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ABSTRACT

In this paper we describe a new approach for the multi-
track initiation problem. We propose an extensive use of the
top-view reconstruction of the scene to solve the detection
step in tracking pedestrians. We leave a large set of start-
ing hypothetical moving objects free to evolve in the scene
for a certain number of frames. The number of trajecto-
ries is pre-filtered using distance and direction constraints
on a one-step movement of pedestrians. The output trajec-
tories from pre-filtering step are then filtered using a dis-
crete choice model for pedestrian behavior, calibrated on
real data. The results show that is possible to use this tech-
nique to perform multitarget tracking in real situations. We
particularly focus on an application in the context of auto-
matic video surveillance.

1. INTRODUCTION

Automated visual surveillance has a variety of potential ap-
plications. Detection and tracking of suspicious moving ob-
jects (pedestrians or vehicles) represent a fundamental task
in this context. There are two main approaches in the field
of object tracking algorithms. A class of algorithms uses
differential techniques based on the assumption that the ob-
ject does not move much from one frame to the next and
employing a local search around the previous object posi-
tion to locate the moving object on the next frame ([1]). The
drawback of these techniques is that large displacements are
not supported.
Another class of algorithms makes use of feature detection
([2]). Multiple hypothesis tracker (particle filters) ranks the
possible hypothesis in order of likelihood. It supposes that

the correct hypothesis is retained. In this case, tracking fil-
ters have been proposed using the state-space based model-
ing that defines each static posture or position as a state and
describes a motion sequence by the composition of these
states with some transitional probabilities ([3]).
In both approaches the data processing includes track initia-
tion, maintenance, and termination. However, the proposed
techniques perform efficiently to trace the mouvement of
few moving objects. The operational efficiency decreases
dramatically when the number of targets increases. More-
over, they rarely address the problem of automatic target de-
tection, i.e. of track initiation. Finally, all these techniques
strongly depend on the image quality.
The detection problem or track initiation is the fundamental
operation of a tracking system. This operation distinguishes
objects of interest which have to be tracked ([1]). Tradition-
ally the hypothetical foreground regions are detected and
automatic target recognition is performed to reject them or
to start a track. In order to simplify the target recognition
task, the video camera must be ideally placed at the top of
the scene to avoid projection and occlusion between objects.
Search results, for nowdays, have not yet demonstrated a
segmentation method able to identify the objects that over-
lap each other within video frames.
To face these problems, we think a good discriminant to
detect target regions is their dynamic behavior. In this pa-
per we use the top-view plan to formulate behavioral con-
straints that we use to detect individuals on the image plan,
analysing their trajectories over a certain time periodT . The
top-view plan is a reconstruction of the position of each re-
gion in the real scene, obtained by a calibrated camera. In
the case of pedestrian trajectory this reconstruction gives
the position of each pedestrian on the top-view plan of the
scene and not its position projected on the image plan. The
method is robust against bad image quality and illumination
conditions in cluttered environments.
The paper is organized as follows. In section 2 we give a
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general overview of our system. In section 3 we address the
problem of the generation of the starting hypothetical mov-
ing object positions. In section 4 we discute and analyse
the behavioral constraints: top-view thresholding in the pre-
filtering step and specification and calibration of a discrete
choice model in the filtering step. In section 5 we show our
results and we give concluding remarks in section 6.

2. SYSTEM OVERVIEW

In pedestrian tracking, there is a limitation in the detec-
tion systems where the target models can not be specified
because background clutter may resemble foreground and
background subtraction yields complex and noisy foreground
regions, creating multiple peaks in a posterior distribution.
However, many previous works minimize this kind of prob-
lems in multi-object tracking by placing the cameras at a
high angle, looking down on the plane of motion of the ob-
jects (top-view plan).
In this context, we address the target detection problem by
combining a behavioral model for pedestrian dynamic (see
[4]), calibrated on real data, with a standard visual corre-
lation technique between appearance models. An overview
of our system is shown in fig 1. It is composed basically of
three modules:

• module 1is focused on generating the hypotheses for
the hypothetical moving object positions.

• module 2computes the well known correlation match-
ing and for each successive frame the correspondence
process attempts to associate the foreground regions
with one of the existing tracks.

• module 3represents the principal contribution of this
work : a behavioral-based filtering. Regions corre-
sponding to real moving objects can be retained and
false hypothesis can be rejected after a time periodT
with the pre-filtering and filtering steps.

We compute the visual displacement between a target re-
gion r̂n

t−1 at timet− 1 and the associated regionrn
t at time

t as the vector defined by themaximumof the correlation
function between the two regionsC(r̂n

t−1, r
n
t ). The visual

displacement is then projected on the top-view plan using
the parameters of the calibrated camera (height,camera axes
inclination and focal distance). The series of top-view pro-
jections of visual displacements in successive frames gives
rise to the pedestrian trajectory.
The update of the region of interest follows:

r̂n
t = λr̂n

t−1 + (1− λ)rn
t (1)

where theλ coefficient weights the contribution of the target
and the associated regions. The hypothetical trajectories on

Fig. 1. Flow data in the proposed algorithm : filtering of
hypothetical-moving objects on the top-view plan.

top-view plan are then analyzed with the proposed behav-
ioral model.

3. STARTING HYPOTHETICAL MOVING OBJECT
POSITIONS

3.1. Background subtraction

In order to reduce background effects, the correlation is per-
formed by using foreground image. Since the camera is
fixed, the background can be modelled statistically. In or-
der to detect the moving objects, we compute the differ-
ence between the background image and the current frame.
Background subtraction will reduce the amount of data to
be processed in motion estimation. From that, we obtain
a binary support layer and a foreground-object image (see
figure 2). We use the first one as a mask to place the hy-
pothetical moving object positions and the second one to
compute the visual displacements.

Fig. 2. left: binary mask,center: foreground,right : origi-
nal frame.



3.2. Hypothetical moving object positions

We initialize the algorithm using a rectangular grid of points
on the top-view plan with a resolution of 0.5m. The grid
is than projected back on the image plan and each hypo-
thetical moving object position is filtered using the binary
mask. This operation is illustrated in fig 4 (left). The choice
of a top-view grid allows greater precision and keeps the
possibility to fully use any a priori knowledge we can have
on the scene. The algorithm projects the full grid only for
the first frame as initialization step. After a periodT (e.g.
10 frames), we repeat the procedure using a smaller grid
placed along the border of the scene to be able to detect
new incoming objects.

Fig. 3. left: the approximation of the Top-View plan by the
image plan with a monocular camera,right : size estima-
tion.

An alternative to the top-view grid could be a corner detec-
tor directly on the image. Experiments done using an Harris
corner detector have shown that this technique is not flexi-
ble enough. Many corners, by definition, lie in the contour
of the target object and they do not always correspond to a
centroid in foreground regions. Moreover, with corners,it is
not possible to have the control on the number of points.

3.3. Estimation of region size

For each hypothetical moving object position we have to
associate a corresponding moving region (4, right). For

Fig. 4. left: Hypothetical positions on binary support layer,
right : An example of moving regions.

simplicity, we use a rectangular region (bounding box). To
compute the size of the bounding box, we suppose an av-
eraged height of people equal to 160 cm and we ignore
the error introduced by this approximation. In our practi-
cal application, we can estimate the size of the bounding
box by projecting the hypothetical positions from top-view
plan (see figure 3). This automatic scale selection is an use-
ful tool to distinguish regions. In this way, for each visual
tracker, we can perform a realistic partitioning (bounding
boxes). We have used a calibrated camera so we know the
camera parameters (height, camera axes inclination and fo-
cal distance).

4. BEHAVIORAL CONSTRAINTS

In this section we analyse the empirics and theory used to
filter the motion trajectories. We split this task in two steps:
pre-filteringandfiltering.

4.1. Pre-filtering

In the pre-filtering process we estimate the trajectory state
based on its past and current observations. The purpose of
this step is to analize the hypothetical displacements on top-
view plan with simple behavioral constraints. We think that
a simple thresholding on the pedestrian speed and change in
direction, as seen on the top-view plan, can be effective as
compared to any other complex propagation model made di-
rectly on the image plan. So, in this preprocessing stage, we
verify the projected displacementsdn

t and direction change
∆θn

t of the hypothetical moving objects

dn
t = pn

t − pn
t−1, (2)

∆θn
t = θn

t − θn
t−1 (3)

wherepn
t represents the position of visual trackern at time

t, andθn
t represents the direction of the displacement be-

tween the positionspn
t andpn

t−1.
In this phase of the pedestrian tracking process, we keep a
record for each visual tracker. The basic idea is to perform
the pedestrian detection looking at pedestrian dynamic. In
this spirit, we give a cumulativescoreto a pedestrian tra-
jectory over an evaluation periodT . We implement these
ideas with simple thresholds on the projected displacement
vectors defining:

It =
{

0 if ‖dn
t ‖ ≤ βd and‖∆θn

t ‖ ≤ βθ

−1 otherwise

whereβd and βθ are the thresholds on one-step distance
and direction change. TheIt is the one-step score given to a
trajectory. We assign at each tracker a starting score equal to



S0 and we decrement it at each ’bad’ step. The tracker score
ST is evaluated over a periodT assuming to accept a certain
error ε on the trajectory (it means, practically, tollerate a
certain number of ’bad’ steps). We keep the tracker if the
following condition is satisfied:

ST =
1
T

T∑
t=1

It ≥ Sinf (4)

whereSinf represents the minimum score for a good tra-
jectory. In our experiments we use:T = S0 = 10 and
ε = S0−Sinf

S0
≥ 0.3, that is equal to a margin of30% (in this

case we tollerate 3 ’bad’ steps over 10). Studies on pedes-
trian dynamics ([5]) show that the average speed value (in
free-flow conditions) of a pedestrian is about 1.34 m/s. Our
frame rate is 10 fps so we fixβd to 13 cm. With analogous
considerations we setβθ to 120 degrees.

4.2. Filtering

The top-view thresholds on distance and change direction
give us the input trajectories for the calibrated behavioral
model.
We use discrete choise theory to build the behavioral model.
This choice originates from the large success these tech-
niques have found in other domains as market forecasting
and traffic simulations. Discrete choice models in general
and random utility models in particular are disaggregate be-
havioral models designed to forecast the behavior of indi-
viduals in choice situations.
In our case, a pedestrian is a decision maker involved in the
choice process of’where to put the next step’. We consider
that at each step, a pedestrian has a discrete space structure
where he/she can walk on. The discretization of the space
is dynamicand individual-based, that is, it depends on the
current speed and direction of pedestrian (see fig 5). The
origin point is the current position of pedestriani while the
distancesdmax, dmedanddmin are related to the current
individual speedV c

i as follow:

V max
i = V c

i ∗ 1.5; dmax= V max
i ∗∆T ; (5)

V med
i = V c

i ; dmed= V med
i ∗∆T ; (6)

V min
i = V c

i ∗ 0.5; dmin= V min
i ∗∆T ; (7)

∆T is the time step between two successive observations in
the data collection process for the model estimation.
Each cell represents an alternative which is described by
an utility function. Such utility function is composed by
a deterministic term, consisting of a combination of some
attributesdescribing the alternatives, and a stochastic term
that has to capture the correlation structure between the dif-
ferent alternatives ( for more information about discrete choice

current
direction

dmax

dmed

dmin

origin

Fig. 5. The space model.

models see [6],[7]). The output of the model is a set of prob-
abilities describing each alternative. In this context we use
the following expression for the utility functionUij of the
cell i, as perceived by decision makerj:

Uij = β1 ∗destinationi +β2 ∗directioni +β3 ∗speedi (8)

where the three attibutes are defined as follows:

1. destination: if we consider the triangle that has for
vertex the current pedestrian position, the destination
point (the last position in the current pedestrian tra-
jectory) and the center of the celli, the destination
value is the angle at the current pedestrian vertex. It
represents the angle between the celli and the final
destination.

2. direction: represents the angle between the celli and
the current pedestrian direction.

3. speed: is the module of the difference between the
current pedestrian speed and the speed that character-
izes the celli.

The behavioral model has been calibrated using pedestrian
trajectories manually grabbed from real video sequences
and the values ofβ parameters estimated from this data. We
have used a Cross Nested Logit model in such a way to have
a more flexible structure in the correlation between alterna-
tives (see [7]). In our model we have defined the nest struc-
ture considering that one alternative can beaccelerated, not
accelerated, centralandnot central. This correlation struc-
ture is illustrated in figure 6.
The model parameters have been estimated using the Bio-
geme package (see [8]). The general formulation of the
CNL model is derived from the Generalized Extreme Value
(GEV) model ([9]). The probability of choosing alternative
i within the choice setC of a given choice maker is (see
[7]):
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Fig. 6. left: Nesting based on speed,right: Nesting based
on direction.

P (i|C) =
yi

∂G
∂yi

(y1, ..., yJ)

µG(y1, ..., yJ)
(9)

basing on the following generating function:

G(y1, ..., yJ) =
∑
m

∑
j∈C

αjmyµm

j


µ

µm

(10)

The first derivative ofG is:

∂G

∂yj
= µ

∑
m

αjmyµm−1
j

∑
j∈C

αjmyµm

j


µ

µm
−1

(11)

We fix the degrees of membership to the different nests
(αjm) to the constant value 0.5.
In our context, each step done by a pedestrian along its tra-
jectory is characterized by a probability value. We give a
mark to the trajectoryk based on the cumulative value of
probabilities and compare it with a threshold to filter out the
human trajectoriesin the sense of our behavioral model:

Mk =

∑l=L
l=1,j∈Cn

Pjl∑l=L
l=1,j∈Cn

max Pjl

≥ th (12)

wherej ∈ Cn is the alternativej in the choice setCn,
l is the current step andL is the number of steps in the
trajectoryk. The denominator is a normalization term so
0 ≤ Mk ≤ 1.

5. RESULTS

We initialize the top-view grid on an area of20×100 m2 at
a resolution of0.5 m and we work on a test sequence of 150
frames. We show the results ofpre-filteringstep in table 1
and those forfiltering in figure 7.1

In thefiltering step we fix the threshold to 0.2. This corre-
spond to 30 trackers, correctly placed on pedestrians in the

1The interested reader can find the elaborated video
sequences at http://ltswww.epfl.ch/ltsftp/Venegas and
http://ltswww.epfl.ch/ltsftp/antonini

Step Number of trackers
Top-View grid20× 100m2 at0.5 m 8000

Foreground mask 598

Pre-filtering 68

Table 1. Results ofpre-filteringstep.
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Fig. 7. The number of filtered trackers varying the threshold
value of eq. 12.

scene (see figure 9)2. In figure 8 we show an example of
pre-filtered and filtered trajectories.

Fig. 8. left: Pre-filtered trajectories,right : Filtered trajec-
tories.

The results show how the behavioral constraints allow the
large number of starting hypothetical positions to converge
towards the correct targets. We show in figure 10 the target
regions associated with good and bad trajectories.

2To be precise, the bounding-boxes are displayed just when their move-
ment fall in the pre-filtering limits. So the displayed trackers in fig.9 are
less than 30, but the number of trajectories we keep is exactly the number
resulting from the filtering step (30)



Fig. 9. A frame from the original sequence and one from
the elaborated sequence.

Fig. 10. Different target regions associated with different
trajectories: trackers 10 and 11 are not well placed. On the
contrary, targets 29 and 30 are well centered.

6. CONCLUSION AND FUTURE RESEARCH

In this paper we have approached the initiation step of the
multi-target tracking problem using behavioral constraints
formulated on the top-view plan and projected back on the
image plan. This operation allows us to well detect pedes-
trians in cluttered environments. The approach is robust
against bad image quality and resolution. A drawback of
our approach is the presence of multiple trackers on the
same target (for example, on different parts of the human
body). We are currently working to merge the trajectories
generated by these trackers to have a statistical evaluation
about the number of pedestrians in the scene.
We aim also to improve the system by incorporating fore-
ground modeling such as statistical models or shape-template.
Finally, we aim to integrate an extended version of the be-
havioral model (taking into account interactions between
individuals) in a non-linear non-gaussian state space frame-
work. The purpose is to use the model to predict movements
in the construction of human trajectories.
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