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Abstract. We present a 3D geometric flow designed to evolve in Diffu-
sion Tensor Magnetic Resonance Images(DT-MRI) along fiber tracts by
measuring the diffusive similarity between voxels. Therefore we define a
front propagation speed that is proportional to the similarity between
the tensors lying on the surface and its neighbor in the propagation di-
rection. The method is based on the assumption that successive voxels in
a tract have similar diffusion properties. The front propagation is imple-
mented using level set methods by Osher and Sethian [1] to simplify the
handling of topology changes and provides an elegant tool for smooth-
ing the segmented tracts. While many methods demand a regularized
tensor field, our geometrical flow performs a regularization as it evolves
along the fibers. This is done by a curvature dependent smoothing term
adapted for thin tubular structures. The purpose of our approach is to
get a quantitative measure of the diffusion in segmented fiber tracts. This
kind of information can also be used for white matter registration and
for surgical planning.

1 Introduction

Diffusion tensor MRI (DT-MRI) is a relatively new modality that permits non-
invasive quantification of the water diffusion in living tissues. The diffusion tensor
provides information about both quantity and directions of the main diffusions at
a certain point. The water diffusion in the brain is highly affected by the ordered
structures of axons, cell membranes and myelin sheaths. The DT becomes highly
anisotropic in these fibrous regions and DT-MRI is therefore a useful tool for
locating these kinds of structures, providing important information about the
brain connectivity, with potential major impact on fundamental neuroscience as
well as on clinical practise for a better understanding of many related diseases
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such as multiple sclerosis [2][3], Alzheimer’s disease [4] [5], schizophrenia [6][7]
and dyslexia [8].

The DT is normally interpreted by calculating its eigenvalues and eigen-
vectors, the eigenvector corresponding to the highest eigenvalue describes the
direction of the principal diffusion and the eigenvalue is a quantitative measure
of the diffusion in that direction. Most of the existing methods for tracking fiber
bundles rely on this principal diffusion direction to create integral curves de-
scribing the fiber paths [9] [10] [11]. Other methods are using a probabilistic
approach to explore more of the information contained in the diffusion tensor
like for example Hagmann et al. that consider the tensor as a probability dis-
tribution [12]. Parker et al. [13] have used level set theory, applied using fast
marching methods, to find the connection paths between different brain regions.
Campbell et al. [14] have also used level set theory but used it to implement a
geometrical flow to track the fiber. They mostly focus on the problem to prevent
leakage of the thin tubular structure that represents the fibers, by using flux
maximizing flows.

Batchelor et al. [15] are using more of the tensor information by iteratively
solving the diffusion equation. The method creates paths that originates from a
chosen seed-point, and can be considered as probability measures of a connection.
A similar approach is presented by O’Donnell et al. [16] where they find the
steady state of the diffusion equation to create a flux vector field. In the same
paper they show how the inverse diffusion tensor can define a Riemannian metric
that is then used to find geodesic paths that can be interpreted as fiber tracts.

The above methods focus on finding individual fiber paths whereas we have
chosen to search for regions corresponding to certain fiber tracts, following the
same idea as Tench et al. [17]. For this we use a 3D geometric flow designed
to evolve along the fiber tracts by measuring the diffusive similarity between
voxels. The front propagation is implemented using level set methods by Osher
and Sethian [1]. It simplifies the handling of topology changes and provides an
elegant tool for smoothing the segmented tracts. While many methods demand
a regularized tensor field, our geometrical flow performs a regularization as it
evolves along the fibers. The purpose of our approach is to get a quantitative
measure of the diffusion in fiber tracts. This kind of information can also be used
for white matter registration and for surgical planning.

2 Background Theory

2.1 Diffusion Tensor Imaging and Tensor Similarity Measures

Diffusion tensor magnetic resonance imaging(DT-MRI) is a relatively new imag-
ing modality that permits in vivo measures of the self-diffusion of water in liv-
ing tissues. The tissue structure will affect the Brownian motion of the water
molecules which will lead to an anisotropic diffusion. This anisotropic motion
can be modelled by an anisotropic Gaussian, that can be parameterized by the
diffusion tensor in each voxel [18] to create a 3D field of diffusion tensors.



The diffusion tensor is a 3 x 3 symmetric, semi-positive definite matrix. By
diagonalizing the DT we obtain the eigenvalues (λ1, λ2, λ3 where λ1 ≥ λ2 ≥ λ3)
and the corresponding eigenvectors (e1, e2, e3). Since the tensor is symmetric
and semi-positive definite the eigenvalues will always be positive as long as they
are unaffected by noise. The diffusion tensor can then be described in terms of
its eigenvalues and eigenvectors.

D = (e1e2e3)





λ1 0 0
0 λ2 0
0 0 λ3



 (e1e2e3)T. (1)

The largest eigenvalue and its corresponding eigenvector describes the quan-
tity and direction of the principal diffusion.

Alexander et al.[19, 20] have been exploring many similarity measures for
tensors to perform elastic matching of diffusion tensor images. These measures
do not only take the magnitudes of the diffusivity into account but also the
directions. The most common similarity measure between two tensors are the
tensor scalar product (TSP). This is a measure of the the overlap between two
tensors:

D1 : D2 = Trace(D1D2) =

3
∑

j=1

3
∑

i=1

λ1iλ2j(e1ie2j)
2. (2)

The TSP is often normalized to avoid influence of the relative size of the two
tensors. This will emphasize the shape and orientation of the tensor.

NTSP(D1, D2) =
D1 : D2

Trace(D1)Trace(D2)
. (3)

This measure is dependent on the shape of the tensor and only a completely
anisotropic tensor with diffusion in only one direction compared with itself will
sum up to one. In some cases this can be a disadvantage but in our application
this will be an advantage since it is the anisotropic regions that are of highest
interest.

2.2 Geometrical Flows and Level Set Implementation

Geometrical flows and especially curvature- or curve shortening flows are be-
coming more and more important tools in computer vision. A curvature flow is
a curve or surface that evolves at each point along the normal with the velocity
depending on the curvature at that point. The theory is well developed for the
two dimensional case and even though some of the properties of the 2D curves,
such as the property of shrinking to a point under curvature flow, do not hold
in the 3D case, the main part of the theories remains valid and works well for
segmentation of 3D objects.

To use the geometrical flows for image segmentation, the evolution of the
curve or surface has to depend on external properties dependent on the image
features. A classical speed function to segment gray scale images is based on the
gradient of the images and goes to zero when the surface approaches an edge.



A general flow for a 3D closed surface can be described as:

∂S

∂t
= (F + H)

−→
N, (4)

where F is an image based speed function and H is an intrinsic speed de-
pendent on the curvature of the surface.

To solve this time dependent PDE we use the level set method, introduced by
Osher and Sethian [1], where the evolving surface is considered as a constant level
set of a function of a higher dimension. By doing this we obtain a numerically
stable algorithm that easily handles topology changes of the evolving surface. In
our case the function of higher dimension is the signed distance function, φ(t), of
the evolving surface. This makes the evolution of the constant level set coincide
with the evolution of S(t). Thus, the evolution of the signed distance function
is described by:

φt = −(F + H) | ∇φ | . (5)

3 Method

3.1 Similarity Based Front Propagation

As mentioned in the introduction we propose a front propagation method that
is based on the assumption that the diffusion is similar between two adjacent
voxels within the same tract. To perform the segmentation a small initial surface
is placed inside the tract we wish to segment and the surface is then propagated
using the similarity measure in (3). The front propagates into a voxel with a
speed proportional to the similarity between the diffusion tensor in the voxel
and the diffusion tensors in the adjacent voxels lying inside the fiber. The front
propagation speed is defined as:

F = mean(NTSP(Di, Di−1),NTSP(Di, Di−2)) (6)

where NTSP is the normalized tensor scalar product as in (3). Di is the
current voxel and Di−n are the voxels found by following the normal to the
surface n times backwards from the original voxel i, see Fig. 1. The flow does
not necessarily evolve in the direction of the diffusion, but the shape of the
diffusion tensor is not allowed to differ too much from the local neighborhood
inside the fiber. This allows the surface to propagate towards the sides of the
fiber tract and thereby segment the whole tract.

3.2 Regularization

Due to a high level of noise in the DT-MRI a segmentation based on only the
diffusive properties will be very irregular. To smooth the tracts while segmenting
them we regularize the flow by adding a curvature dependent speed. Lorigo et al.
introduced the use of a curvature definition from codimension 2 flows on surfaces



Fig. 1. Choice of adjacent voxels with respect to the normal.

with a thin, tubular structure [21]. Instead of using either mean curvature or
gaussian curvature, which will normally destroy the tubular structure, they use
the smaller principal curvature which is a combination of both curvatures. The
smaller principle curvature, κ, is given by:

κ = H −
√

H2 − K,

where H is the mean curvature and K is the gaussian curvature. For the
definitions of the mean- and gaussian curvature we refer to [22]. This definition
of the curvature will smooth the tubes as if they were open curves in a 3D
space, instead of smoothing their tubular form. We will use this definition for
our curvature dependent smoothing term.

Our geometric flow now has the form:

∂S

∂t
= (F + κ)

−→
N. (7)

This can easily be implemented with the level set method according to the
above theories.

3.3 Thresholding

If the speed at one voxel is not equal to zero it will eventually lead to a propa-
gation of the front at that voxel, even though the speed might be very small. To
prevent unwanted propagation all speeds inferior to a certain threshold are set
to zero. Thresholding is a very abrupt method so it risks to cause discontinuities
in the propagation. To avoid this, the Heaviside function defined in [23] is used
to get a smoother thresholding.

Hε(x) =







0 if x < T − ε
1

2
[1 + x−T

ε
+ 1

π
sin(π(x − T )/ε)] if | x |≤ ε

1 if x > T + ε
(8)

where T is the selected threshold.



The surface evolution is stopped when the propagation speed has been suf-
ficiently small for several succeeding iterations.

3.4 Implementation

The method has been implemented in Matlab 6.1 except for the reinitialization
of the signed distance function, which has been implemented in C and compiled
with the mex-library, so the function can be called from Matlab.

4 Validation and Results

4.1 Synthetic Tensor Fields

To test the method synthetic tensor fields have been created. Tensor values for
one isotropic and one anisotropic tensor was taken from real data on DT-MRI of
the brain of a healthy person. The isotropic tensor was then used as a background
for synthetic fibers constructed of rotated anisotropic tensors.

With this method two different 3D tensor fields are constructed, presented in
Fig. 2. The images show the largest eigenvector of the tensors at a cut along the
z-axis. The first tensor field shows a semicircle to show the ability of following a
fiber. The second tensor field simulates a branching fiber.

To make the tensor fields more realistic, noise is added [24]. This is done by
making the inverse calculation to obtain the six amplitude images from which
the diffusion tensors originally would have been acquired in DT-MRI and then
add noise on the amplitude images. The added noise is an approximation the
Rician noise [25], [26] as it would be on real MR data. After the noise has been
added the tensor images are recreated. The resulting tensor fields can be seen in
Fig. 2.

The method was then tested on the synthetic images with different levels
of SNR. We have used a SNR of 8, 16 and 32. To start the segmentation a
small initial surface is placed somewhere inside the synthetic fiber. Good results
have been obtained with several different thresholds between 0.45 and 0.5. These
threshold have then been used on the real MR data. Examples of resulting sur-
faces can be seen in Fig. 3, these are obtained with a SNR=8. Even though the
synthetic tensor fields are very noisy the resulting surfaces are relatively smooth
due our regularization that is performed as the surface is evolving.

4.2 Real DT-MRI

MRI Data Acquisition. The diffusion tensor images we have used were ac-
quired with a clinical MRI scanner (Magnetom Symphony; Siemens, Erlangen,
Germany). The data was produced with a diffusion-weighted single-shot EPI se-
quence using the standard Siemens Diffusion Tensor Imaging Package for Sym-
phony. We acquired 44 axial slices in a 128 by 128 matrix covering the whole
brain of healthy volunteers, from the vertex to the end of the cerebellum. The



Fig. 2. Synthetic fields: The principal directions of diffusion on a cut along the z-axis.
Upper: Before noise is added. Lower: After noise is added.

Fig. 3. Example of the resulting segmentation of synthetic vector field with SNR=8
and a threshold of 0.45. Similar results are obtained for thresholds between 0.45 to 0.5.



voxel size was 1.64 mm by 1.64 mm with a slice thickness of 3.00 mm with-
out gap. Timing parameters were a TR of 1000 s and a TE of 89 s. Diffusion
weighting was performed along 6 independent axes and we used a b-value of
1000s/mm2 at a maximum gradient field of 30 mT/m. A normalizing image
without diffusion weighting was also required. In order to increase the signal to
noise ratio the measures were repeated 4 times. An anatomical T1-MP-Range
was also performed during the same session. The whole examination lasted about
one hour.

Preprocessing of Data. The preprocessing of the data and the geometric flow
was carried out in Matlab 6.1. The diffusion tensor was computed for each voxel
by linear combination of the log-ratio images according to Basser et al. [27].
The tensors were linearly interpolated component-wise between slices along the
z-axis, to obtain a volume with a 3D regular grid of 1.64 mm.

To begin the segmentation an small initial surface is placed inside the fiber
tract we wish to segment.

Results The segmentation has been performed on three different DT-MR im-
ages. Two of the image acquisitions are from the same person. The results have
been validated visually by comparing with post-mortem based neuroanatomical
knowledge.

On the synthetic images we saw that several different thresholds have been
possible for a good segmentation. On the real MR data the same range of thresh-
olds have been used. Depending on the segmentation we desire the threshold has
been varied within the predetermined range. In Fig. 4 the cortico spinal tract is
segmented on the three different images. The threshold varies slightly dependent
on the image acquisition. In Fig. 5 the corpus callosum has been segmented using
two different thresholds. For a stricter threshold a smaller part is segmented but
by choosing a lower threshold the surface passes further into the fibers and goes
into some of the cortical association bundles.

The cortical association bundles can also be segmented separately as in Fig.
6. For every specific structure the threshold is a little different dependent on
the shape of the tract and the anisotropic properties of the diffusion within the
tract.

5 Discussion and Conclusion

We have presented a new method of segmenting entire fiber tracts by assuming
that two adjacent voxels within the same tract has similar diffusion properties.
The method manages to segment the larger tracts in the brain. This segmenta-
tion can be used as a base for future studies concerning for example quantification
of the diffusion in the tracts or for white matter registration.

The segmentation results are sensitive for the choice of parameters. Since
there is no objective measure of the exact solution on the brain images is it



Fig. 4. Segmentation of the cortico spinal tract on three different brain images. The two
last rows are images from the same patient but with two different image acquisitions. To
obtain a similar segmentation for the three cases the threshold varies slightly dependent
on the image acquisition. It is varied between 0.45 to 0.5.



Fig. 5. Results for the similarity based flow on the first test brain. Segmentation of
different parts of the corpus callosum for different thresholds. On the two upper images
the threshold was set to 0.47 and for the two lower it was set to 0.45.

Fig. 6. Results for the similarity based flow on the first test brain. Segmentation of
some of the cortical association bundles, threshold set at 0.45.



difficult to determine exactly the optimal threshold. This is not necessarily a
negative property, an advantage is the flexible segmentation when the choice of
threshold determines how far to go in the fibers, see example in Fig. 5.

As mentioned in the introduction most of the existing methods are focusing
on following the principal eigenvector of the diffusion tensor. The diffusion tensor
contains a lot more information than just the main direction and magnitude of
the flow. The other eigenvectors and eigenvalues also contain important data
which is often ignored. Only looking at the principal direction also leads to a
larger sensitivity to noise since a smaller deviation of the principal direction
will lead to an important accumulative error. By exploring more of the tensor
information we are creating flows that are less sensitive to noise. The similarity
measures is based on the whole tensor and taking all eigenvectors into account.

An important advantage of our approach is the level set implementation.
It provides an elegant tool for smoothing the segmented tracts and makes it
possible to follow several paths simultaneously and effectively handle branchings
and mergings of fibers.

Another advantage of the flow is that we normalize with the total diffusion in
each point. This will eliminate the influence of the diffusion strength and make
a more correct measure of the common diffusion of the tensors. Calculating
the NTSP with adjacent voxels lying inside the propagating surface leads to a
regularization of the fiber tract in addition to the regularization performed with
the curvature based propagation force.
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