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Abstract. We 2 present a method for face class modeling in the eigenfaces space
using a large-margin classifier like SVM. Another issue addressed is how to select
the number of eigenfaces to achieve a good classification rate. As the experimen-
tal evidence show, generally one needs less eigenfaces than usually considered.
We will present different strategies and discuss their effectiveness in the case of
face-class modeling.

1 Introduction

Human face detection is usually the first task performed in a face recognition system. Its
performances significantly influence the overall quality of the system. In spite of con-
siderable attention that it has received, the problem of reliable face detection remains
open. The difficulty stems from the fact that face detection is a problem of categoriza-
tion: the system must recognize objects belonging to a large class, not just previously
seen entities. However, as all the faces share the same structure, there must be an un-
derlying model that generates all instances of the face class. The problem is then to find
(an approximation of) this model and a good classification function. Recently, numerous
intensity-based methods have been proposed to detect human faces in a single image or
a sequence of images. A few significant approaches are briefly reviewed below.

One of the most representative approaches for the class of neural networks–based
face detectors is the work reported by Rowley et. al. in [1]. Their system has two major
components: a face detector and a final decision module. The face detector uses multiple
neural networks to detect the20 × 20 candidate regions in an image that is scanned at
different positions and scales. The second component is used to merge the overlapping
regions and arbitrate between the outputs of multiple networks. Later, a new module (a
router) has been added, which had the task of detecting the orientation of the possible
face and rotate it in canonical orientation.

Colmenarez and Huang used the Kullback relative information for maximizing the
discrimination between positive and negative examples of faces [2]. The two classes
were characterized in terms of their probability distribution functions, approximated by
a family of discrete Markov processes. The learning process wass converted into an

2 Work partially performed in the BANCA project of the IST European program with the finan-
cial support of the Swiss OFES and with the support of the IM2–NCCR of the Swiss NFS.
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optimization problem to select the Markov process that maximized the information–
based discrimination between the two classes.

Sung and Poggio have developed a clustering and distribution-based system for face
detection [3]. There are two main components in their system: a model of the face/non–
face patterns distribution and a decision making module. The two class distributions are
each approximated by six Gaussian clusters. For a given pattern two types of distances
are computed: first a normalized Mahalanobis distance between the test pattern and the
12 cluster centroids, measured in the subspace spawned by the first 75 eigenvectors of
each cluster. The second distance is a Euclidean distance between the test pattern and
its projection onto the 75–dimensional subspaces. Finally, a multilayer perceptron is
trained to dicriminate the patters using the 12 pairs of distances.

A naive Bayes classifier based on local appearance and position of the face pattern
at different resolutions is described by Schneiderman and Kanade in [4]. The face sam-
ples are decomposed in four rectangular subregions which are then projected to a lower
dimensional space using PCA and quantized into a finite set of patterns. The statistics of
local appearances are estimated independently from the samples. By discarding the sta-
tistical dependencies between the regions, they obtained better estimates of the density
functions and a functional form for the posterior probability.

Osuna et. al. developed a face detector based on SVM that worked directly on the
intensity patterns [5]. A brief description of the SVM is given in this paper also. The
large scale tests they performed showed a slightly lower error rate than the system of
Sung and Poggio, while running approximately 30 times faster.

In the following we will address the problem of face class modeling in the eigen-
faces space. We will present a method that avoids estimating the class conditional prob-
abilities by directly focusing on modelin the face class boundary, by means of Sup-
port Vector Machines. Another issue to be addressed relates to estimating the necessary
number of eigenfaces for a good classificatio performance. Also, we will discuss a tech-
nique of postprocessing the outputs of SVM in order to be able to interpret them asa
posteriorprobability approximations. The paper is structured as follows: the first two
sections address the theoretical aspects of the classifier used (SVM) and of the eigen-
faces space while the third section is dedicated to the experimental results. Finally, we
draw some conclusions in the last section.

2 An Overview of Support Vector Machines

In this section we briefly sketch the SVM algorithm and its motivation. A more detailed
description of SVM can be found in [6], [7].

Let {(xi, yi)|i = 1, . . . , l} ⊂ Rn×{−1, +1} be a set of examples. From a practical
point of view, the problem to be solved is to find that hyperplane that correctly separates
the data while maximizing the sum of distances to the closest positive and negative
points (i.e.the margin). The hyperplane is given by3:

hw,b(x) = 〈w,x〉+ b = 0 (1)

3 We use〈·, ·〉 to denote the inner product operator



and the decision function is

f(x) = sgn(hw,b(x)) = sgn (〈w,x〉+ b) (2)

In the case of linearly separable data, maximizing the margins means to maximize
2
‖w‖ or, equivalently, to minimize‖w‖2, subject toyi(〈w,x〉 + b) ≥ 1. Suppose now
that the two classes overlap in feature space. One way to find the optimal plane is
to relax the above constraints by introducing theslack variablesξi and solving the
following problem (using 2-norm for the slack variables):

min
ξ,w,b

‖w‖2 + C

l∑

i=1

ξ2
i (3)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi ∀i = 1, . . . , l (4)

whereC controls the weight of the classification errors (C = ∞ in the separable case).
This problem is solved by means of Lagrange multipliers method. Letαi ≥ 0 be

the Lagrange multipliers solving the problem above, then the separating hyperplane, as
a function ofαi, is given by

hαi,b(x) =
∑

i,αi>0

yiαi〈xi,x〉+ b (5)

Note that usually only a small proportion ofαi are non-zero. The training vectorsxi

corresponding toαi > 0 are calledsupport vectorsand are the only training vectors
influencing the separating boundary.

In practice however, a linear separating plane is seldom sufficient. To generalize the
linear case one can project the input space into a higher–dimensional space in the hope
of a better training–class separation. In the case of SVM this is achieved by using the
so–called ”kernel trick”. Basically, it replaces the inner product〈xi,xj〉 with a kernel
function K(xi,xj). As the data vectors are involved only in this inner products, the
optimization process can be carried out in the feature space directly. Some of the most
used kernel functions are:

the polynomial kernel K(x, z) = (〈x, z〉+ 1)d (6)

the RBF kernel K(x, z) = exp(−γ‖x− z‖2) (7)

3 Eigenfaces for face modeling

3.1 Principal Component Analysis (PCA) and Eigenfaces

Let x1, . . . ,xl ∈ Rn be a set ofn−dimensional vectors and consider the following
linear model for representing them

x = W(k)z + µ (8)

whereW(k) is an × k matrix,z ∈ Rk andµ ∈ Rn. For a givenk < n, the PCA can
be defined ([8]) as the transformationW(k) whose column vectorswj , calledprincipal



axes, are those orthonormal axes onto which the retained variance under projection is
maximal. It can be shown that the vectorswj are given by the dominantk eigenvectors
of the sample covariance matrix4 S = 1

l

∑
l(xi − µ)(xi − µ)′ such thatSwj = λwj

and whereµ is the sample mean. The vectorzi = W ′
(k)(xi − µ) is thek−dimensional

representation of the observed vectorxi. The projection defined by PCA is optimal in
the sense that amongst thek−dimensional subspaces, the one defined by the columns
of W(k) minimizes the reconstruction error

∑
i ‖xi − x̂i‖2 wherex̂i = W(k)zi + µ.

Now let us view an image as a vector inRn space by considering its pixels in lex-
icographic order. Then the PCA method can be applied to images as well, and in the
case of face images the principal directions are calledeigenfaces[9],[10]. Tradition-
ally, the distance between a given image and the class of faces has been decomposed
in two orthogonal components: thedistance in feature space(corresponding to the pro-
jection onto the lower dimensional space) and thedistance from feature space (DFFS)
(accounting for the reconstruction error).

3.2 Probabilistic PCA (PPCA) and Latent Dimensionality Estimation

The PPCA ([11]) also assumes a linear model for the observed data

x = W(k)z + µ + ε (9)

(compare it with (8)) which is closely related to the factor analysis model, but it differs
from it in the assumptions made about the density functions generatingz andε:

p(z) ∼ N (0, σ2I) (10)

p(ε) ∼ N (0, I) (11)

Under this model, the probability of observing the vectorx is

p(x|W,µ, σ2) ∼ N (µ,WW ′ + σ2I) (12)

For this model, an elegant EM algorithm for estimating the parameters of the model
is given in [11]. A similar model was also discussed in [12] in the context of object
detection.

Here we are interested in the approach taken in [13] for estimating the underlying
dimensionality. Starting from the above model, it can be shown [13] that

p
(
{xi}l

i=1 |k
)
≈




k∏

j=1

λj



− l

2

(σ̂2)−
l(n−k)

2 l−
m+k

2 (13)

wherem = n(n−1)
2 − (n−k)(n−k−1)

2 andλj are the eigenvalues of the sample covari-
ance matrix. (13) is the Bayesian Information Criterion (BIC) approximation of the
likelihood (12). In one set of experiments we will use this criterion for choosing the
PCA dimensionality.

4 We denote with a prime symbol the transpose of a matrix or a vector.



4 Proposed method and Experiments

Relying on eigenfaces for describing the face model is an appealing technique. Not only
we reduce the dimensionality of the input space, thus needing less examples for training
the classifiers, but also the eigenfaces proved to be more robust features in real-world
applications than the raw pixel values.

We want to benefit from those advantages while going beyond the DFFS-like clas-
sification methods. To this end, we propose to use a SVM to directly model the face
class boundary. There are a number of issues that must be addressed like how many
eigenfaces are needed for a good face class model and what kernel should be employed
for SVM. We will analyze different alternatives of choosing the PCA dimensionality
and discuss the performances of the SVM for each of those choices.

One disadvantage of using SVM for classification stems from the fact that its output
is either+1 or −1 without any confidence measure. It is well known the problem of
multiple detections that is usually solved by an arbitration technique. We would like to
have a means of interpreting the SVM outputs in a probabilistic manner, i.e. we would
like to calibrate the outputs to model the posterior probabilities. There are a number of
approaches proposed, and we decided to fit a sigmoid function to the values ofh(x).
This means we have to find those values forα andβ from

p(x) =
1

1 + exp(αh(x) + β)
(14)

that minimize that the log-likelihood of the training data (cross-entropy error function):

−
∑

i

(ỹi log(p(xi)) + (1− ỹi) log(1− p(xi))) (15)

where the new labels arẽyi = 0.5(1 + yi). The new classification rule will be to assign
x to class “+1” ifp(x) ≥ 0.5 and to class “-1” otherwise. Also, we will use the values
p(x) to arbitrate between the multiple detections.

4.1 Experiments

In the following we will discuss a set of experiments that were performed to study the
performance of SVM-based classifiers in the eigenfaces space. As pointed out before,
the main problem in the case of face detection is finding a good model for the entire
class of faces. As such, we concentrated mainly on the face/non–face classification task.

The face dataset used was a subset of BANCA database [14], containing 6540 im-
ages. Faces were cropped out from the images and rescaled to19 × 25. The training
set consisted of 684 images of faces and 7000 of non-faces, while the testing set con-
sisted of 3120 images of faces and 12500 of non-faces. The identities of faces in the
testing set were different from those in the training set. For a detailed description of the
database structure and contents, the reader is referred to [14]. Figure 1 presents the first
eigenfaces from the set of principal axes obtained by performing PCA on the positive
training set and the estimation of the latent dimensionality of the eigenface space.
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(b) Training results
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(c) Testing results

Fig. 1. 1(a) Cummulative variance and latent dimensionality estimation by BIC approximation
(Eq.13). 1(b)– 1(c)Training and testing result using a RBF kernel. The dashed line indicates the
estimated dimensionality of the PCA space. The pannels show three performance factors (from
top to bottom): true positive rate, false positive rate and overall accuracy with respect to the
number of selected eigenfaces.

First we studied the influence of the PCA dimensionality on the performance of the
classifier. We trained a SVM with a RBF kernel (see (7)), keeping its parameters (i.e.
γ andC) constant and we varied the number of eigenfaces used to construct the ”face
space”. Figure 1(b)–1(c) shows the variability of different performance indices. As one
would expect, while the training performances keep increasing, the testing results show
a peak in true positive rate. This peak coincides with the estimated latent dimensionality
(102). However, using so many eigenfaces impacts on the speed of the computations.
In real applications one has to trade off some performance points for a speedup of the
detection. For a faster detection, it seems reasonable to choose only 20 eigenfaces and
then tune the classifier in this reduced space.

We will further investigate the classification performances by tuning the classifiers
for 3 different dimensionalities: 20, 36 (which corresponds roughly to 90% of total
variation) and 102 (as suggested by BIC) eigenfaces. We trained two different SVM, one
with a polynomial kernel and another one with a RBF kernel (equations (6,7)), varying
their parameters. The results are presented in figure 2. As can be seen, adding more
eigenfaces in the representation improves up to a point the results. However, having too
many eigenfaces leads to less stable behavior of the SVM (in the case of the polynomial
kernel) or even degrades the performances. This is due to both the over–fitting effect that
may appear in training and to the limited number of training samples used. Interestingly,
even the difference between the two cases (20 and 36 eigenfaces respectively) is not so
important if we consider that in the first case we have almost half of the number of
eigenfaces (which corresponds to approximately 85% of total variation).

The best classification rates are summarized in Table 1. Also, for the trained clas-
sifiers we performed a set of tests in which we postprocessed the outputs by fitting the
sigmoid function, as described above. For comparison, the classification rates obtained
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Fig. 2. Accuracy of two SVM on the test set. The horizontal axis represents the values of the
kernel parameter.

with a simple threshold based classifier (using the distance from feature space) are given
in the last row, even if the difference in complexity between the two classifiers makes
the comparison unfair. It is interesting to notice that fitting the sigmoid on the outputs

Number of eigenfaces
Without postprocessing With postprocessingClassifier

20 36 102 20 36 102
Polynomial SVM96.21%97.86%97.35%96.67%98.43%97.30%

RBF SVM 96.30%97.41%97.93%96.81%97.93%98.38%
Distance-based75.91%77.38%78.85% N/A N/A N/A

Table 1.Top performances on the test set

of the SVM slightly decreased the error rate in all but one case. However, using this
technique we have also the posibility to interpret the reliability of the outputs.

5 Conclusions

In this paper we presented a method for face class modeling in eigenfaces space. The
method relies on a SVM for class boundary modeling, being able to implement highly
nonlinear (in eigenfaces space) decision functions.

Another issue that we have addressed was the problem of the number of eigenfaces
needed to achieve good performances. We have compared different approaches like the
”90%” rule-of-thumb or the more principled BIC approximation. As the experiments
have shown, generally one needs less eigenfaces than suggested by those rules to reach
an acceptable level of accuracy. Beyond that, one needs a large number of additional
eigenfaces for a significant improvement. An interesting outcome is the coincidence



of the number of eigenfaces needed for the highest true positive rate with the latent di-
mensionality suggested by BIC. However, this criterion produces a largely overestimate
number of eigenfaces if we take into account the overall accuracy of the classifier. Fi-
nally, we discuss a postprocessing technique for for the SVM outputs which is intended
to be used for arbitrating between multiple possible detections. Different alternative for
modeling the SVM margin are currently under investigation.
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