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ABSTRACT

Very low bit rate image coding is an important problem regarding applications such as storage on low memory
devices or streaming data on the internet. The state of the art in image compression is to use 2-D wavelets. The
advantages of wavelet bases lie in their multiscale nature and in their ability to sparsely represent functions that
are piecewise smooth. Their main problem on the other hand, is that in 2-D wavelets are not able to deal with
the natural geometry of images, i.e they cannot sparsely represent objects that are smooth away from regular
submanifolds. In this paper we propose an approach based on building a sparse representation of images in a
redundant geometrically inspired library of functions, followed by suitable coding techniques. Best N-term non-
linear approximations in general dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches
have to be followed. In this work we use a greedy strategy, also known as Matching Pursuit to compute the
expansion. Finally the last step in our algorithm is an enhancement layer that encodes the residual image: in
our simulation we have used a genuine embedded wavelet codec.

Keywords: Sparse representation, Greedy approximation, Matching Pursuit, Wavelet, Image Representation,
Coding, Redundant dictionaries

1. INTRODUCTION

The state of the art in image coding is based on DCT and Wavelets. These schemes have achieved big compression
ratios thanks to the huge research work that has been performed in efficiently coding the transform coefficients
and parameters. Nevertheless, wavelets fail to capture regularities of contours, since they are not able to sparsely
represent one-dimensional singularities. Efficient encoding can be obtained by decomposition of the image in a
sum of two-dimensional, non-separable, functions. Anisotropy, orientation and bending of the basis functions,
as well as their translation all over the image, generate a redundant basis that composes the building blocks
of the signal expansion. Highly non-linear approximations in redundant dictionaries of functions is, in general,
a NP-hard problem, anyhow this does not impair the possibility of finding very good sparse representations in
particular classes of dictionaries. There are different approaches that find a sub-optimal solution to this problem
like Basis Pursuit1 (BP), Orthogonal Matching Pursuit2, 3 (OMP) and Matching Pursuit2 (MP). In this paper we
use a technique based on the greedy Matching Pursuit algorithm that gives good highly sparse decompositions of
images. Combining this characteristic with an accurate design of the dictionary makes possible to achieve high
compression ratios, catching the most visually relevant structures in an image. Since at very low bit rate these
structures mainly consists of objects’ contours, we designed a dictionary that can represent edges working on a
detail version of an image obtained from a Laplacian Pyramid scheme. Finally if one wants to target a higher
bit rate, the quality can be incremented adopting an enhancement layer that encodes the residual image: in our
simulation we have used a wavelet based encoder that performs a space-frequency quantization of the transform
coefficients. Numerical and visual comparisons with other algorithms show that good results can be obtained;
in particular ringing artifacts typical of wavelets are avoided.

This paper is organized as follows : Section 2 explains the adopted coding scheme composed by a low pass
filtering that gives a coarse version of an image, a greedy decomposition for the high frequencies and an wavelet
based enhanced layer for the residual. Section 3 recalls the basic principles of the Matching Pursuit algorithm.
The dictionary design and the atoms’ selection method are illustrated in Section 4 and 5 respectively, while
Section 6 presents the entropy coding for both the low frequency part and the atoms decomposition. In Section
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7 the main results obtained are shown, comparing with the state of the art. Section 8 explains how the proposed
algorithm can be extended in order to achieve higher bit rates. Finally conclusions and future works can be
found in Section 9.

2. REPRESENTATION METHOD

The main aim of this work is the efficient coding of the ‘edge’ discontinuities of images and a new dictionary
has been designed to match the shape of the objects. These discontinuities have most of their energy at high
frequencies, therefore, before coding the edges, the image is decomposed into low frequencies and high frequencies
using the Laplacian Pyramid scheme of Burt and Adelson.4 From an original image, the Laplacian Pyramid
scheme derives a coarse approximation by low pass filtering and downsampling. Based on this coarse version,
it predicts the original (by upsampling and filtering) and calculates the difference as the high pass version or
detail version. The coarse approximation is compressed with quantization followed by entropy coding, and the
detail version is represented with the atoms from the new dictionary. The Matching Pursuit algorithm is used
to decompose the detail version in its most important feature. The scheme is presented in Fig. 1.
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Figure 1. Laplacian Pyramid. Only the encoding part is shown. B(~ω) is the 2-D lowpass filter, A(~ω) is the 2-D
interpolation filter, N is the downsampling factor. Q represents the quantization operation, MP the Matching Pursuit
and EC stands for Entropy Coding.

Even though better coding results may be obtained by choosing the two filters independently, here the filter
B(~ω) and A(~ω) are set to be the same for simplicity. The filtering process is performed applying three times
a low pass filter followed by downsampling. The filter used is a 11 × 11 taps, symmetric low pass FIR filter,
designed using the window method. The window used is gaussian with variance σ2 = 2 pixels, the normalized
cut-off frequency is 0.45, while the downsampling factor is two.

One could use wavelets to obtain the coarse version xc, see Fig. 1, but with the drawback of losing the circular
symmetry that we can have with a true 2-D filter, see Fig. 2. This results in the detail version xd being ‘sullied’
in the horizontal directions, and the Matching Pursuit could be unable to efficiently code the detail version.

The Matching Pursuit algorithm turns out to be extremely efficient at very high compression rates, losing
its good performance when the number of iteration increases. This is partly due to MP’s own properties2 and
partly to the fact that the dictionary that we are using is mainly aimed to detect edges, as will be explained in
section 4. So, in order to be able to code images not only at very low bit rate we introduce a third step in the
representation method that is based on wavelets and that will be illustrated in section 8.

3. MATCHING PURSUIT ALGORITHM

In this section we recall the basics of the iterative process used for the selection of the waveforms that represent
the signal structures. A more detailed explanation of the Matching Pursuit algorithm can be found in Ref. 2.
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Figure 2. Low pass filter: magnitude frequency responses, a) linear, b) and c) in dB.

Let D = {gγ}γ∈Γ be a dictionary of unitary norm vectors gγ called atoms and Γ represent the set of possible
indexes. The function f is first decomposed as follows:

f = 〈gγ0
, f〉gγ0

+ Rf, (1)

where Rf is the residual component after having approximated f in the direction of gγ0
.

Since Rf and gγ0
are orthogonal, it follows that

‖f‖2 = |〈gγ0
, f〉|2 + ‖Rf‖2. (2)

To minimize ‖Rf‖ we must choose gγ0
such that the modulus of the projection |〈gγ0

, f〉| is maximal. Applying
iteratively such a procedure, after N iterations we obtain:

f =

N−1
∑

n=0

〈gγn
, Rnf〉gγn

+ RNf, (3)

where R0f = f and Rnf is the residual after the nth step; it can be proved5 that Rnf converges exponentialy
to zero when n tends to infinity.
As in (2) we can write:

‖f‖2 =

N−1
∑

n=0

|〈gγn
, Rnf〉|2 + ‖RNf‖2. (4)

Equation (4) expresses the energy conservation of the MP. The convergence of MP depends on both the dictionary
and the search strategy. In Ref. 6 it has been shown that there are two real numbers α, β ∈]0, 1] such that for
all n ≥ 0 the following relation is valid:

‖Rn+1f‖ ≤ (1 − α2β2)1/2 · ‖Rnf‖, (5)

where α is an optimality factor related to the strategy adopted to select the best atom in the dictionary, while
β depends on the dictionary, representing its ability to capture the features of the input function f .7

4. THE DICTIONARY

The dictionary used to represent the detail version of the image is composed of a set of functions, named atoms,
built by applying the following four types of transformations to the generating function g(~x) : R

2 → R with
~x = (x1, x2).



a) Translation T~b, to move the atom all over the image:

T~b g(~x) = g(~x −~b). (6)

b) Rotation Rθ, to locally orient the atom along contours:

Rθ g(~x) = g(rθ(~x)), (7)

where rθ is a rotation matrix

rθ(~x) =

[

cos θ − sin θ
sin θ cos θ

] [

x1

x2

]

. (8)

c) Bending Br, to locally adapt the atom to the shape of the contours. This operation arches the x2-axis with
radius r. Figure 3 shows how this operation functions:

Br g(x1, x2) =











g
(

r −
√

(x1 − r)2 + x2
2 , r arctan( x2

r−x1
)
)

if x1 < r

g
(

r − |x2| , x1 − r + r π
2

)

if x1 ≥ r

(9)

x1

x2

r

Figure 3. Bending operation Br that arches the x2-direction with radius r.

d) Anisotropic scaling Sa1,a2
, to adapt to contour smoothness

S~a g(~x) = Sa1,a2
g (x1, x2) = g

(

x1

a1
,
x2

a2

)

. (10)

Atoms are generated varying the parameters ~b, θ, r,~a of the four previous transforms in the following order:

atom(~b,θ,r,~a)(~x) = T~b Rθ Br S~a g(~x). (11)

Finally the waveforms obtained are normalized:

atomnorm

(~b,θ,r,~a)
(~x) =

atom(~b,θ,r,~a)(~x)

‖atom(~b,θ,r,~a)(~x)‖
. (12)
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Figure 4. Generating functions: g1(x1, x2) on the left, g2(x1, x2) on the right

The dictionary used by the MP-algorithm can be written as in equation (13), where the range of all parameters
is discretized:

D = {atomnorm

(~b,θ,r,~a)
(~x)}~b,θ,r,~a . (13)

The radius r is discretized using a dyadic grid, while for the position ~b a uniform grid is kept. The two scaling
factors are discretized in an uniform way except for the first interval which is split in two parts; the range of the
scaling factor along x2 is bigger than the one along x1 and depends on the radius parameter. The rotation step
θ depends linearly on a2 scale.

4.1. Generating functions

The choice of the generating atom g(x1, x2) is driven by the idea of efficiently approximating the high frequencies
of contour, like singularities in 2-D. Therefore, the atom must be a smooth low resolution function in the direction
of the contour and approximate the edge transition in the orthogonal (singular) direction.

In order to be able to well represent either roof and ramp edges8 we adopted two different generating functions,
doubling in this way the size of the dictionary.

The first function, called g1(~x) is a combination of generalized gaussians. In the x1-direction (which is the
singular-direction) it has a Laplacian shape with odd symmetry while in the x2-direction (which is the contour-
direction) it is a generalized gaussian, see Fig. 4. The deviation σx is set to 0.7:

g1(x1, x2) = x1 e
−(

|x1|
σx1

+x4
2). (14)

The second generating function, shown in Fig. 4, is a combination of a gaussian and its second derivative
introduced in Ref. 6; this choice is motivated by the optimal joint spatial and frequency localization of the
gaussian kernel:

g2(x1, x2) = (4x2
1 − 2) · e−(x2

1+x2
2). (15)

Figure 5 shows five atoms with different scaling factors, rotation and bending in both space and frequency
domain. It can be seen that the function g2 is more compact in the frequency domain, whereas g1 is more spread
and reaches higher frequencies.

4.2. Size of the Dictionary

Taking in account all the atom parameters and the two generating functions the dictionary can be written as:

D = {atom(g,~b,θ,r,~a)(~x)}g,~b,θ,r,~a . (16)

Here g ∈ {g1, g2} is the index that specifies which function has been chosen to create the atom, while the other
values are the same as in equation (13). Finally the number of functions that compose our dictionary is around
11000. This set of atoms results to be highly redundant.



Figure 5. Five atoms: on the top space domain, on the bottom frequency domain represented in a logarithmic scale.
The first function starting from the left is generated from g1, the others from g2. The effect of bending, rotating and
anysotropically scaling the atom can be observed.

5. SEARCHING ALGORITHM

The Matching Pursuit is used to decompose the detail version in its most important features. This greedy
algorithm described in Section 3 at each iteration selects an atom from the dictionary such that the projection
coefficient |〈gγn

, Rnf〉| is maximum. To find such gγn
we use a full search algorithm that computes the inner

products between the residual and all the functions of the dictionary. Since the dictionary is composed of all the
translations of the transformed generating functions (TGF), see Eq. (11), it is clear that all the inner products
between the TGF translated all over the residual and the residual itself, correspond to the convolution of the
TGF with the residual. To speed up the search, we compute the convolutions like products in the frequency
domain. The Fourier transform of all the dictionary is computed once and stored.

A slightly modified Matching Pursuit algorithm is also introduced. At each iteration, nk atoms are selected
and used to decompose the residual. Like in Eq. (3) we can write:

f =

K−1
∑

k=0

(

nk+1−1
∑

n=nk

〈gγn
, Rnf〉gγn

)

+ RNf, (17)

with n0 = 0 and nK = N . At kth iteration, according to the absolute values of the projection coefficients, all the
atoms of the dictionary are sorted. Starting from the one with highest projection, all the atoms that are quasi-
orthogonal are selected. We adopted this algorithm in order to obtain a consistent reduction in computational
load. In fact selecting on average nk atoms at once it turns out that MP only needs N/nk iterations. For
example, decomposing images of size 256 × 256 pixels we observed a speed-up of around 20. The drawback of
this method is that there is no more a guaranty that at each iteration the best atom will be selected as in the
case of the full search MP. However the resulting loss in image quality is negligible; in Fig. 6 it can be seen that
the difference is visually imperceptible.

6. ENTROPY CODING OF THE COEFFICIENTS

In Section 2 we saw that the image is decomposed into a coarse version (low frequencies) and detail version
(high frequencies), as shown in Fig.1. The coarse version is quantized in a differential way (DPCM) and the
quantization indexes are entropy coded using an adaptive arithmetic coding algorithm. The detail version is
coded with Matching Pursuit. The parameters that characterize the atoms’ shape are entropy coded using
an adaptive arithmetic coding algorithm. Since the x2-scale parameter depends on the radius, the arithmetic
algorithm uses the conditioned probability p(x2-scale|radius) to code the x2-scale, and p(rotation|x2-scale) for
the rotation parameter.



In order to code the positions and projection coefficients of the atoms, two different approaches can be taken
into account. The first one, that we use, consists of ordering the atoms in decreasing absolute projection values,
then the projections are quantized in a differential way (DPCM) followed by arithmetic coding; the x1 and x2

coordinates of the atoms’ positions are simply stored without any particular coding scheme.

The second approach performs a different sorting of the atoms in such a way to take advantage in coding
the atoms’ positions.9 For example it is possible to code the x1 or x2 coordinates in a differential way followed
by arithmetic coding. The drawback is that we can not perform the exponential quantization10 of the absolute
projections values anymore.

We developed another method oriented to the “position coding approach”. A sorting based on the best path
through all the atoms’ positions is performed, where the cost to go from one position to another is based on the
entropy of the x1, x2-displacement. This is clearly a Traveling Salesman Problem, where the crucial point is the
definition of the cost matrix. Using an approach based on positions coding, it can be useful to adopt a scheme
to quantize the projections based on the scaling parameters that specify the area of the atoms. The impact that
this approach can have on compression efficiency should be deeply investigated.

7. RESULTS

In this section we present results obtained compressing the images “Lena” and “cameraman” with the algorithm
previously presented. The size of both images is 256 × 256 pixels. The bit allocation for the coarse and detail
versions has not not been optimized in a rate distortion sense, so the amount of data reserved for each part of the
coded stream has been chosen empirically. Table 1 shows the PSNR vs. bit-rate comparing with JPEG200011, 12;
it can be seen that MP clearly outperforms JPEG2000 in terms of PSNR at very low bit rate.

It is interesting to compare these results with more recent techniques such as SFQ13 and WSFQ.14 For
example the former obtains a PSNR of 23.63 (dB) at 0.077 bpp while the latter obtains 23.66 (dB).

Table 1. PSNR vs. bit rate for the images “cameraman” and “Lena”: comparison between the proposed algorithm based
on MP and JPEG2000. See Fig. 6 also.

cameraman (256 × 256)

Rate (bpp) MP JPEG2000

0.030 20.45 18.41

0.052 22.46 21.07

0.077 23.92 22.62

0.100 24.75 23.74

0.125 25.46 24.53

0.147 25.61 25.13

Lena (256 × 256)

Rate (bpp) MP JPEG2000

0.036 22.43 21.02

0.062 24.71 23.40

0.079 25.51 24.32

0.100 26.30 25.28

0.125 27.15 26.14

0.150 27.70 26.89

The results presented in Table 1 are obtained by decomposing the image with the algorithm that selects
several atoms per iteration, see Eq.(17). Using the classical Matching Pursuit decomposition we obtain slightly
better results in terms of PSNR with the drawback of a heavier computational load. For example at a rate of
0.077 bpp we have 24.01 (dB): a gain of around 0.1 (dB) that does not yield in a better visual quality.

One can see in Fig. 6 that the gain with respect to JPEG2000 is not only in terms of PSNR but also in terms
of visual quality.

Figure 7 and Table 1 show the results for “Lena” image. Our representation method outperforms JPEG2000
in terms of PSNR and it can also be seen that the ringing artifacts typical of wavelets are avoided.



cameraman 256 x 256 classic MP at 0.077 bpp, PSNR = 24.01

JPEG2000 at 0.077 bpp, PSNR = 22.62 MP at 0.077 bpp, PSNR = 23.92

JPEG2000 at 0.147 bpp, PSNR = 25.13 MP at 0.147 bpp, PSNR = 25.61

Figure 6. Comparison between JPEG2000 and MP at low bit rate. On top right the image is decomposed with the
classical MP method, see Eq. (3) and Section 5



MP at 0.079 bpp, PSNR = 25.51

JPEG2000 at 0.079 bpp, PSNR = 24.32

Figure 7. Lena coded with MP and JPEG2000 at 0.079 bpp



8. ENHANCED LAYER WITH WAVELETS

As mentioned in Section 2, the good performanc of Matching Pursuit slowly get worse as the bit rate increases.
In fact, once that the smooth part of an image is represented by low-pass filtering and downsampling, the MP
dictionary is able to well represent the edges; indeed in this way the other structures that compose a picture
(mainly texture) are not taken into account and this limits the algorithm. Studying the histogram of the pixel
values of the MP residual we found that it tends to a gaussian when the number of atoms is augmented. The
signal has less and less structure to code and slowly becomes similar to noise. However, before arriving at this
point, MP has already lost its efficiency and is no more competitive with respect to other techniques such as
wavelets. So, in order to extend the range of efficiency of the algorithm presented in this paper we introduced
an enhanced layer that codes the residual of MP with wavelets.

We adopted the scheme named space-frequency quantization (SFQ) and presented in Ref. 13: it is based
on the joint application of the wavelet zero-tree quantization (setting to zero tree-structured sets of wavelet
coefficients) and scalar quantization (a uniform scalar quantizer applied to all non-zeroed coefficients), optimized
in a rate-distortion sense. The implementation that we used15 gives results slightly worse than the ones reported
in the cited work, but allows to reach the same rate-distortion slope. The wavelet functions used for decomposing
the residual are the Cohen-Daubechies-Feauveau.9-7, even if it could be interesting to test other wavelet bases.
In practice, after a certain number of iterations or a target PSNR is reached the residual image is passed to the
SFQ encoder that is responsible to represent the signal’s component that the low pass part and MP were not able
to catch. In this way the good behavior of Matching Pursuit is exploited in the very low bit rate range as can
be seen in the previous section; later good performances can be maintained in terms of both PSNR and visual
quality. Figure 8 shows the R-D curve obtained for the image ”cameraman” and compares it with the standard
JPEG200011, 12 and pure SFQ algorithm.13 One can observe that the same asymptotic slope can be achieved
for a bit rate higher than 0.2 bpp, i.e. where MP alone would be clearly outperformed by the cited methods.

An interesting evolution of this method should be to integrate the the SFQ algorithm performing an opti-
mization in a rate distortion sense, so that the point where to switch from one algorithm to another will be
better determined.
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Figure 8. R-D curve obtained for the image ”cameraman”; comparison of the proposed method with SFQ and JPEG2000

9. CONCLUSIONS

In this paper we have presented a new method for very low bit rate image coding. The signal is represented
by a coarse version obtained by low pass filtering and detail version that corresponds to the high frequencies.



Decomposing the detail version on an overcomplete basis using a greedy algorithm (Matching Pursuit) we obtain
a sparse representation of the signal. In order to be able to code images not only at very low bit rate, a third
step based on wavelets is proposed. This technique outperforms the state of the art in terms of both PSNR and
visual quality. In particular the edges, that at very low bit rate constitute the more visually relevant feature of
an image, are no more affected by ringing artifacts typical of wavelets. It can be seen that taking into account
the inherent geometry of images we obtain extremely high compression ratio. Moreover, exploiting the ability of
the algorithm to represent the edges and reducing the low frequency information, we are able to catch the main
characteristics of a picture: for example it can be useful for face detection and recognition.16

An other interesting quality of the Matching Pursuit algorithm is that it provides an intrinsically progressive
stream. This valuable feature allows to fit restrictive bandwith constraints simply transmitting the information
related to the first atoms that are the most significant ones. Applications where rate scalability is an issue can
profit from this property.17

An extension of this work should be to optimize the bit allocation between Matching Pursuit and SFQ in
a rate distortion sense. As mentioned in Section 6 there are other possibilities to code the atoms position and
the projection. The approach that we followed guarantees the scalability but it is not necessarly the best one
concerning compression. A comparative investigation between the two approaches should be performed in order
to select the best technique.
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