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Abstract

We present a deep study of the performance of tissue modelization and classification techniques for T1-weighted
MR images. It is assumed that only T1-weighted MR image modality is available. The methods presented here were
selected to represent the whole range of prior information that can be used in the classification, i.e. intensity, spatial
and anatomical priors. First, we consider the finite Gaussian mixture model (A-FGMM) with a Bayes classification.
The second method is closely related to A-FGMM but also considers a hidden Markov random field (HMRF) model
to account for spatial prior information. For this model, the maximum a posteriori (MAP) criterion is used as the
classification decision rule. Third, we study a tissue model that assumes the mixture tissues to be probablistically
modeled by the linear combination of their correspondent pure Gaussian tissue densities (C-GPV). Here again, Bayes
classification is used for the final classification. The fourth method, D-GPV-HMRF, uses the same image model as
method C-GPV, but it also encodes spatial information by a hidden Markov random field as done in method B-HMRF.
The fifth algorithm does not model the tissue classes by parametric probability densities, but rather by non-parametric
models. As a result, the probabilistic tissue model and the classification criterion can not be distinguished anymore,
but are directly interdependent. The resulting algorithm minimizes an information theortic quantity, called the error
probability (E-EP). The final method is also non-parametric, but again adds a HMRF to model spatial prior information
(F-NPHMRF). All methods have been tested on Digital Brain Phantom images for which the classification ground truths
were known. Noise and intensity non-uniformities were added to simulate real imaging conditions. No enhancement of
the image quality is considered either before or during the classification process. This way robustness and accuracy of
the methods is tested in front of the image artifacts. Results demonstrate clearly that methods relying on both, intensity
and spatial information, are in more robust to noise and field inhomogeneities. We demonstrate also that partial volume
(PV) is still not perfectly modeled, even though methods that account for mixture classes outperform methods that just
consider pure classes.

I. Introduction

Accurate and robust brain tissue segmentation from MR images is a key issue in many applications
of medical image analysis [1] and, particularly, in the study of many brain disorders [2], [3]. Manual
tracing of the three brain tissue types, white matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF), in MR images by an expert is far too time consuming as the data involved in most studies
is large. On the other hand, automated and reliable tissue classification is a demanding task as the
intensity representation of the data normally does not allow a clear delimitation of the different tissue
types present in a natural MRI. This is due to the partial volume (PV) effect (presence of more than one
brain tissue type in a voxel), image noise and intensity non-uniformities caused by the inhomogeneities
in the magnetic field of the MR scanner.
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Two main groups can be distinguished in statistical classification: supervised and non-supervised
methods. Supervised classification techniques, also called semi-automatic methods, explicitly need user
interaction while non-supervised classification is completely automatic. Actually, a large number of
approaches have been proposed to deal with the MR brain image classification problem but a complete
review of all these classification methods is beyond the purpose of this chapter. However, let us briefly
present a state of the art of the automatic segmentation methods.

Statistical parametric approaches are widely used for brain MR image segmentation. These ap-
proaches usually solve the estimation problem of assigning a class label to a voxel with a suitable
assumption about the intensity distribution but the classification can be made also by the estimation
of the relative amounts of the various tissue types within a voxel rather than assigning each voxel
to one single tissue type [4], [5]. Actually, parametric classification methods try to solve a twofold
problem: on one hand, the classification which is an easy task if the tissue type model is good while,
on the other hand, the parameter estimation of the tissue class which is an easy task if all the voxels
within this class are known. Finite Gaussian Mixture (FGM) models assume a Gaussian distribution
for the intensities of the main brain tissues [6]: GM, WM, and CSF. Other algorithms [7] add separate
classes to take into account the PV voxels and model them also by independent Gaussian densities.
In more elaborate methods [8] mixing proportions are taken into account to build a more realistic
model for PV voxels which differs from a Gaussian distribution. However, some of the finite mixture
(FM) models have the limitation of not considering the spatial information. That is the reason why
increasing attention has been paid recently to methods that model the mixing proportions of the PV
voxels by a Markov Random Field (MRF) [9]. Finally, non-parametric classification techniques can
be considered when no well justified parametric model is known [10], as for instance the intra-class
statistics.

As in the case of registration and atlas-based segmentation, validation of brain tissue classification
is a complex issue in medical image processing. Visual inspection and comparison with manual seg-
mentation are labor intensive and almost not reliable since the amount of data to deal with is usually
large. Tissue classification methods can also be assessed by using synthetic data even if these kind of
images can hardly capture the complexity and the artifacts present in a MRI. There is however the
possibility to validate brain tissue segmentation methods on a brain phantom [11]. This phantom is
very well-suited for this purpose since a ground-truth classification is known while different types of
T1w MR modalities and image artifacts can be reproduced.

The goal of this work is to assess the robustness and accuracy of some of the most used unsupervised
classification methods. In this comparative analysis and validation only T1w MR brain image are
considered. The goal is to be able to specify the most suitable tissue classification technique depending
on the different conditions that could be encountered in T1w MR brain image. The work presented
here is the continuation of [12].

This paper is organized as follows. First, in Section II, the general theory used in this work for both
intensity and spatial prior models is presented. Section III and Section IV briefly introduce the basic
theoretical concepts of the classification criteria and parameter estimation. Then, in Section V and
Section VI, the methods analyzed in this comparative study are summarized. Next, Section VII and
Section VIII, the classification results and their validation are discussed. Finally, important conclusions
resulting from the presented work are given.

II. Image model

A. Intensity distribution model

In this thesis, the theory behind the intensities in T1w MR brain images is similar to the one
introduced by Noe et al. [5]. Its main concepts are recalled in what follows.

Let us index N data points to be classified with i ∈ S = {1, 2, ..., N}. In the case of 3D images,
such as MR images, they index the image’s voxels. Let us furthermore denote the data feature vectors
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by yi ∈ R. In the case of classification of single MR images, yi represent the ith-voxel intensity. Y
is the random variable associated to the data features yi, with the set of possible outcomes, D. Any
simultaneous configuration of the random variables, Yi, is denoted by y = {y1, y2, ..., yN} ∈ DN ⊂ R

N.
The classification process aims to classify the data S into one of (hidden) underlying classes present in

the image labelled by one of the symbols L = {CSF,GM,WM,CG,CW,GW,CGW}1. The family of
random variables X represents these classes, x = {x1, x2, ..., xN} ∈ LN denotes a possible configuration
of X, and X is the space of all possible configurations.

Now, let us suppose that all the random variables, Yi, are identically and independently distributed.
Then, the probability density function of the intensity voxel can be defined by:

P (yi) =
∑

∀xi∈L

P (xi)P (yi|xi), (1)

where i ∈ S, P (xi) is the probability of the tissue class xi and P (yi|xi) is the probability density
function of yi given the tissue class xi.

The simplest intensity model that could be used considers only the three pure tissues of the brain,
that is, Lp = {CSF,GM,WM} and the probability density function for the observing intensity yi

given the pure tissue class xi is given by the Gaussian function:

P (yi|xi) =
1

σxi

√
2π

Exp

[−(yi − µxi
)2

2σ2
xi

]
, xi ∈ Lp. (2)

where the model parameters θxi
= {µxi

, σxi
} are respectively the mean and variance of the Gaussian

function. This is a good approximation since the noise present in a MRI follows a Rician distribution
that, at high signal-to-noise ratio (SNR), can be modelled by a Gaussian distribution2.

In this thesis, a more evolved intensity model that adds to the main brain tissues their most impor-
tant mixtures is used, i.e., Lpm = {CSF,GM,WM,CG,GM}3. A voxel containing only a pure tissue
is still modelled by a Gaussian distribution while a mixture voxel is modelled as suggested in [8] by

P (yi|xi, α) =
1

σxi
(α)

√
2π

Exp

[−(yi − µxi
(α))2

2σ2
xi

(α)

]
, xi ∈ Lpm\Lp, (3)

where the two pure tissues composing the mixture voxel are denoted by l1, l2 ∈ Lp, and α is a uniformly
distributed random variable that represents the fraction of l1 present in the mixture voxel (then, tissue
l2 is present in a fraction of 1 − α). The mean and variance of the mixture are determined by the
model parameters of the pure tissues:

µxi
(α) = αµl1 + (1 − α)µl2 (4)

σ2
xi

(α) = α2σ2
l1

+ (1 − α)2σ2
l2
. (5)

Finally, the probability density function of a partial volume tissue is computed by

P (yi|xi) =

∫ 1

0

P (yi|xi, α)dα. (6)

The integral in Eq. (6) is numerically computed and its form can largely vary depending on the
parameters θl = {µl, σl}. Some particular cases of Eq. 6 are plotted in Fig. 1. It can be observed that

1CG, CW, GW and CGW are the mixtures of CSF+GM, CSF+WM, GM+WM, and CSF+GM+WM, respectively.
2Note that for low SNR, i.e. the background image, the Rician noise can be modelled by a Rayleigh distribution.
3CW and CGW are not considered because these mixtures are uncommon, and thus P (CW ) and P (CGW ) are not relevant in

explaining P (y).
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Fig. 1. Plot of Equation 6 varying σl1
and σl2

with (a) µl1
= 50 and µl2

= 150 and (b) µl1
= 150 and µl2

= 200.

the probability density function of the mixture between two pure tissues, l1 and l2, varies depending
on how much different σl1 and σl2 are and also depending on the difference between µl1 and µl2 .

Note that this more evolved intensity model that includes some mixture tissues does not actually
add any additional parameter to the 3-class model. Only the weight of each new tissue type (P (CG)
and P (GW )) should be also considered.

B. Spatial distribution model

B.1 Markov Random Fields

The spatial information can be encoded in terms of correlated pixels using the theory of Markov
Random Fields (MRF) to characterize relationships between spatial features [9]. The MRF theory, as
in the case of Markov chains, considers that the dependence of one voxel state on the whole image
information can be reduced to the information contained in a local neighborhood.

Then, all the sites in the image S are related with a neighborhood system N = {Ni, i ∈ S}, where
Ni is the set of sites neighboring i, with i /∈ Ni, and i ∈ Nj ⇔ j ∈ Ni. A random field x is said to be
a MRF on S with respect to a neighborhood system N if and only if

P (x) > 0,x ∈ X , and, (7)

P (xi|xS−{i}) = P (xi|xNi
), (8)

where xi denotes the current estimate at location i, and xS−{i} denotes all the locations at S except i.
According to the Hammersley-Clifford theorem, an MRF can be equivalently characterized by a Gibbs
distribution,

P (x) = Z−1e−U(x,β), (9)

that has several free parameters to be determined: the normalization factor Z, the spatial parameter
β, and the energy function U(x). Let us briefly discuss in what follows how these parameters can be
determined in the particular framework of image segmentation.

B.2 The energy function U(x)

First, the choice of the energy function is arbitrary and there are several definitions of U(x) in
the framework of image segmentation. A complete summary of them is done in [13] where a general
expression for the energy function is denoted by

U(x|β) =
∑

∀i∈S

(
Vi(xi) +

β

2

∑

j∈Ni

Vij(xi, xj)

)
. (10)
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This is known as Potts model with an external field, Vi(xi), that weighs the relative importance of
the different classes present in the image. Eq. (10) can be for instance modelled by an Ising model
at 2 states [4]. However, the use of an external field includes additional parameter estimation, thus
this model is less used in image segmentation [14]. Instead, a simplified Potts model with no external
energy, Vi(xi) = 0, is used. Then, only the local spatial transitions are taken into account and all the
classes in the label image are considered equally probable. The key point is how to model Vij(xi, xj)
to guide the final segmentation, x̂, as near as possible to the real image x∗. They can be defined for
instance as in [9]:

Vij(xi, xj) = δ(xi, xj) =

{
−1 if xi = xj

0 otherwise.
(11)

Intuitively, the equation above encourages one voxel to be classified as the tissue that the most of its
neighbors belongs to. However, this model does not take into account the distance between neighbors
but the class they belong to. It is not moreover well suited to model partial volume since it tends to
eliminate it. A more evolved function is used in this work as proposed in [15], [16]:

Vij(xi, xj) =
δ(xi, xj)

d(i, j)
, (12)

where,

δ(xi, xj) =





−2 if xi = xj

−1 if they share a tissue type

+1 otherwise,

(13)

and d(i, j) represents the distance between voxels i and j. With this energy function configurations
that are not likely to occur (e.g. CSF inside WM) are penalized while smooth transitions, more likely
to occur in a brain (e.g. WM next to the partial volume GW), are encouraged.

B.3 The spatial parameter β

The spatial value of β controls the influence of the spatial prior over the intensity. Note that its
influence on the final segmentation4 is important. β = 0 corresponds to a uniform distribution over
the L possible states, that is, the maximization is done only on the conditional distribution of the
observed data P (y|x) (Eq. (61)). On the contrary, if the spatial information is dominant over the
intensity information, that is β → ∞, MAP tends to classify all voxels to a single class [13].

The value of β can be estimated by ML estimation. However, many problems arise due to the
complexity of MRF models and alternative approximations have to be done (for instance, Monte-
Carlo Simulations or by maximum pseudo-likelihood [17]). The β parameter can be also determined
arbitrarily as proposed in [18] by gradually increasing its value over the algorithm iterations. Here,
the value of β has been fixed empirically by choosing the one that results in a better classification on
a training set. In this work, β is fixed to 1.2.

B.4 The normalization factor Z

Fianlly, the normalization factor of Gibbs distribution is theoretically well-defined as

Z(U) =
∑

x

e−U(x,β), (14)

4Note that classification is done here by MAP estimation and this requires the application of the ICM algorithm. We refer to
Appendix B for more details.



ITS TECHNICAL REPORT 0504 - BRAIN GROUP - FEBRUARY 2004 6

but it requires a high computational cost or it is even intractable since the sum among all the possible
configurations of x is usually not known [19]. Note also its dependence on the definition of the energy
function U . Instead, the conditional probabilities P (x|xNi

) can be easily normalized by forcing:

∑

∀xi∈Lpm

P (xi|xNi
) = 1. (15)

B.5 Hidden Markov Random Fields

The theory of a Hidden Markov Random Field (HMRF) model is derived from Hidden Markov Models
(HMM), which are defined as stochastic processes generated by a Markov chain whose state sequence
cannot be observed directly (X), only through a sequence of observations (Y). Here we consider the
special case since, instead of a Markov chain, a MRF will be used as the underlying stochastical
process. The concept of a hidden MRF is different from that of an MRF, in the sense that HMRF
is defined with respect to a pair of random variable families (X,Y ) while MRF is only defined with
respect to X.

In summary, a HMRF model is characterized by the following:
1. Hidden Random Field (MRF): X = {Xi, i ∈ S} is an underlying MRF assuming values in a
finite state space L with probability distribution as defined in Eq. 9. The state of X is unobservable.
2. Observable Random Field: Y = {Yi, i ∈ S} is a random field with a finite state space D. Given
any particular configuration x ∈ LN , every Yi follows a known conditional probability distribution
P (yi|xi) of the same functional form f(yi; θxi

), where θxi
are the involved parameters. This distribution

is called the emission probability function and Y is also referred to as the emitted random field.
3. Conditional Independence. For any x ∈ LN , the random variables Yi are supposed to be
independent, which means that

P (y|x) =
∏

i∈S

P (yi|xi). (16)

Based on this, the joint probability of (X,Y ) can be written as

P (y,x) = P (y|x)P (x) = P (x)
∏

i∈S

P (yi|xi). (17)

According to the local characteristics of MRF’s, the joint probability of any pair of (Xi, Yi), given Xi’s
neighborhood configuration XNi

, is

P (yi, xi|xNi
) = P (yi|xi)P (xi|xNi

). (18)

So now it is possible to compute the marginal probability distribution of Yi dependent on the parameter
set θ (in this case θ is treated as a random variable) and XNi

,

P (yi|xNi
, θ) =

∑

∀xi∈L

P (yi, xi|xNi
, θ)

=
∑

∀xi∈L

P (xi|xNi
)P (yi|θx),

(19)

where θ = {θxi
, xi ∈ L}. A density function of this form is called finite mixture (FM) density.

The conditional densities P (yi|θxi
) are called component densities and, in this case, they encode the

intensity information. The a priori probabilities P (xi|xNi
) are the mixing parameters and they encode

the spatial information.
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C. Anatomical prior model

In the previous section, the mixing parameters of the FM model encode the local spatial information.
Other additional information could be used to define the energy function (Eq. (10)). For instance, for
each tissue class, the probability of a voxel belonging to the class can be obtained after the registration
with a probabilistic atlas. Intuitively, in this case, the accuracy of including the prior probability
information depends on the errors of the registration process. It is not obvious where the anatomical
prior probability should be introduced. It could be for instance included in the classification process
as:

x̂ = arg max
x∈X

{P (y|x)P (x)PA(x)}, (20)

where PA(x) is the anatomical prior probability, according the chosen template. However, as proposed
in [5], the anatomical probability influence can be better controlled if it is included in the energy
function U(x) by

Vij(xi, xj) =
δ(xi, xj) − γPA(xi)

d(i, j)
, (21)

where γ is a constant defined to control the influence of the probability maps over the local spatial
information. Note that no external energy is considered.

No prior anatomical information of mixture tissues is usually considered in a class template. Then,
anatomical prior of partial volume voxels can be computed from the pure tissue probability composing
the mixture as proposed in [5]:

PA(x) = 2
√

PA(l1)PA(l2), x ∈ Lpm, and l1, l2 ∈ Lp (22)

That is, PV voxels are assumed to be most likely at locations where the anatomical prior probability of
both pure tissues within the voxels are high. Of course, Eq. (22) is arbitrary and its validity depends,
in this case, on how the reference image used to assess the results is constructed. For instance, the
reference image used here considers a most relaxed assumption of having a mixture tissue voxel when
both pure tissues probabilities are different from zero. So, pure tissue and new mixture anatomical
priors are arbitrarily raised to the power of εp and εm respectively in order to widen (ε < 1) or shrink
(ε > 1) the tissue borders:

P
′

A(xi) = P
εp

A (xi), xi ∈ Lp, (23)

and,
P

′

A(xi) = P εm

A (xi), xi ∈ Lpm \ Lp, (24)

where P
′

A(x) denotes the new anatomical probability maps. Finally, all the probability maps are
normalized so that they sum up to unity over all tissue classes.

III. Classification criteria

A. Cost function

The notion of cost function should be recalled before introducing the Bayesian criterion. The
classification process can be seen as an estimation problem: using the available data, the real value
of the unknown labelling configuration, denoted by x∗, is estimated by x̃, where both are a particular
realization of random field X. The elementary cost function is defined as [20]:

L : L × L → R+ (25)

L(x̃, x∗)

{
= 0 ⇔ x∗ = x̃

> 0 otherwise
(26)
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B. Bayesian criterion

The Bayesian estimation assumes that a cost function L is defined and that a posteriori distribution
p(x|y) and an observation y of Y are known. Then, the objective is to find an estimator x̃ that
minimizes the Bayes risk, that is, the expected cost. Mathematically,

L(x̃) = E[L(x̃, X)|Y = y], (27)

is the expected cost and,
x̂ = arg min

x∈L
L(x) (28)

is the Bayesian estimation of x∗.
The Bayesian strategy is optimal in the sense of the minimization of error probability. In fact,

among all the other strategies it is the one for which the average cost is minimal.
Different cost functions can be defined. For instance, if a quadratic cost function is defined as

L(x̃, x∗) = (x∗ − x̃)2, (29)

the Bayes estimator is called Minimum Mean Squared Error (MMSE) estimator and it corresponds
to the conditional mean of the posterior probability density function p(x|y). If the cost function is
defined by the absolute error

L(x̃, x∗) = |x∗ − x̃|, (30)

the Bayesian estimate is called Minimum Mean Absolute Error (MMAE) estimator and it corresponds
to the median of p(x|y).

C. Maximum a posteriori (MAP)

If the cost function is uniform,

L(x̃, x∗) =

{
0, ⇔ x∗ = x̃,

1, otherwise,
(31)

the Bayes estimator is reduced to a Maximum a posteriori estimator (MAP). That is,

L(x) = 1 − P (x|y), (32)

and,
x̂ = arg min L(x) = arg max

x∈X
{P (x|y)}. (33)

Note that MMSE, MMAE and MAP are the same if the posterior probability density function is a
Gaussian.

IV. Parameter estimation of a stochastic process

It has been seen in the previous section that an optimal Bayesian classifier can be applied if the a
posteriori probability density function is known. However, a complete knowledge of the probabilistic
structure of the problem is rarely available [21] but it can be simplified if some assumptions on the
available data can be made:
• The conditional density function, P (y|x, θx), has a known parametric form and it is uniquely defined
by the value of the parameter vector θx.
• The set of unlabelled samples Y = {y1, y2, ..., yN} are independent.
In what follows, the concept of Maximum Likelihood estimate and the Expectation Maximization
algorithm used to find this estimate are briefly presented.
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A. Maximum Likelihood (ML)

Let Y = {y1, y2, ..., yN} be a set of unlabelled data with a marginal probability function (Eq. (19))
that can be written as

P (y, θ) =
∑

∀x∈Lpm

P (y, x, θx) =
∑

∀x∈Lpm

P (x)P (y|x, θx), (34)

The likelihood of the observed sample is by definition the joint conditional probability :

L(θ) = P (Y|θ) (35)

The maximum likelihood estimate θ̂ is that value of θ that maximizes L(θ):

θ̂ = arg max
θ

L(θ) (36)

Maximizing the likelihood is equivalent to making the derivative of the log-likelihood zero. The
derivative of the log-likelihood can be expressed in terms of the expectation of the gradient with
respect to the probability Pθ(x|Y , θ),

d

dθ
log(L(θ)) = E[

d

dθ
log P (Y , x, θ)] = 0. (37)

B. Expectation Maximization (EM)

Expectation Maximization (EM) is an iterative algorithm that estimates the maximum of the log-
likelihood by solving:

d

dθ
log(L(θ)) = 0. (38)

Another way to solve the above equation is to determine θ that verifies:

Eθ[
d

dθ
log P (Y , x, θ)] = 0; (39)

We can note that the unknown parameter θ appears in the expectation and in the derivative. The basic
idea of the EM algorithm is to give a current θ(k) related to the expectation to make the solution easier
(Expectation step). The algorithm is then reduced to give an initial solution θ(0) and to calculate at
the (k + 1)th step the current estimation θ(k + 1) solution of :

Eθ(k)
[
d

dθ
log P (Y , x, θ)] = 0; (40)

For any k step, this Expectation can be written as:

d

dθ
Eθ(k)

[log P (Y , x, θ)] = 0; (41)

So, the ML can be estimated by the maximization of Eθ(k)
[log P (Y , x, θ)] instead of solving the annulling

of the derivative equation (Maximisation Step). Then, the steps of the algorithm are:
 Step 0 : Choose the best initialization for θ(0).
 Step (k+1): Calculate θ(k + 1) solution of maxθ Eθ(k)

[log P (Y , x, θ)].

V. Parametric methods

Here the different parametric classification methods that participate in the comparative study are
defined in detail. The methods that model all the brain tissues having a Gaussian distribution are
described first. Then, the methods that consider a different intensity distribution for the partial volume
voxels are presented. Finally, the method that consider prior tissue templates is presented.
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A. Finite Gaussian Mixture Model: FGMM (A)

The finite Gaussian mixture model (FGMM) is one of the most commonly used approaches to solve
the classification problem for MR images of the brain in its main tissues [6]. This model considers only
the intensity information: each of the brain tissues is modelled by a Gaussian distribution. No spatial
information is taken into account. Moreover the random variables Xi are assumed to be independent
of each other, which means that,

P (x|xNi
) = P (x) = wx ,∀x ∈ Lpm, and ∀i ∈ S. (42)

Then, Eq. 19 is reduced to

P (y|θ) =
∑

∀x∈Lpm

wx · P (y|x) =
∑

∀x∈Lpm

wx · fx(y|θx), (43)

where the component densities fx(y|θx) are a Gaussian distribution defined by the parameters θx =
(µx, σx). The mixing parameters ωx can also be included among the unknown parameters. Thus, the
mixture density parameter estimation tries to estimate the parameters θ = (ωx, θx) such that,

∑

x∈Lpm

ωx = 1. (44)

As presented in Section IV, a possible approach to solve the parameter estimation problem is to find
the maximum of the log-likelihood function. One of the most used methods to solve the maximization
problem is the EM algorithm (Section IV-B). For the particular case of Gaussian distributions, the
resulting equations of the EM algorithm that numerically approximate the parameters of the mixture
are:

 Initialization Step. Choose the best initialization for θ(0).
 Expectation Step. Calculate the a posteriori probabilities ∀x ∈ Lpm:

P̂ (k)(x|yi, θ̂) =
P (yi|θ̂(k−1)

x )P̂ (k−1)(x)
∑

l,∀l∈Lpm
P (yi|l, θ̂(k−1)

l )P̂ (k−1)(l)
(45)

 Maximization Step:

ω̂(k)
x = P̂ (k)(x) =

1

N

∑

i∈S

P̂ (k)(x|yi, θ̂) (46)

µ̂(k)
x =

∑
i∈S P̂ (k)(x|yi, θ̂)yi∑
i∈S P̂ (k)(x|yi, θ̂)

(47)

(σ̂(k)
x )2 =

∑
i∈S P̂ (k)(x|yi, θ̂)(yi − µ̂

(k)
i )2

∑
i∈S P̂ (k)(x|yi, θ̂)

(48)

Note that, in this case, and also for GPV as it will be seen later, the sum among all the image voxels
of Eq. (45) is equivalent to

∑

i∈S

P̂ (k)(x|yi, θ̂) ⇐⇒
∑

∀yi

h(yi)P̂
(k)(x|yi, θ̂), (49)

where h is the image histogram. This decreases significantly the number of computations to be made
in Eq. (46), Eq. (47), and Eq. (48). Unfortunately, the methods using the HMRF model cannot use
Eq. (49). Finally, once the estimation parameter problem is solved, the classification is performed by
Bayesian rule (Section III).
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B. Gaussian Hidden Markov Random Field model: GHMRF (B)

The theoretical concepts of this approach are the same as presented in Section II-B. As defined in
Eq. 19, the intensity image distribution function, dependent on the parameter set θ and on the voxel
neighborhood xNi

, is:

P (y|θ) =
∑

x∈Lpm

P (x|xNi
) · fx(y|θx), (50)

where, fx(y|θx), is, ∀x ∈ Lpm, a Gaussian distribution (see Eq. (2)) defined by θx = {µx, σx}, and
P (x|xNi

) represents the locally dependent probability of the tissue class xi. Actually, if this equation
is compared with Eq. (43), it can be seen that the FGMM model is a special case of an HMRF model.

To solve the parameter estimation problem, an adapted version of the EM algorithm, called the
HMRF-EM, is used as suggested in [9]. The update equations for the θ parameters are actually the
same update equations as for the FGMM (see Eq. (46), Eq. (47), and Eq. (48)), except that

P̂ (k)(x|yi, θ̂) =
P (yi|θ̂(k−1)

x ) · P̂ (k−1)(x|xNi
)

∑
l,∀l∈Lpm

P (yi|l, θ̂(k−1)
l )P̂ (k−1)(l|lNi

)
. (51)

The calculation of P (k−1)(x|xNi
) involves a previous estimation of the class labels, x̂, that is, the

classification step. In fact, the strategy underlying the EM algorithm consists of applying iteratively
the following steps:
1. Estimate the image labelling, x̂, given the current θ, then use it to form the complete data set
{x̂,y}.
2. Estimate a new θ by maximizing the expectation of the complete-data log likelihood, E [log P (x,y|θ)].
The classification step is actually obtained through a MRF-MAP estimation (refer to Appendix B for
more details).

C. Gaussian and Partial Volume model: GPV (C)

The approach described here only uses the intensity information as in the FGMM. It exactly follows
the image model defined in Section II-A that considers a density function for the mixture brain tissues
different from a Gaussian distribution. Then, the same probabilistic model as in Eq. (43) is used but,
in this case, P (yi|x, θx) is defined either by a Gaussian or by a PV equation Eq. (6). Finally, the
following minimization problem is defined:

θ̂ = min
θ

∑

∀yi

(hn(yi) − p(yi|θ))2, (52)

where hn denotes the normalized intensity histogram. The genetic algorithm presented in [6] is used
to solve the estimation problem. Fewer parameters have to be estimated since the mean and variance
of the PV distributions are determined by the mean and variance of the neighborhood pure tissues
composing the mixture. As in FGMM, once the distribution parameters are found, the classification
is done following the Bayesian rule.

D. GPV and HMRF model: GPV-HMRF (D)

This method adds to the GPV approach the spatial information that is encoded following the
HMRF theory. As usual, the same probabilistic model as in Eq. (50) is defined and, as in method
GPV, P (yi|x, θx) is defined either by a Gaussian or by a PV eqution Eq. (6).

The estimation parameter problem is solved almost identically as for method GHMRF. An adapted
version of the EM-algorithm is used as proposed in [5]:

P̂ (k)(x|yi, θ̂) =
P̂ (yi|x, θ̂

(k−1)
x ) · P̂ (k−1)(x|xNi

)
∑

l,∀l∈Lpm
P̂ (yi|l, θ̂(k−1)

l )P̂ (k−1)(l|lNi
)
, (53)
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µ(k)
x =

∑
i∈S P̂ (k)(x|yi)yi∑
i∈S P̂ (k)(x|yi)

, (54)

(
σ(k)

x

)2

=

∑
i∈S P̂ (k)(x|yi)(yi − µ

(k)
x )2

∑
i∈S P̂ (k)(x|yi)

. (55)

Note that, in this approach, the updating equations Eq. (54) and Eq. (55) are only computed for pure

tissues (x ∈ Lp), and that P̂ (k)(yi|x, θ̂x) is now either a Gaussian or a PV distribution. The strategy
underlying the EM algorithm is similar to that of the GHMRF method. However, in this case, the
calculation of P (k)(x|xNi

) does not involve a previous estimation of the class labels since x̂ since spatial
prior is retrieved from:

x̂ = arg max
x∈X

{P (y|x)}, (56)

Finally, the classification is done by the MRF-MAP step:

x̂ = arg max
x∈X

{P (y|x)P (x)}, (57)

and no minimization of the energy can be computed instead of Eq. (57) (as it is done in Appendix B to
solve the MAP estimation in GHMRF) since P (y|x) does not always follow a Gaussian distribution.

E. GPV-HMRF model and Anatomical prior: GPV-HMRF-AP

The GPV-HMRF-AP method segments the brain tissues according to the image model presented in
the previous section. Moreover, several anatomical prior models (see Eq. (21)) are considered:
1. GT. The ground truth class priors are considered first. However, it is noticed that adding such
perfect prior class templates is not realistic since they are not available. In practice, it is used here only
as a basis for comparison with other templates. The construction of mixture tissue probability maps is
done as presented in Section II-C using γ = 2. Then, both PV and pure tissue prior probabilities have
been raised to εm = 1

6
and εp = 6 respectively. The resulting normalized class templates are shown

in Figure 2.
2. GTC. As proposed in [5], the ground truth class templates are slightly corrupted by rotation (1
degree in the axial plane) and translation (2 mm in direction of the axial plane normal vector) in order
to simulate registration errors. Here, γ is equal to 1 in order to make the prior class information less
important than the local priors since some errors have been introduced.
3. SPM. The probability maps of CSF, GM and WM used in SPM [22] are also considered as class
priors (see Section ??). These templates are almost in the same reference as the Brain Web phantom,
thus a rigid transformation would be enough to globally register both the phantom and the SPM class
templates. However, a non-rigid registration between the phantom image and the T1 average image of
SPM is done in order to make the SPM maps less smooth and more similar to the phantom anatomy.
Then, mixture maps have been created as done for the ground truth priors. No change on the border
tissues is made (ε’s are equal to 1) in order not to introduce many errors since the SPM probability
maps are very smooth. γ is, as for GTC, arbitrarily fixed to 1. The resulting templates are shown in
Figure 3.

VI. Non parametric methods

In the previous sections, parametric segmentation algorithms were introduced, which means that
the intra-class probability densities P (y|x) are modelled by a family of parametric functions fx(y|θx),
such as Gaussian densities. The success of the resulting algorithms is therefore reliant upon the choice
of an appropriate family of parametric functions. However, if no well justified parametric model of
the data is known, parametric approaches could dramatically fail. Thus, non-parametric, information
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CSF CG GM GW WM

Fig. 2. Probability maps for the 5 brain tissues constructed from the ground truth.

Fig. 3. From left to right: CSF, CG, GM, GW and WM probability class maps constructed from SPM maps.

theoretic alternatives are introduced in what follows. The two non-parametric approaches assessed in
this comparative study have been developed and implemented by Butz [10]. It is beyond the scope
of this section to present in detail the framework he proposed. Let’s however summarize the main
concepts of his approach.

A. Error probability minimization: EP (E)

Let us consider a random variable different from X, called X est, also over L, which models an
estimation of X from the observable data, Y . Naturally, the following stochastic process can be built:

X → Y → Xest → E, (58)

where E is an error random variable being 1 whenever the estimated class label, xest, is considered a
wrong estimate of the initial class label, x, and 0 otherwise. A key quantity of Eq. (58) is the probability
of error, Pe|x, of the transmission from X to Xest, for a given class map, x. This probability also equals
the expectation of E.

Considering the introduced formalism (see [10]), the information theoretic classification objective
consists of determining the class label map x̂ that minimizes an error probability Pe|x:

x̂ = arg min
x

Pe|x. (59)

B. Non-parametric HMRF: NP-HMRF (F)

The approach proposed above does not consider any spatial priors on the class label map. However,
the probabilistic nature of the formalism allows the addition of a HMRF, just as for the parametric
approaches introduced in the previous sections, resulting in a non-supervised non-parametric hidden
markov model (NP-HMRF) segmentation:

x̂ = arg min
x∈L

P (x) · P
e|x. (60)

The optimization objective above is called the minimal error probability principle for NP-HMRFs.
In complete analogy to parametric HMRFMs, the prior probabilities, P (x), are modeled by a Gibbs



ITS TECHNICAL REPORT 0504 - BRAIN GROUP - FEBRUARY 2004 14

distribution (Section II-B.5). The derived non-parametric framework for classification allows the con-
sideration of voxel features for which any particular parametric model is known, as it is the case for
e.g. voxel gradients.

VII. Results and Validation

A. Data set

All the methods have been validated using the digital brain phantom from the McConell Brain
Imaging Center [11]. They provide an MRI simulator where different RF non-uniformity (bias of 0%,
20%, and 40%) and noise levels (0%, 1%, 3%, 5%, 7%, and 9%) can be added to the MR brain phantom
image.

Then, a 5-class (CSF, CG, GM, GW and WM) ground truth classification image, Figure 6(b), has
been created from the 3-dimensional ‘fuzzy’ tissue membership volumes provided by [11] where voxel
values reflect the proportion of tissue present within the voxel. This makes these images suitable for
segmentation assessment. Finally, a ground truth image histogram is created by splitting each image
histogram into the specific pure tissue and their mixture histograms (see Figure 7(a)).

B. Results

Validation is made by comparing the results obtained with the classification methods presented in
Section V and Section VI to both the 5-class ground truth classification image and the brain phantom
image histograms. Because of limited space, only a complete study of these results for brain phantom
image of 7% Noise (N) and 20% of in-homogeneity (RF) is shown here5. Also, note that the analysis of
the methods including anatomical prior is done separately in comparison with GPV-HMRF and that
GPV-HMRF-AP are tested in few brain phantom images.

First, each of the resulting volumes classified by each of the algorithms is qualitative validated
visually. A comparison of a representative slide of the resulting classified images where all brain
tissues are present with the corresponding slide of the ground truth classification volume is presented
(see Figure 6).

Second, the intensity image model is assessed by comparing the histogram fitting to the ground
truth brain phantom image histogram (see Figure 7).

Third, quantitative analysis is performed by computing the confusion tables with respect to the
5-class reference classification (Table I). These values assess the quality of the classification for each
tissue class.

Fourth, global measures of quality (Pergood, Perhalf and Perfault) are presented in Table ??.
Percentages are always computed with respect to the 5-class ground truth classification and voxels
belonging to the brain phantom background are not considered. Pergood is the percentage of voxels
correctly classified (confusion table diagonal). Perghalf+ and Perghalf- represent the percentage of
voxels that has not been correctly classified but misclassified into a neighbor tissue, e.g. a WM voxel
classified as WG, (’+’ and ’-’ refer to superior and inferior of the confusion table diagonal, respectively).
Perfalse is the percentage of voxels that has been completely misclassified.

Fifth, the robustness in front on the noise and in-homogeneities is analyzed separately for each
method in Figure 5.

Sixth, a global assessment is done for all possible noise and inhomogeneity levels of the digital brain
phantom. Both percentage of the correct and false classification are showed in Figure 10 and Figure 11
for all methods.

Finally, GPV-HMRF-AP is only applied to the 5N0RF, 7N20RF, and 9N40RF phantoms. All the
measures presented before (classified images, histogram fitting and confusion table) are considered here
to study the influence of the different class templates on the final classification (see Figure 8, Figure 9

5In order to simplify the notation, the phantom will be denoted by 7N20RF.
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and Table II). For each phantom the ground truth class priors (GT), the corrupted ground truth class
priors (GTC), and the probabilistic class maps of SPM are compared with respect to GPV-HMRF
method.

VIII. Discussion

A. General performance

One of the goals of this comparative study is to be able to specify the most suitable tissue clas-
sification technique for T1-MR brain image. Unfortunately, there is not a single winner. Actually,
the answer depends on the noise (N) and the in-homogeneity (RF) level present in the images. It
is considered that the best classification corresponds to the highest percentage of correct classified
voxels (pergood). For low levels of noise (N = {0, 1, 3}%), it is not evident to determine a method
that better classifies than others (as we can see in In Figure 10). However, for higher levels of noise
(N = {5, 7, 9}%), method GPV-HMRF has almost always performed the best classification closely
followed by method GHMRF (their pergood differs from less than 2%). Now, we can also determine
the methods that perform smaller errors (lowest perfault). In this case, method GPV and GPV-HMRF
(both using PV equation) always have the lowest perfault for low and high noise levels respectively.
However, differences between all perfault values are not more than 1%.

B. Real MRI conditions

A wide range of noise level exists in the brain phantom simulator but actually not all of these values
are realistic to represent the noise present in a typical T1-weighted MR brain image. The signal to
noise ratio (SNR) in a normal T1-MR image has been computed and, then, it has been compared with
the SNR present in the brain phantoms. The conclusion is that a normal noisy image corresponds
to the mean of the phantom 5N0RF and 7N0RF. Thus, from now on conclusions are based on the
classification results of phantoms with N = {5, 7, 9}% and RF = {0, 20, 40}%. For these ranges of
noise and inhomogenities, method GPV-HMRF has almost always the highest pergood and the lowest
perfault. It is always closely followed by method GHMRF that usually differs from less than 2% from
the pergood and less than 0.1% from the perfault.

C. Pure tissues and partial volume

In this work, a T1-MR brain image is modelled by three main tissues (CSF, GM and WM) and two
mixtures (CG and GW). As is done by most of the methods described in the literature, the two other
possible mixtures, CW and CGW, have been ignored. Actually, the importance of CW and CGW has
been measured from the digital brain phantom: 12.8% of the image voxels are CSF, 18% CG, 26%
GM, 20% GW and 23% WM while only 0.18% of the images voxels belong to the CW and only 0.02%
to the CGW. Visually, the probability density function of the CSF and WM mixture has been drawn
in Figure 4. Thus, it is justified to affirm that P(CW) and P(CGW) do not significantly contribute in
the total probability density function of the MR intensity image.

Thanks to the confusion tables, the study of the classification score for each tissue class becomes an
easy task. The best classification for CSF is performed (the 70% of the cases) by method EP, for GM
it is method NPHMM (also the 70% of the cases) and method GHMRF performs for more than 50%
of the cases the best classification of tissue WM. Method GPV-HMRF almost always achieves the best
classification score for both partial volume tissues: 78% of the cases for CG and 100% for GW.

Results show that partial volume distributions are hardly well represented by a Gaussian function.
This is obvious when looking at the histogram fitting where CG and GW mixtures are always better
fitted by methods C and D using the partial volume equation (Figure 7). In fact, even if the mixtures
may look like a Gaussian for high levels of noise and inhomogeneities, the assumption of using a normal
distribution for a PV is false. However, the percentage of voxels correctly classified for a mixture tissue
never reaches more than 73% while the best scores for pure tissues usually reach 90% of voxels correctly
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Fig. 4. Intensity probability distribution of CSF and WM mixture.

classified. This poor result indicates that partial volume distribution does not seem to be completely
well modelled yet. Thus, more work has to be done in the study and modelling partial volume intensity
distribution. For instance, two different mixtures between GM and WM can be considered as recently
suggested in [23]. They propose a pioneer anatomical model that splits the GM and WM mixture
into a geometrical mixture corresponding to the brain cortico-subcortical interface and a mosaic GW
mixture corresponding to the deep cerebral nuclei structures such as the thalamus.

D. Robustness in front of noise and inhomogeneities

None of the classification methods under study tries to compensate for image artifacts such as noise
or bias. No pre-processing is applied for image quality enhancement: neither an anisotropic filtering nor
a bias correction are considered. This way the robustness of the methods can be analyzed with these
artifacts. This is clearly shown in Figure 5 where all possible levels of noise and inhomogeneities present
in the brainweb simulator are considered again. Methods that consider only intensity information are
represented in the left column. In general, the quality of the classification decreases with increasing
noise and non-uniformities. Method A is very sensitive to both noise and inhomogeneities. However,
for low levels of noise, methods C and E are equally performant in RF=0 than in RF=20. For very
high noise levels (N={7,9}), all methods perform a classification that converges towards a range of
pergood equal to [60-65]% for any value of RF. The right-hand column represents all the methods using
HMRF. All of these methods present exactly the same behavior with noise and bias. If we consider
RF=0, pergood decreases proportionally to the increment of noise. For RF=20, there is not a decrease
of quality but almost a constant value of pergood. And, for RF=40, the pergood even increases for high
noise levels. That is due to the fact that the phantoms considering low noise levels (N={0,1,3}) are
actually not realistic to model T1-weighted MR brain images. Then, given a constant level of noise,
RF=40 always makes pergood decrease about 12% for low and about 7% for high noise levels.

E. Intensity versus spatial prior

It can be seen in Figure 6 that the classification based only on intensity information (methods
FGMM, GPV, and EP) is much more noisy than classification that also encodes spatial information.
Errors are due to the overlap between tissue distributions and this overlap is larger for higher values of
N and RF. On the contrary, when spatial information is also used in the classification process results
are much less noisy: methods B, D and F improve the pergood percentage, with respect to methods A,
C and E, by a 7% on average. However, they still make some errors mostly in the mixtures classification
because the partial volume distribution model is probably not well-suited but also because of the MRF.
In fact, results show that MRF considerably increases the classification quality and that makes the
algorithms more robust when faced with noise than the intensity-based approaches. More evolved
MRF are needed though in the particular case of T1W MR image segmentation. Recently, it has been
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Fig. 5. Robustness of the classification methods in front of different levels of noise and inhomogeneities.

suggested to model either pure or mixture brain tissues with different MRF parameters [4]. Also, the
addition of atlas information in the energy function could better guide the MRF model as proposed
in Section II-C and in [5].

F. Parametric vs Non-parametric

Non-parametric models have performed in many cases equally or even better than parametric ap-
proaches. EP has slightly lower Pergood than FGMM using a Bayes classification or GPV for low
levels of noise and non-uniformities. But almost the same quality of classification or even better than
parametric models has been obtained by EP for high levels of noise N={5,7,9}.

When spatial information is also included, parametric models (GHMRF and GPV-HMRF) have
almost always better Pergood than non-parametric approaches (there is usually a difference of 6%
between them). Also, parametric methods commit fewer errors, they have a lower Perfault, than
NP-HMRF. The misclassification made with both non-parametric approaches is mainly due to an
overestimation of both mixture classes.

In conclusion, a non-parametric approach is more performant if no well justified assumption about
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the data model can be made. However, logically, a good data model is better performant than no
model.

G. Using prior class atlases

The results of the methods that include atlas information are discussed here in comparison with the
method GPV-HMRF. Three different class priors have been added to the spatial model used in D and
they are denoted by GT, GTC, and SPM (see Section V-E). The global performance of these four
approaches is presented in Figure 12. The GT prior leads logically to the best results: the highest
percentage of voxels correctly classified, around 88%, and the lowest percentage of fatal errors, around
0.17%, for any level of noise or inhomogeneity. However, as has been said before, the use of such a
perfect class prior as GT is not possible in practice. The atlas information introduced by GTC and
SPM are more realistic but results show that they do not always improve the results performed by
D. Actually, significant changes have only been obtained for the 9N40RF phantom: the perfault is
reduced from 0.79% to 0.57% for both GTC and SPM and the pergood is improved by a 5% with
GTC. All resulting classified images look similar (see Figure 8). Almost no noise is visible either for
GT or for GTC methods. Methods D and SPM lead to slightly noisy classifications for 7N20RF and
9N40RF phantoms.

Pure tissues are always better classified by GT and GTC than D while SPM only improves GM
(in all three phantoms) and WM (5% and 7% of noise) classification. Significant errors are though
introduced by GTC and SPM in the classification of partial volume voxels (see the histogram fitting in
Figure 9). This effect is quantified in the confusion tables by a percentage of mixture voxels correctly
classified much lower in GTC and SPM than in D or GT (from 2 to 12 % of degradation).

Finally, notice that rotation and translation of GT have a significant influence on PV classification
while pure tissue classification remain robust with these simulated registration errors. Also, SPM
probabilistic atlas has not demonstrated important improvements with respect to D. That is probably
because SPM maps are too smooth and no anatomical variability is present in the prior class templates,
thus, the information added by SPM is not precise.

IX. Conclusions

A validation study on MR brain tissue classification techniques has been proposed in this chapter.
Both parametric and non-parametric approaches have been assessed in this work. Intensity-based
classification methods are compared to the techniques that add spatial prior. The effect of considering
prior class templates is also studied.

All tests have been done in several phantoms considering different noise and intensity non-uniformity
levels. Then, the assessment is done by comparing to a 5 class ground truth image.

Results have shown that the techniques considering spatial information lead in better classification
when high noisy images are considered while for low level of noise and in-homogeneities (that is not
necessarily near real MR images) histogram-based techniques lead to comparable results. However, it
has been demonstrated that percentage of correct classification never reaches the 100% and, even if
pure tissues are in general well-classified, partial volumes are still not.

Methods including atlas information have not considerably improved the final classification with
respect to the techniques that model local spatial priors. On the contrary, classification has shown
to be highly sensitive to the registration errors or to the use of a wrong template. Actually, mixture
tissues are particularly affected by prior class template errors while pure tissue classification has been
almost always improved by these methods. This is because the initial pure class templates are not
precise enough (too smooth or errors because of registration are present) but probably also because
PV prior class maps are not optimally defined. In conclusion, no atlas class prior should be included
if its quality cannot be assessed before.

Finally, we plan to measure the effect of pre-processing the images (by an anisotropic filter or a bias
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corrector) or adding a bias field estimation model (as proposed by [24], [25] for instance). We expect
both the pre-processing and bias model to make the classification more robust at high levels of noise
and inhomogeneities. However, we suspect the pre-processing to displace partial volume voxels, thus
some errors would probably be added in mixture tissue classification.
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X. Figures

(a)Magnetic Resonance Image (b) 5 classes classification.

(c) Method A: FGMM. (d) Method B: GHMRF.

(e) Method C: GPV. (f) Method D: GPV-HMRF.

(g) Method E: EP. (h) Method F: NP-HMRF.

Fig. 6. Digital brain phantom T1-MRI with 7% noise and 20% RF and its classification. (a)Brainweb phantom simulated
T1-MRI with 7% noise and 20% RF. (b) 5 classes ground truth created from Brainweb classification.
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(a) Method A: FGMM. (b) Method B: GHMRF.
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(c) Method C: GPV. (d) Method D: GPV-HMRF.
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(e) Method E: EP. (f) Method F: NP-HMRF.

Fig. 7. Histogram fitting of the Brainweb phantom 7N20RF. Results are in dotted line.
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(a) (b)

(c) (d)

Fig. 8. Classification image results of 7NRF using atlas prior. (a) Method D: GPV-HMRF. (b) Method D with GT.
(c) Method D GTC. (d) Method D with SPM.
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Fig. 9. Histogram fitting of the phantom 7N20RF using atlas prior. Results are in dotted line. (a) Method D:
GPV-HMRF. (b) Method D with GT. (c) Method D GTC. (d) Method D with SPM.
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Reference
CSF CG GM GW WM

CSF 92.3 20.9 0.1 0.0 0.0
CG 6.5 33.6 3.3 0.1 0.0

A GM 1.2 44.9 87.8 36.3 2.2
GW 0.0 0.6 7.7 26.9 8.4
WM 0.0 0.0 1.2 36.6 89.4

Reference
CSF CG GM GW WM

CSF 89.9 11.5 0.1 0.0 0.0
CG 9.5 47.2 2.3 0.0 0.1

B GM 0.6 41.2 88.9 19.3 0.6
GW 0.0 0.1 8.8 59.4 5.6
WM 0.0 0.0 0.0 21.2 93.7

Reference
CSF CG GM GW WM

CSF 67.0 9.4 0.1 0.0 0.0
CG 31.7 48.3 7.0 0.6 0.1

C GM 1.3 39.0 69.8 26.3 2.6
GW 0.0 3.2 21.8 45.8 26.9
WM 0.0 0.1 1.3 27.3 70.4

Reference
CSF CG GM GW WM

CSF 90.5 10.8 0.1 0.0 0.0
CG 9.1 57.2 4.7 0.1 0.2

D GM 0.3 31.9 84.4 18.8 0.3
GW 0.0 0.1 10.8 66.3 10.6
WM 0.0 0.0 0.0 14.8 88.9

Reference
CSF CG GM GW WM

CSF 91.5 19.8 0.1 0.0 0.0
CG 8.0 55.0 17.3 1.4 0.1

E GM 0.5 24.7 74.8 36.9 2.4
GW 0.0 0.5 7.7 45.7 30.6
WM 0.0 0.0 0.1 16.0 66.9

Reference
CSF CG GM GW WM

CSF 54.1 2.0 0.1 0.0 0.0
CG 44.5 39.9 0.3 0.0 0.0

F GM 1.5 58.1 93.7 30.8 0.9
GW 0.0 0.1 6.0 55.5 13.6
WM 0.0 0.0 0.0 13.7 85.5

TABLE I

Confusion table of the phantom 7N20RF. Percentages are computed overall voxels for each tissue

type.

Reference
CSF CG GM GW WM

CSF 99.1 10 0.1 0.0 0.0
CG 0.4 61.3 0 0 0.2

GT GM 0.2 28.7 99.9 10 0
GW 0 0 0 74.1 0
WM 0.2 0 0 15.9 99.8

Reference
CSF CG GM GW WM

CSF 94.4 17.7 0.5 0 0
CG 5.3 44.5 4 0 0.1

GTC GM 0.2 37.6 89 22.9 0.2
GW 0.1 0.1 6.4 57.3 5.5
WM 0 0 0 19.8 94.1

Reference
CSF CG GM GW WM

CSF 89.8 10.1 0.1 0.0 0.0
CG 9.9 56 4.2 0 0.2

SPM GM 0.2 33.8 85.6 20.2 0.3
GW 0. 0.1 10.1 67.5 12.7
WM 0.0 0.0 0.0 12.2 86.6

TABLE II

Confusion table of the phantom 7N20RF using atlas prior.
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Fig. 10. Percentages of correct classified voxels.
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Fig. 11. Percentages of completely false classified voxels.
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Fig. 12. Percentages of classification of methods using atlas information.
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PerGood PerFault PerHalf+ PerHalf-

FGMM 66.67 1.13 13.91 18.29
GHMRF 76.68 0.28 12.65 10.45

GPV 65.58 1.6 11.3 21.53
GPV-HMRF 77.7 0.20 9.42 12.69

EP 65.61 1.06 22.63 10.7
NP-HMRF 69.51 0.43 9.81 20.26

GT 87.65 0.12 3.81 8.42
GTC 76.44 0.32 10.13 13.10
SPM 77.45 0.19 9.93 12.43

TABLE III

Global performance of all methods for the phantom 7N20RF.
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Appendix

I. Notation

• S = {1, 2, ...N} is the set of indexes of the image, and Ni, i ∈ S is the set of sites neighboring the
site i.
• y = {y1, y2, ..., yN} ∈ DN ⊂ R

N is a configuration of Y , where D ⊂ R is the state space representing
the intensity.
• Y = {y|yi ∈ D, 〉 ∈ S} is the space of possible configurations. Y = {Yi, i ∈ S} is the family of
random variables.
• State space L = {csf, cg, gm, gw,wm} of all brain tissues, and state space Lp = {csf, gm,wm} of
pure tissues.
• X = {Xi, i ∈ S} is the family of random variables representing the underlying class labels indexed
by S.
• x = {x1, x2, ..., xN} ∈ LN denotes a configuration of X. X = {x|xi ∈ L, 〉 ∈ S} is the space of
possible configurations.
• θ = {µ, σ} are the parameters, mean and variance, defining a Gaussian distribution that is denoted
by N(µ, σ).
• P (x) is the probability of x, P (y|x) is the conditional probability, and P (y, x) is the joint probability.
• k indexes the iterations in time.
• U(x, β) is the energy function of a Gibbs distribution and β is called spatial factor.
• Z is the normalization factor of the Gibbs distribution.
• PA(x) is the anatomical prior probability map.

II. MAP for GHMRF

The objective is to assign a tissue type label x ∈ L to each voxel in the image. A labelling of S
is denoted by x where xi, i ∈ S is the corresponding class label of voxel i. The true but unknown
labelling configuration is denoted by x∗, which is a particular realization of a random field X, which
is an MRF with a specified distribution P (x). The observable image itself is denoted by y, which is a
realization of a GHMRF as described in section II-B.5. According to the MAP criterion (see Eq. 33),
we can define the problem as:

x̂ = arg max
x∈X

{P (y|x)P (x)}. (61)

The prior probability of the class and the likelihood probability of the observation need to be computed.
As presented in Sec. II-B, since x is considered as a realization of an MRF, its prior probability can
be derived from

P (x) =
1

Z
Exp [−βU(x)] . (62)

The voxel intensity yi is assumed to follow a Gaussian distribution with parameters θx = {µx, σx},
given the tissue type label xi:

p(yi|xi) = g(yi; θxi
) =

1√
2πσ2

xi

Exp

[
−(yi − µ2

xi
)

2σ2
xi

]
. (63)

Based on the conditional independence assumption of y (see Eq. 17), the joint likelihood probability
takes the form of

P (y|x) =
∏

i∈S

p(yi|xi),

so,

P (y|x) =
∏

i∈S

(
1√
2π

Exp

[
−(yi − µ2

l )

2σ2
l

− log(σxi
)

])
,
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which can be written as

P (y|x) =
1

Z ′
Exp [−U(y|x)] , (64)

with the likelihood energy

U(y|x) =
∑

i∈S

U(yi|xi) =
∑

i∈S

(
(yi − µ2

xi
)

2σ2
xi

+ log(σxi
)

)
, (65)

and the constant normalization term Z ′ = (2π)(N/2). It appears that

log(P (x|y) ∝ −U(x|y), (66)

where
U(x|y) = U(y|x) + U(x) + const (67)

is the posterior energy. The MAP estimation is equivalent to minimizing the posterior energy function

x̂ = arg min
x∈X

{U(y|x) + βU(x)}. (68)

This minimization problem is mathematically simple but computationally infeasible. However, optimal
solutions can be computed using iterative minimization techniques such as iterated conditional modes
(ICM) [9].


