
FAST PROTOTYPING OF RECONFIGURABLE ARCHITECTURES FROM A C PROGRAM

S. Bilavarn, G. Gogniat, J.L. Philippe, L. Bossuet

LESTER - South Britany University - Lorient, France

ABSTRACT

Rapid evaluation and design space exploration at the algo-
rithmic level are important issues in the design cycle. In
this paper we propose an original area vs delay estimation
methodology that targets reconfigurable architectures. Two
main steps compose the estimation flow: i) the structural es-
timation which is technological independent and performs
an automatic design space exploration and ii) the physical
estimation which performs a technologic mapping to the tar-
get reconfigurable architecture. Experiments conducted on
Xilinx (XC4000, Virtex) and Altera (Flex10K, Apex) com-
ponents for a 2D DWT and a speech coder lead to an aver-
age error of about 10 % for temporal values and 18 % for
area estimations.

1. INTRODUCTION

The evolution of telecommunication and multimedia appli-
cations towards new standards requires innovative architec-
tures in order to respect always tighter constraints. The
recent evolutions of reconfigurable architectures, in terms
of capacity and performances, efficient resource integration
(like DSP operators and memories), or flexibility through
the possibility of run time reconfiguration, offer a very promis-
ing issue for reconfigurable system on chip. As a result, the
choice of a suitable target component, satisfying both phys-
ical (area, performances, . . .) and marketing (final product
cost, time to market, . . .) constraints is a complex issue of-
ten left to the designer experience. Dealing with such prob-
lems as application parallelism exploration and FPGA ar-
chitecture matching, impose to define new design method-
ologies in order to find more quickly and surely an inte-
gration solution satisfying all the design constraints. Until
now, typical hardware design methodologies start, from an
algorithmic description of the application, with an architec-
tural synthesis step to obtain a description at the RTL level.
Then logic synthesis and place & route steps are performed
to obtain the final description of the circuit and precise val-
ues of area (FPGA occupation) and performances (execu-
tion time). These two steps are very time consuming since
the only architectural synthesis step can take from several
hours (with a High Level Synthesis tool, HLS in the follow-
ing) to several months (hand coding) to overcome. Further-

more design space exploration may need several iterations if
constraints are not met, what can lead to prohibitive design
times.

2. OBJECTIVES & CONTRIBUTION

The purpose of the work presented in this paper is to define
an efficient exploration methodology starting from system
level specifications that allows: i) to define several archi-
tectural solutions and ii) to compute the corresponding es-
timated area and execution time values. The second point
allows the designer to make a choice of a solution, while
the first point gives information for the selected solution
design. To find an interesting answer to this problem, the
following considerations have been addressed: i) Define a
method operating at a high level of abstraction, from sys-
tem level specification including control structures, multidi-
mensional data and hierarchy to deal with complex modern
applications. ii) Give realistic cost characterization: esti-
mation takes into account all the different units of the ar-
chitecture (datapath, control unit, memory unit). iii) The
method should explore the application parallelism: several
architectural solutions are defined for a given specification.
iv) The method should be applicable to several FPGA fam-
ilies. v) Define feasible solutions and give sufficient infor-
mation for post exploration steps (selected architecture de-
sign) and vi) low complexity to enable large design space
exploration. The methodology developed can be seen as a
global exploration / estimation technique based on the nu-
merous existing works in the field of estimation and HLS
(memory size estimation, scheduling techniques, data flow
modelling, . . .). Compared to other estimation approaches,
the definition of effective architectures have been empha-
sized: each solution is implementable and corresponds to a
given resource allocation, clock period value and schedul-
ing. Their definition relies on a precise architectural model
(not only datapath, but also memories and control units)
and takes care of modern FPGA architectural specificities.
Due to the paper size restriction the complete description
of the related work can be found in [1]. Compared to a
typical design exploration flow, we do not need to make a
complete and precise description of the circuit. For exam-
ple, we do not need to go until the precise description of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the connections between resources, or to build a floorplan.
Those steps are only needed to be computed once in the
design cycle and are left to the steps following the explo-
ration process (synthesis / refinement / optimization). The
reduced complexity allows then to explore quickly the effect
of different implementation possibilities (intra loop paral-
lelism exploration, resource allocation, clock period, eval-
uation of several target FPGAs). Obviously, the solutions
defined may be sub-optimal in some cases, but they always
correspond to implementable solutions. So estimation val-
ues computed (area and execution time) are more represen-
tative of the system’s feasibility. Moreover, those metrics
give a designer usefull information that allow to make an
easiest choice for implementation (satisfying both area and
execution time constraints). Once a solution selected, appli-
cation synthesis and solution refinement / optimization can
be performed in a classical way with the use of a HLS tool
for example, thanks to the rich set of information given by
the architecture definition step. This fast system level ex-
ploration allows then to evaluate many design possibilities
very early in the design cycle, where choices have a great
impact on the final system performances. The evaluation
of several design possibilities allows moreover to converge
more quickly and surely towards an optimal implementation
solution.

3. EXPLORATION / ESTIMATION
METHODOLOGY

First, the system level specification is given in a high level
language (C language), and is then translated into an inter-
mediate representation, the HCDFG model [1]. This model
is a hierarchical control and data flow graph allowing ef-
ficient algorithm characterization and exploration of com-
plex modern applications including control flow and multi-
dimensional data. As illustrated in figure 1 a C program
is decomposed into control structures called CFGs and into
linear sequences of operations called DFGs. For example
the If-Then-Else construct labeled 2 is composed of three
DFGs, one for the evaluation of the condition and two for
the True and False sequences of code. Hence, using the
HCDFG model, the C program is converted into a hier-
achical graph. For further information about the HCDFG
model please refer to [1]. Starting from this specification
and given a target component, the architectural exploration
methodology (figure 2) consists in defining several imple-
mentation solutions and estimating FPGA resource occu-
pation and algorithm execution time. To perform this esti-
mation, we need to know the target FPGA characteristics
which are described in a technology file [1]. Moreover,
to give realistic estimation values, we use a specific archi-
tectural model and take memory requirements into account
(the total memory size needed is estimated). The Explo-

❶ void uppol2 (short AH1, short AH2,
short PH, short PH1, short PH2, short
*APH2) {

short const_128 = 128;
short const_m128 = -128;
short const_35512 = 35512;
short const_12288 = 12288;
short const_m12288 = -12288;
short tmp1,tmp2;
short WD1,WD2,WD3,WD4,5;

1 tmp1 = AH1 + AH1;

WD1 = tmp1 + tmp1;

2 if ((PH>>15) == (PH1>>15))

WD2 = 0 - WD1;
else

WD2 = WD1;

3 if ((PH>>15) == (PH2>>15))

WD3 = const_128;
else

WD3 = const_m128;

4 tmp2 = WD2>>7;

WD4 = tmp2 + WD3;
WD5 = AH2 * const_35512;
*APH2 = WD4 + WD5;

}

WD1#0

WD2#0

-

WD1#0 C&0

WD2#0

DFG
True#2

DFG
False#2

WD1#0

WD2#0

IF#2

EIF#2

DFG
Cond#2

=

>>15

Int#0

PH#0

>>15

Int#1

PH1#0

Cond#2

*

+

WD2#0

WD3#0Tmp2#0

>>7

C&35512

+

AH2#0

APH2#1

WD4#0 WD5#0

WD1#0

Tmp1#0

+

AH1#0

UPPOL2 #0

AH1#0 AH2#0 PH#0 PH1#0 PH2#0

APH2#1

DFG
True#1

DFG
False#1

WD3#0

IF#1

EIF#1

DFG
Cond#1

WD3#0

C&m128

WD3#0

C&128

=

>>15

Int#2

PH#0

>>15

Int#3

PH2#0

Cond#1

PH1#0

AH2#0

DFG #0

WD1#0

CFG
IF#2

CFG
IF#1

WD2#0 WD3#0

DFG #1

PH2#0PH#0

APH2#0

AH1#0

APH2#0

+

1

2

3

4

Figure 1: C to HCDFG format

ration / estimation flow is composed of two steps: i) struc-
tural estimations and ii) physical estimations. The first step
is technological independent and performs architectural ex-
ploration based on the considered architectural model [1].
Each solution is characterized for a number of cycle bud-
get �� by the number �������� and the type (���) of
resources required to execute the application for this cy-
cle budget. By changing the number of cycle budget � �,
we explore the design space. Another important charac-
teristic of the architecture is the number of simultaneous
read and write accesses to a RAM and read accesses to a
ROM which are also computed during the structural esti-
mations. This exploration conducts to several architectural

Specification : HCDFG

Structural
estimations

Physical
estimations

A
rchitectural

E
xploration

Architectural synthesis

Structural characterization
curves

Physical characterization
curves

Cycle
budget

opk

op1

ram(read)

ram(write)

rom

1

Resources
number

Tex(ns)

Nb lc
Target FPGA logic cells occupation

Tmin Tmax

Ncmin Ncmax

Amin

Amax

Nop1,max

Nopk,max

Resources estimation

Nc

Nopk(Nc)

A(T)

T

Figure 2: Exploration / estimation flow

solutions that are characterized for a given cycle budget � �:
i) by the number and type of functional units (� �������), ii)

by the number of simultaneous read(write) from(to) RAM
(���� ������, ���� 	�����), iii) by the number of si-
multaneous read from ROM (���� ������) and iv) by the
number of control states (�
����). All these results are
gathered together in a 2D representation, where the vertical
axis corresponds to the number of resources and memory
accesses, and the horizontal axis to the number of clock cy-
cles. The second step is technological dependent and tar-
gets a specific FPGA technology. During that step, each
architectural solution is characterized for a temporal con-
straint � by the FPGA resources occupation ��� �. FPGA
resources considered are logic cells (resources that allow the
configuration of user defined functions, e.g. slices, logic el-
ements), dedicated cells (e.g. Block SelectRAM, Embedded
System Block, those resources allow efficient implementa-
tion of specific functionalities like memories, product terms,
DSP operators . . .), tristate buffers and I/O pads. The FPGA
description is given in a technology file that contains: i)
the characteristics of the target FPGA (number of logic and
dedicated cells, I/O pads, tristate buffers), ii) the character-
istics of each functional units (area and delay) and iii) the
characteristics of the memories (number of bits per logic or
dedicated cells, access time). Note that the technology file
is derived from the data sheet of the target FPGA and from
the synthesis of basic arithmetic and logic operators.

4. EXPERIMENTS & RESULTS

4.1. From specification to synthesis

In this section, the design cycle described above is applied
to the example of a half Discrete Wavelet Transform (DWT).
Specification is written in the C language for test and sim-
ulation, and is then translated into the intermediate repre-
sentation model (HCDFG) on which the exploration / es-
timation tool works. The DWT application is composed
of 4 filtering / lifting schemes followed by a scaling pro-
cess and image re-arrange, described by ��� order nested
loops. Figure 3 shows the exploration results for the Xil-
inx Virtex V400EPQ240-7. We have only represented the
logic cells occupation (where the maximum number is 4000
slices for Virtex) vs excution time (��) curves as they rep-
resent the most significant FPGA resource occupation for
this example. As we can see on the figure, exploration pro-
vides 65 architectural solutions, each one corresponding to
a different parallelism degree. Let’s for example consider
the solution highlighted in figures 3 since it corresponds to
a good area/speed trade-off. Based on that solution the de-
signer may want to refine the exploration. For example, in
this experiment the default clock period value corresponds
to the slowest functional unit delay used in the architecture.
Hence, the designer can refine the exploration results ob-
tained previously by analyzing the effect of different clock
periods and resource allocation. For the solution selected

Figure 3: Horizontal DWT exploration results (Virtex) -
slices vs time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000

T (ns)

5ns, 8b

6ns, 16b 7ns, 16b

7ns, 8b
10ns, 16b

9ns, 32b 13ns, 32b

13ns, 8b
20ns, 16b

26ns, 32b

Figure 4: Bitwidth and clock period exploration

before, several clock values and data bitwidths are estimated
in figure 4 (labels correspond to a couple clock period value
- data bitwidth). Thanks to those information, the designer
can quickly evaluate if a solution defined by a parallelism
degree, clock value, resource allocation and target FPGA,
can meet the design constraints or not. Once a solution have
been selected (for example the one with a clock period value
equal to 20 ns and a bitwidth equal to 16), details and cor-
responding structural estimation results for each hierarchy
level (each subgraph of the specification) are also available
in our tool (table 1). Those partial results fully character-
ize each architectural solution and give the designer all the
necessary information needed for the system design. In the
case of our example, we can see that the selected solution is
composed of 4 multipliers and 8 adders for a 223 cycles ex-
ecution, which correspond to a resource occupation of ����
(�����) slices, �� (���) BRAMs (dedicated resources for
memory implementation) and ��	 (���	�) tristate buffers
(used in case of resource sharing or conditional branches)
for a �	�
� execution time.

GRAPH Cycles States Mul16 Add16 Reg16 Ram(wr) Ram(rd) Rom
For12_body 5 5 1 2 -- 1 3 1
H1stLftStep 32 32 4 8 -- 4 12 4
For22_body 5 5 1 2 -- 1 3 1
H1stDLftStep 32 32 4 8 -- 4 12 4
For32_body 5 5 1 2 -- 1 3 1
H2ndLftStep 32 32 4 8 -- 4 12 4
For42_body 5 5 1 2 -- 1 3 1
H2ndDLftStep 32 32 4 8 -- 4 12 4
For52_body 3 3 2 -- -- 2 2 2
Hscaling 66 66 4 -- -- 4 4 4
For62_body 2 2 -- -- -- 2 2 --
Hreaarange 33 33 -- -- -- 8 8 --
Hdwt 223 223 4 8 28 8 12 4

Tex : 4.5 µs Slices : 1941 BRAM : 12 3 state : 256

Table 1: Selected solution details

4.2. Precision & Exploration time

In this section, we discuss the precision of the occupation
vs execution time estimations and give values of the ex-
ploration time vs logic synthesis time needed. These mea-
sures have been performed with two representative of re-
cent FPGA families (Virtex and Apex) for a speech coder
(G722) and a 2D DWT (table 2). The corresponding archi-
tectures have been synthesized in order to study estimation
values precision. Note here that to study this precision, the
architectures have been hand coded at the RTL level in or-
der to cope exactly with our architectural model (the use
of a HLS tool would have lead to significant estimation er-
rors as it does not generate the same architecture). That’s
the reason why in the following, exploration times are only
compared to the logic synthesis times (architectural synthe-
sis times are about hours for a HLS tool and months for hand
coding). The Foundation and Quartus synthesis tools have
been used to target respectively Virtex and Apex FPGA.
The speech coder application is composed of eight func-

Virtex V400EPQ240-7 Apex EP20K200EFC484-2X
Precision (%) Expl vs lgc synth Precision (%) Expl vs lgc synthEXAMPLE

slices Tex Texpl Tsynth lgc elt Tex Texpl Tsynth

Parrec -10 +1.4 0.05 sec 1 min -10.5 +4.9 0.05 sec 1 min
Recons -10 +1.1 0.05 sec 1 min -10.5 +4.9 0.05 sec 1 min
Upzero -14.9 +4.5 0.22 sec 5 min +52 +18.3 0.06 sec 5 min
Uppol2 -15.2 -2.7 0.11 sec 5 min +19.4 +18.6 0.11 sec 5 min
Uppol1 -21.5 -9.8 0.11 sec 5 min -3.8 +19.6 0.11 sec 5 min
Filtep -8 -13.1 0.05 sec 1 min -20.1 -8.4 0.05 sec 1 min
Filtez +2.2 +16.1 0.05 sec 2 min -2.6 +41.4 0.05 sec 2 min
predic -10 -2.2 0.05 sec 1 min -10.5 +4.9 0.06 sec 1 min
G722Predictor -7.7 -7 0.9 sec 15 min +3.4 +14.1 0.4 10 min
1stHLftStep +6.9 +7.1 0.1 sec 5 min +1.4 +7.6 0.05 sec 8 min
1stHDLftStep +4 +0.6 0.05 sec 5 min +2.6 +1.9 0.06 sec 8 min
2ndHLftStep +5.1 +13.9 0.06 sec 5 min +2.8 +9.3 0.05 sec 8 min
2ndDHLftStep +2.5 +9.8 0.06 sec 5 min -0.2 +1.7 0.05 sec 8 min
Hscaling +2.7 +3.6 0.1 sec 5 min +4.9 +3.6 0.1 sec 8 min
Hrearrange +46.8 -25 0.06 sec 5 min +67 +9.1 0.05 sec 8 min
1stVLftStep +7.1 +25.5 0.1 sec 5 min -0.2 +2.9 0.05 sec 8 min
1stVDLftStep +5 +16.9 0.05 sec 5 min -0.6 +5.1 0.06 sec 8 min
2ndVLftStep +5.1 +18.5 0.06 sec 5 min +1.1 +2.9 0.05 sec 8 min
2ndDVLftStep +3.4 +18.3 0.06 sec 5 min -2.6 +7.7 0.05 sec 8 min
Vscaling +3.4 +5.5 0.1 sec 5 min +3.2 +3.8 0.1 sec 8 min
Vrearrange +50.9 -5.5 0.06 sec 5 min +61 +3.8 0.05 sec 8 min
DWT 2D +35.9 +18.2 5 min 1.5 days +37 +3.1 5 min 2 days

Table 2: Estimation vs Synthesis error and Exploration vs
(logic) Synthesis time

tions that correspond for example to filtering and prediction

operations. These functions are mainly control and compu-
tation oriented. The 2D DWT example is characterized by
numerous memory accesses and computations. The aver-
age error is about 10 % for temporal values and 18 % for
area estimations which represent a good bound for the de-
signer since the application is described at the algorithmic
level. Locally more important errors can be noticed which
are due: i) to logic optimizations automaticaly performed
by the synthesis tools which are not taken into account in
our approach or ii) to the considered control unit architec-
tural model that has the charge of setting the address signals.
This is particularly true for the 2D DWT example where nu-
merous memory accesses are performed. The exploration /
estimation computational time is very fast since in the case
of the G722, 16 solutions are estimated in about 1 second
and in the case of the 2D DWT, 350 solutions are estimated
in 5 minutes on a Pentium III running at 800 MHz. In table
2, solutions for both applications have been manually writ-
ten at the RTL level and then logic synthesis and place &
route steps have been done automatically. As exhibited in
the figure, the exploration / estimation approach enables to
reduce strongly the design cycle. Hence, the designer can
focus on a subset of architectural solutions that presents the
best delay vs area trade-offs.

5. CONCLUSION & PERSPECTIVES

In this paper we present an automatic exploration / estima-
tion methodology at the algorithmic level. This approach,
which has been integrated in the codesign environment De-
sign Trotter [2], enables to explore a large design space at
an early stage of the design cycle and to characterize each
solution in terms of area vs delay. In order to provide the
designer useful bounds, the control, datapath and memory
units are considered and several FPGA technologies can be
targeted. The time saving resulting from this approach is
significant and allows to shorten strongly the time to mar-
ket constraints as well as to converge towards a better ap-
plication / component matching. Some extensions of this
work are currently being studied to consider a separated ad-
dress generation unit, to take into account some synthesis
optimizations to improve local errors and to include power
consumption estimation.

6. REFERENCES

[1] S. Bilavarn, Architectural Exploration from System
Level Specification - Application to FPGAs, PhD, Uni-
versity of South Britanny, Feb 2002.

[2] Y. Moullec, J.P. Diguet and J.L. Philippe, Design-
Trotter: a Multimedia Embedded Systems Design Space
Exploration Tool, IEEE MMSP02 Dec. 9-11, 2002, US
Virgin Islands.

