymmetric wavelet
ψ satisfying the admissibility condition, the spherical CWT of f is defined
by

Wf (ω, a) =

∫
S2

dµ(ω′)f(ω′)[R[ω]Daψ]∗(ω′), (12)

with ω = (θ, ϕ) ∈ S2, [ω] = ρ(ϕ, θ, 0) ∈ SO(3) and a ∈ R∗
+. The Rρ and

dilation Da perators are defined in (1) and (2), respectively.
For an axisymmetric spherical wavelet, the reconstruction is given by

f(ω) =

∫
R∗

+

∫
S2

dadµ(ω′)

a3
Wf (ω

′, a)ψ̃ω,a(ω
′), (13)

with ψ̃a = R[ω]L
−1
ψ Daψ, and Lψ is the frame operator such that

̂[L−1
ψ ψa](l,m) (14)

= Gψ(l)−1ψ̂a(l, 0)δ0,m (15)

=

[
4π

2l + 1

∫
R∗

+

da

a3
|ψ̂a(l, 0)|2

]−1

ψ̂a(l, 0)δ0,m (16)

2.1.2 First Approach

We propose now to discretize the scale of the CWT on the sphere as we leave
the position varying continualy. In other words, we choose

ω ∈ S2 (17)

a ∈ A ≡ {aj ∈ R∗
+ : j ∈ Z, aj > aj+1} (18)

which build the half-continuous grid

Λ(A) = {(ω, aj) : ω ∈ S2, j ∈ Z}. (19)
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In order to have a reconstruction of all the functions f ∈ L2(S2), one first
approach would be to impose

A‖f‖2
2 ≤

∑
j∈Z

νj

∫
S2

dµ(ω)|Wf (ω, aj)|2 ≤ B‖f‖2
2, (20)

with A,B ∈ R∗
+ indipendant of f , and for some weights νj > 0 taking into

account the discretizatrion of the continuous measure da
a3 . In this case, the

familly
{ψω,aj

= R[ω]Daj
ψ : (ω, aj) ∈ Λ(A)}, (21)

constitutes a half-continuous frame in L2(S2). The following proposition
translates this last condition into the Fourier space.

Proposition 2.1.1 If there are two constants A,B ∈ R∗
+ such that

A ≤ 4π

2l + 1

∑
j∈Z

νj|ψ̂aj
(l, 0)|2 ≤ B (22)

for all l ∈ N, then (20) is fulfilled.

Proof : With a given admissible spherical wavelet, the Fourier coefficinets of
a function f ∈ L2(S2) are given by

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l+1
f̂(l,m) ψ̂∗a(l, 0)Y m

l (ω).

Developping (15) using these coefficients, we have

∑
j∈Z

νj

∫
S2

dµ(ω)|Wf (ω, aj)|2

=
∑
j∈Z

νj
∑

(l,k)∈N

∑
(l′,k′)∈N

4π√
(2l+1)(2l′+1)

f̂(l, k) f̂ ∗(l′, k′)

ψ̂∗aj
(l, 0) ψ̂aj

(l′, 0)

∫
S2

dµ(ω) Y k
l (ω)Y k′∗

l′ (ω)

=
∑
j∈Z

νj
∑

(l,k)∈N

4π
2l+1

|f̂(l, k)|2 |ψ̂aj
(l, 0)|2

=
∑

(l,k)∈N

|f̂(l, k)|2
∑
j∈Z

4π
2l+1

νj |ψ̂aj
(l, 0)|2,
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where we have used the orthonormality of the spherical harmonics, namely:

〈Y k
l Y

k′

l′ 〉 = δll′δkk′ .

The inferior and superior bounds of (15), are well defined if there are two
constants A,B ∈ R∗

+ such that

A ≤ 4π
2l+1

∑
j∈Z

νj |ψ̂aj
(l, 0)|2 ≤ B,

for all l ∈ N. �
Let us choose a DOG wavelet (α = 1.25) with a discretized dyadic scale

with K ∈ N0, namely

aj = a02
− j

K , j ∈ Z. (23)

For simplifying the notation, we replace the indeces aj by j, so, for instance
ψaj

becomes ψj. As well, we take the weights νj which take into account the
discretization of the continuous measure da

a3 , which means

νj =
aj − aj+1

a3
j

=
2

1
K − 1

2
1
K a2

j

(24)

We have estimated the bounds A and B, based on the respectively, minimum
and maximum of the quantity

S(l) =
4π

2l + 1

∑
j∈Z

νj|ψ̂j(l, 0)|2, (25)

over l ∈ [0, 31] and for K = [1, 4]. The results are shown in the table 1.

K A B B/A
1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

Table 1: Estimation of the bounds A et B as a function of extremum of S(l)
for some values of K.

We can see that for K > 2, the relation B/A converges toward the value
1.8107. So, it is not a convergence toward a strict frame, for which A = B.
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2.1.3 Second Approach

For this second approach, we start from the Plancharel relation as defined in
corollary (1.1.2). In other words, we will observe under which exclusion of
the following condition for controlled frame, it is satisfied. For A,B ∈ R∗

+,
we want

A‖f‖2
2 ≤

∑
j∈Z

νj

∫
S2

dµ(ω)Wf (ω, aj)W̃
∗
f (ω, aj) ≤ B‖f‖2

2, (26)

for any f ∈ L2(S2) and W̃f (ω, aj) = 〈R[ω]L
−1
ψ Daψ|f〉. The operator Lψ

controls the frame and it is limited if the wavelet ψ is admissible.

Proposition 2.1.2 If there exist two constants A,B ∈ R∗
+ such that

A ≤ 4π

2l + 1
Gψ(l)−1

∑
j∈Z

νj|ψ̂j(l, 0)|2 ≤ B, (27)

with Gψ(l) given by (16) and for all l ∈ N, then

A‖f‖22 ≤
∑
j∈Z

2Bj−1∑
p,q=0

νjωjpWf (ωjpq, aj)W̃
∗
f (ωjpq, aj) ≤ B‖f‖2

2 (28)

is verified.

Proof : As in the previous proposition, we start from the Fourier coeffi-
cients

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l+1
f̂(l,m) ψ̂∗a(l, 0)Y m

l (ω).

Then W̃f (ω, a) = 〈R[ω]L
−1
ψ Daψ|f〉 reads

W̃f (ω, a) =
∑

(l,m)∈N

√
4π

2l+1
Gψ(l)−1 f̂(l,m) ψ̂∗a(l, 0)Y m

l (ω),

since the frame operator depends only on l and commutes with the rotations.
Developping (15) using these coefficinets, we have∑

j∈Z

νj

∫
S2

dµ(ω) Wf (ω, aj) W̃f (ω, a)

=
∑

(l,k)∈N

|f̂(l, k)|2
∑
j∈Z

4π
2l+1

Gψ(l)−1 νj |ψ̂aj
(l, 0)|2,
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using the orthonormality of the spherical harmonics. Then the equation (15)
is fulfilled if there exist two constants A,B ∈ R∗

+, such that

A ≤ 4π
2l+1

Gψ(l)−1
∑
j∈Z

νj |ψ̂aj
(l, 0)|2 ≤ B,

for all l ∈ N. �
In this case we evaluate the quantity

S(l) =
4π

2l + 1
Gψ(l)−1

∑
j∈Z

νj |ψ̂j(l, 0)|2. (29)

Taking into account

Gψ(l) = lim
K→∞

4π

2l + 1

∑
j∈Z

νj |ψ̂j(l, 0)|2, (30)

where the weights νj discretize the continuous measure da
a3 .

The behaviour of S(l) is presented in the Table 2 for K ∈ [1, 4].

K A B B/A
1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

Table 2: Estimation of the bounds A et B in function of extremum of S(l)
for some values of K.

It shows that the relation B/A converges towards 1, so, the controlled
half-continuous spherical frame is better then the classical frame from the
first approach.

2.1.4 Construction of a strict half-continuous frame

It is possible to create a strict half-continuous frame on the sphere using the
preveous considerations.

Proposition 2.1.3 Let {aj : j ∈ Z, aj > aj+1} be a sequance of scales. If ψ
is a axisymmetric wavelet such that

gψ(l) =
4π

2l + 1

∑
j∈Z

νj|ψ̂j(l, 0)|2 6= 0, ∀l ∈ N, (31)
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with ψω,aj
= R[ω]l

−1
ψ Daj

ψ and lψ is a operator of a discretized frame defined
in Fourier domain by

l̂−1
ψ h(l,m) = g−1

ψ (l)h(l,m). (32)

Then, the reconstruction is:

f(ω) = [Sf ? ζ
]](ω) +

∑
j∈N

νj[Wf (·, aj) ? ψ]j](ω), (33)

with Sf (ω) = 〈R[ω]ζ|f〉 and ζ] = Rωl
−1
ψ ζ.

2.2 Discrete Spherical Frame

In this section, we will complitely discretize the CWT on the sphere. The
scales are discretized as previously, namely

a ∈ A = {aj ∈ R∗
+ : aj > aj+1, j ∈ Z}, (34)

and the positions are taken at equi-angular grid, related to the scale in way
such that ω ∈ Gj with

Gj = {(θjp, ϕjq) ∈ S2 : θjp =
(2p+ 1)π

4Bj

, ϕjq =
qπ

Bj

} (35)

with p, q ∈ N, 0 ≤ p, q < 2Bj; for some range of bandwidth B = {Bj ∈
2N, j ∈ Z}. Actually, θjp form a pseudo-spectral grid and are localized on
the knots of a Chebishev polynomial of order 2B [4, 5]. In general, the space
of discretization is

Λ(A,B) = {(aj, ωjpq) : j ∈ Z, p, q ∈ N, 0 ≤ p, q < 2Bj}, (36)

with ωjpq = (θjp, ϕjq).
In this case, for an axisymmetric and admissible mothet-wavelet ψ ∈ S2,

the familly of wavelets

{ψjpq = R[ω]jpqDaj
ψ : j ∈ Z, p, q ∈ N, 0 ≤ p, q < 2Bj} (37)

constitutes in an weighted frame and controlled by the operator Lψ, if there
are two constants A,B ∈ R∗

+ such that for all functions f ∈ L2(S2) we have

A‖f‖2
2 ≤

∑
j∈Z

2Bj−1∑
p,q=0

νjωjpWf (ωjpq, aj)W̃
∗
f (ωjpq, aj) ≤ B‖f‖2

2, (38)

with ωjp = ω
Bj
p and weights as defined in (). Here, νjωjp replaces the measure

da
a3dµ(θ, ϕ).
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Theorem 2.2.1 Let the discretized grid Λ(A,B) be given as in (36), ψ is
an axisymmetric and admissible wavelet on S2, and

K0 = inf
l∈N

∑
j∈Z

4πνj
2l + 1

1l[0,Bj [(l)G
−1
ψ |ψ̂aj

(l, 0)|2, (39)

K1 = sup
l∈N

∑
j∈Z

4πνj
2l + 1

1l[0,Bj [(l)G
−1
ψ |ψ̂aj

(l, 0)|2, (40)

δ = ‖X‖ = sup
(Hl)l∈N

‖XH‖
‖H‖

, (41)

with the infinite matrix

X =

(∑
j∈N

2πνjcj(l, l
′)

Bj

1l[2Bj ,+∞[(l + l′)G−1
ψ (l)|ψ̂aj

(l, 0)||ψ̂aj
(l′, 0)|

)
l,l′∈N

(42)

and cj(l, l
′) =

(
2(l +Bj) + 1

) 1
2
(
2(l′ +Bj) + 1

) 1
2 . If

0 ≤ δ < K0 ≤ K1 < ∞, (43)

then the defined wavelet family in (37) is an weighted spherical wavelet con-
trolled by the operator Lψ and the bounds K0 − δ, K0 + δ.

Proof : Let us define the sum

S =
∑
j∈Z

2Bj−1∑
p,q=0

νjwjp Wf (ωjpq, aj) W̃
∗
f (ωjpq, aj).

Using

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l+1
f̂(l,m) ψ̂∗a(l, 0)Y m

l (ω)

W̃f (ω, a) =
∑

(l,m)∈N

√
4π

2l+1
Gψ(l)−1 f̂(l,m) ψ̂∗a(l, 0)Y m

l (ω),
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we have

S =
∑
j∈N

2Bj−1∑
p,q=0

∑
(l,m)∈N

∑
(l′,m′)∈N

4π√
(2l+1)(2l′+1)

f̂(l,m) f̂ ∗(l′,m′)

νjwjpG
−1
ψ (l) ψ̂∗aj

(l, 0) ψ̂aj
(l′, 0)Y m

l (ωjpq)Y
m′∗
l′ (ωjpq)

=
∑
j∈N

4πνj
∑

(l,m)∈N

∑
(l′,m′)∈N

f̂(l,m) f̂ ∗(l′,m′)√
(2l + 1)(2l′ + 1)

G−1
ψ (l) ψ̂∗aj

(l, 0) ψ̂aj
(l′, 0)

2Bj−1∑
p,q=0

wjp Y
k
l (ωjpq)Y

k′∗
l′ (ωjpq).

If l + l′ < Bj, the order of the product Y m
l Y

m′

l′ is equal to l + l′ and the
weights ωjp constitute the quadrature [4, 5]

2Bj−1∑
p,q=0

wjp Y
m
l (ωjpq)Y

m′∗
l′ (ωjpq) =

∫
S2

dµ(ω) Y m
l (ω)Y ∗m′

l′ (ω) = δll′δmm′ ,

(44)
for all |m| ≤ l and |m′ ≤ l′|.

The sum S is separated in two parts:

S =
∑
j∈N

2Bj−1∑
p,q=0

∑
(l,m)∈N
(l′,m′)∈N
l+l′<2Bj

. . . +
∑
j∈N

2Bj−1∑
p,q=0

∑
(l,k)∈N (l′,m′)∈N

l+l′≥2Bj

. . .

= C +D.

The first part C, where (44) is reduced to

C =
∑
j∈N

4πνj
∑

(l,m)∈N
l<Bj

1

(2l + 1)
|f̂(l,m)|2G−1

ψ (l) |ψ̂aj
(l, 0)|2

=
∑

(l,m)∈N

|f̂(l,m)|2
∑
j∈N

4πνj
(2l + 1)

1l[0,Bj [(l)G
−1
ψ (l) |ψ̂aj

(l, 0)|2.

If the equation (43) is satisfied, then

K0‖f‖2 6 C 6 K1‖f‖2. (45)
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Now, let us develope the part D. Since Y m
l (ωjpq) = Y m

l (θjp, 0) eimϕjq , we
have

2Bj−1∑
q=0

Y m
l (ωjpq)Y

∗m′

l′ (ωjpq) = Y m
l (θjp, 0)Y ∗m′

l′ (θjp, 0)

2Bj−1∑
q=0

ei(m−m
′)ϕjq

= 2Bj Y
m
l (θjp, 0)Y ∗m′

l′ (θjp, 0)
∑
t∈Z

|m+2tBj |6l′

δm′,m+2tBj

= 2Bj

∑
t∈Z

|m+2tBj |6l′

Y m
l (θjp, 0)Y

∗m+2tBj

l′ (θjp, 0) δm′,m+2tBj
.

It tends out that

D =
∑
j∈N

8πνj Bj

∑
(l,m)∈N

∑
l′∈N

∑
t∈Z

1l[2Bj ,+∞[(l + l′) 1l[−l′,l′](m+ 2tBj)√
(2l + 1)(2l′ + 1)

×f̂(l,m) f̂ ∗(l′,m+ 2tBj)G
−1
ψ (l)

×ψ̂∗aj
(l, 0) ψ̂aj

(l′, 0)

2Bj−1∑
p=0

wjp Y
m
l (θjp, 0)Y

∗m+2tBj

l′ (θjp, 0).

Consequently, we have

|D| 6
∑
j∈N

8πνj Bj

∑
(l,m)∈N

∑
l′∈N

∑
t∈Z

1l[2Bj ,+∞[(l + l′) 1l[−l′,l′](m+ 2tBj)√
(2l + 1)(2l′ + 1)

×|f̂(l,m)| |f̂(l′,m+ 2tBj)|Gψ(l)−1

×|ψ̂aj
(l, 0)| |ψ̂aj

(l′, 0)|
2Bj−1∑
p=0

wjp |Y m
l (θjp, 0)| |Y m+2tBj

l′ (θjp, 0)|

6
∑
j∈N

4πνj
∑

(l,m)∈N

∑
l′∈N

∑
t∈Z

|f̂(l,m)| |f̂(l′,m+ 2tBj)| 1l[−l′,l′](m+ 2tBj)

1l[Bj ,+∞[(l + l′)G−1
ψ (l) |ψ̂aj

(l, 0)| |ψ̂aj
(l′, 0)|

where we have used the fact, that |Y m
l | 6

√
2l+1
4π

pour tout (l,m) ∈ N , and

that
∑2Bj−1

p=0 wjp = 4π
2Bj

.

12



The sums over m and t can be bounded because∑
t∈Z

∑
|m|6l

|f̂(l,m)| |f̂(l′,m+ 2tBj)| 1l[−l′,l′](m+ 2tBj)

6
∑
t∈Z

[ ∑
|m|6l

|f̂(l,m)|2 1l[−l′,l′](m+ 2tBj)
] 1

2
[ ∑
|m|6l

|f̂(l′,m+ 2tBj)|2 1l[−l′,l′](m+ 2tBj)
] 1

2

6
[∑
t∈Z

∑
|m|6l

|f̂(l,m)|2 1l[−l′,l′](m+ 2tBj)
] 1

2
[∑
t∈Z

∑
|m|6l

|f̂(l′,m+ 2tBj)|2 1l[−l′,l′](m+ 2tBj)
] 1

2

6
[ ∑
|m|6l

|f̂(l,m)|2
[2l′ + 1

2Bj

+ 1
]] 1

2
[∑
t∈Z

l+2tBj∑
m′=−l+2tBj

|f̂(l′,m′)|2 1l[−l′,l′](m
′)
] 1

2

6
[ ∑
|m|6l

|f̂(l,m)|2
[2l′ + 1

2Bj

+ 1
]] 1

2
[∑
t∈Z

l′∑
m′=−l′

|f̂(l′,m′)|2 1l[−l,l](m
′ − 2tBj)

] 1
2

6
[ ∑
|m|6l

|f̂(l,m)|2
[2l′ + 1

2Bj

+ 1
]] 1

2
[ ∑
|m′|6l′

|f̂(l′,m′)|2
[2l + 1

2Bj

+ 1
]] 1

2

6 (2Bj)
−1
(
2(l +Bj) + 1

) 1
2
(
2(l′ +Bj) + 1

) 1
2
[ ∑
|m|6l

|f̂(l,m)|2
] 1

2
[ ∑
|m′|6l′

|f̂(l′,m′)|2
] 1

2 ,

applying the Cauchy-Schwarz inequality on the sum over m, and after this
on the sum over t. From here it follows:

|D| 6
∑
l,l′∈N

[ ∑
|m|6l

|f̂(l,m)|2
] 1

2
[ ∑
|m′|6l′

|f̂(l′,m′)|2
] 1

2

χ(l, l′)

with

χ(l, l′) =
∑
j∈N

2πνj cj(l, l
′)

Bj

1l[2Bj ,+∞[(l + l′)G−1
ψ (l) |ψ̂aj

(l, 0)| |ψ̂aj
(l′, 0)|.

and cj(l, l
′) =

(
2(l +Bj) + 1

) 1
2
(
2(l′ +Bj) + 1

) 1
2 .

Putting F 2
l =

∑
|m|6l |f̂(l,m)|2, by the Cauchy-Schwartz inequality, we

obtain

|D| ≤
∑
l∈N

Fl
∑
l′∈N

χ(l, l′)Fl′

≤ ‖F‖‖XF‖
= ‖f‖‖XF‖,

avec F = (Fl)l∈N, ‖F‖2 =
∑

l∈N |Fl|2 = ‖f‖2, X =
(
χ(l, l′)

)
l,l′∈N et (XF )l =∑

l′∈N χ(l, l′)Fl′ .
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If (43) is verified, we have

|D| ≤ ‖f‖ ‖X‖ ‖f‖ = δ ‖f‖2,

with the norm

‖X‖ = sup
(Gl)l∈N

‖XG‖
‖G‖

.

The proof of the theorem is done with the fact that

0 < (K0 − δ)‖f‖2 < C − |D| 6 S 6 C + |D| < (K1 + δ)‖f‖2 < ∞.

�
The evaluation of ‖X‖ could be complex in case when the character of

X is infinite. However, in the practice we work on functions f ∈ L2(S2)
at limited band, namely, f̂(l,m) = 0, for all l ≥ B, where B ∈ N∗ is the
bandwidth of f . Consequently, ‖X‖ could be changed with the norm of the
finite matrix (Xl,l′ )0≤l,l′<B.

We have estimated the bounds of a spherical DOG wavelet frame choosing
a scale, dyadicaly discretized with

aj =
a0

2j
, a0 = 1, j ∈ Z, (46)

and the bandwidth, associated to the grid size supporting each resolution j,
was fixed at

Bj = B02
|j|, B0 ∈ N, (47)

where B0 is the mimnimal bandwidth associated to ψ1.
The Table 3 presents the results of the evaluation of K0, K1 and δ as well

as the bounds of the associated frames. One can see that for B0 ≥ 4, the

K0 K1 δ A = K0 − δ B = K1 + δ B/A
B0 = 2 0.6807 0.7700 84.1502 − − −
B0 = 4 0.7402 0.7790 0.0594 0.6808 0.8384 1.2314
B0 = 8 0.7402 0.7790 0.0014 0.7388 0.7804 1.0564

Table 3: Evaluation of K0, K1 and δ on the fonctions f ∈ L2(S2) at band-
width 64.

condition (43) is reached. A strict frame cannot be reached while we increase
B0. Actually, if B0 tends to infinity, the spherical grids at each resolution
gets finer and finer and we approch to the half-continuous frames, but (it
is shown) in the previous section, the discretization of the scale only, is not
sufficient.
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3 Conclusions and Future Work

Conditions on the existence of half-continuous and discrete spherical frames
have been established from the (stereographical) spherical CWT. An exam-
ple of a discrete frame using the results of Theorem 2.2.1 has still to be
designed. These techniques could serve for instance to discover the Gaus-
sian anisotropies in the astronomical Cosmic Microwave Background [7], or
to track the orientations in R3 of fibre in the human brain connectivity [8].
Some works in that sense are currently undertaken by some of us.

4 Acknowledgements

I.B. and P.V. acknowledge the support of the Swiss National Science Foun-
dation through grant 200021− 101880/1.

M.M. acknowledges the financial support provided through the European
Union’s Human Potential Programme, under contract HPRN-CT-2002-00285
(HASSIP)

References

[1] S.T. Ali, J-P. Antoine and J-P. Gazeau. Coherent States, Wavelets, and
their Generalizations. Spring-Verlag, New York 2000.

[2] J-P. Antoine and P. Vandergheynst, “Wavelets on the 2-Sphere: a Group
Theoretical Approach,” Appl. Comput. Harmon. Anal., vol. 7, pp. 1–30,
Aug. 1999.

[3] J-P. Antoine, L. Demanet, L. Jacques and P. Vandergheynst, “Wavelets
on the Sphere: Implementations and Approximations,” in Appl. Com-
put. Harmon. Anal., vol. 13, pp. 177–200, 2001.

[4] J. Boyd, Chebishev and Fourier Spectral Method. 49 of Lecture Notes in
Engineering, Springer, Verlag 1989.

[5] J. R. Driscol and D.M. Healy, “Computing Fourier Transformd and Con-
volutions on the 2-Sphere,” Advances in Applied Mathematics, vol. 15,
pp.202–455,1994.

[6] W. Freeden, T. Gervens, M. Schreiner. Constructive Approximations
on the Sphere: With applications to Geomathematics. Clarendon Press,
Oxford 1998.

15



[7] E. Martinez-Gonzalez, J.E. Gallegos, F. Argueso, L. Cayon, and J.L.
Sanz, “The performance of spherical wavelets to detect non-Gaussianity
in the CMB sky,” Mon. Not. R. Astron. Soc., (to appear); preprint
arXiv:astro:ph/0111284 (Nov. 2001)

[8] P. Hagmann, J. Thiran, L. Jonasson, P. Vandergheynst, S. Clarke,
P. Maeder, and R. Meuli, “DTI mapping of human brain connectivity:
statistical fibre tracking and virtual dissection,” Neuroimage, 19(3):545–
554, July 2003.

16


