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1 Introduction

Inter-patient registration of brain MR images is a central research topic in med-
ical image processing. Even relatively crude methods such as projecting into the
Talairach space are essential tools for diagnosis, surgical planning, comparative
studies, ... Ideally, the goal is of course to reach point-to-point correspondence
between the patient’s anatomies, which would dramatically improve the accu-
racy of the above applications. While a variety of volumetric methods perform
reasonably well in registering the deep structures of the brain, warping of the
cortical surface has proven to be significantly more challenging due to the higher
interpatient variability.

The need to make comparative measurements across subjects requires a
surface-to-surface registration which not only matches overall cortical geome-
try, but also enforces structure-to-structure correspondence. Unfortunately, dif-
ferences in the serial organization of cortical gyri prevent exact gyrus-by-gyrus
matching due to the fact that some cortical areas are particularly subject to
variations in the incidence and topology of accessory gyri, and one subject may
have two or three gyri where one gyrus is found in another subject. The aim
is to find a method able to extract first main cortex features (deep sulci) and
secondly more local ones to perform a scale space registration.

In this paper we use the theory of geometric curve and surface evolution
to diffuse an object preserving their important features. We do that using a
curvature flow method with a novel diffusivity function. This diffusivity function
takes profit from the characteristics of the level set representation to perform a
directional diffusion. Its performance improves other diffusivity functions that
evolve in such a way that though they diffuse noise, important features are also
lost after some iterations.
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2 Method

Directional difussion had been long studied trying to diffuse data in an anisotropic
way; but Perona and Malik [4] were those who first formulated the problem in
an elegant way by means of non linear PDEs:

w = div[g(|Vel)) V] .

where ||V¢|| is the gradient magnitude and ¢(||V¢||) is an edge-stopping
function that satisfies g(z) — 0 when  — oo so the diffusion is stopped across
edges. Although ¢(||V¢||) (which is proportional to diffusivity function, ¢)(z) =
zg(z)) and its properties have been intensively studied [2][6] we propose a novel
one which stops diffusion for outliers and also for zero values of the gradient
(physically, there is no diffusion) and goes to one exponentially with a ”speed”
7 which controls how fast low gradients and outliers are going to be diffused and
kept respectively.

(2)

1— e mlvel’ IVl < o
v = 2 2 _
g(lIvell) { (1 — =)=Vl V4] > o

We see that our stopping function is able to preserve sulci, which represent
our important features, due to the behavior of the surface evolution, which keeps
very low gradient zones of the level set as well as outliers. Ideally zero, but very
low in practice, gradient is present between sulci when using the signed distance
function as function for our level set evolution (references to level set methods in
[7]). Consequently, these zones do not evolve, so the surface is going to remove
small gyri, resulting in a smooth version of the cerebral cortex, but preserv-
ing sulci. This makes the difference between other curvature flows using typical
diffusivity functions that smooth also sulci. Our diffusivity function has two pa-
rameters to be set: ¢ and 7. The first one is used to detect the information that
had to be kept in our level set representation. The way to set this parameter has
already been studied by Rousseeuw and Leroy [5]. They understand important
information as outliers and suggest that o can be calculated as follows:

0. = 1.4826median]||Vé — median(||V||)||] (3)

Later on, Black and Sapiro [3] proposed a method to calculate ¢ locally, in
such a way that a local o can not be smaller than the global one for a given
window, adapting better the diffusion in each zone.

T represents the speed with which the diffusivity function grows, and is re-
lated to the depth of the point in the brain. This is, ideally, if the value of the
depth function in a certain point is high (bigger than a set threshold, §), 7 has
to be infinite; on the contrary if the value of the depth function in a point is
smaller than §, 7 has to be 1. We model that as the inverse of a step function
(1 up to 0 and O from delta). Such a representation lets diffusion evolve when
sulci are not deeper than § and stop it when they are deeper. ¢ is calculated as



detection of depth outliers. Of course, with such characteristics, a scale space
representation of the brain cortex based on the depth is straightforward.

To perform the directional diffusion we use the affine invariant anisotropic
diffusion proposed by Alvarez, Lions and Morel [1]. This flow performs the dif-
fusion in the desired direction, perpendicular to the gradient, this is, parallel to
the ”edges”. The directional diffusion flow is equivalent to:
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which means that the level sets of ¢ are moving according to the geometric
heat flow. Directional diffusion is then equivalent to smoothing each one of the
level sets according to the geometric heat flow. To further stop diffusion across
edges, we have added our stopping function.

3 Conclusion

Experiments show that, if the geometry of the object is important for our pur-
poses, our technique performs better than the typical ones. For example, in the
case of cerebral cortex registration, since gyri to gyri registration is impossible
due to the inter-patient differences, a good extraction of the important features
(those present in both patients) becomes a cornerstone. With the proposed dif-
fusivity function, this becomes an easy task since only two parameters have to
be set, and this is done in an automatic way. One important characteristic of
this diffusivity function is that we can obtain a scale-space representation of the
cortex.
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