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Abstract

Active contours (snakes) provide a uni�ed account of a number of visual
problems, including detection of edges, lines and subjective contours as well
as motion tracking and stereo matching. Since their �rst apparition the re-
searchers of the image processing community have simply applied this model
to their problems without explaining where its parameters come from nor how
to obtain its motion equations. To get a reality-based interpretation of the
classic snake parameters (i.e. elasticity and bending, also referred to as �
and �) we propose an approach originates from the theory of the elasticity.
Then we derive the motion equations from the variational method and we
�nally give some examples of segmentation. An alternative way of computing
the external force �eld which increases the performance of snakes in presence
of concavities is studied. We �nally propose a new approach based on the
dynamic modi�cation of � that improves the snake behavior at corners.

1 Introduction

In 1987, Kass et al. [4] introduced a new approach for locating features of interest in
images. This model, commonly called snake, is based on the energy minimizing of an
active contour. The snake energy may be decomposed in two terms: The external
and internal energy. The external energy is represented by external constraint
forces and by image forces that pull the snake toward features such as line, edges
or other features of interest. The internal energy allows representing the snake as a
continuous curve whose shape is controlled by internal continuity forces which act as
a smoothness constraint. Two type of forces are usually considered: The elasticity
force which holds the curve together and the bending force which prevents the snake
bending too much.

A traditional snake may be considered as a curve v(s; t) = (x(s; t); y(s; t))0, with
s a spatial parameter and t a time parameter, which moves through the spatial
domain of an image minimizing the potential energy functional

E =

Z
Esnake(v(s; t))ds =

Z
Eint(v(s; t)) +Eext(v(s; t))ds (1)

where Eint represents the internal energy of the snake and Eext the external energy
derived from the image, so that it takes its smaller values at the features of interest
(e.g. boundaries, edges, ...). According to [10] and given a gray-level image I(x; y),
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viewed as a function of continuous variables (x; y), typical external energies designed
to lead an active contour toward step edges are

E
(1)
ext(x; y) = �jrI(x; y)j2

and

E
(2)
ext(x; y) = �jr[G�(x; y) � I(x; y)]j2

where G�(x; y) is a two-dimensional Gaussian function with standard deviation �
and r the gradient operator. If the image is a line drawing (black on white), then
appropriate external energies include

E
(3)
ext(x; y) = I(x; y)

and

E
(4)
ext(x; y) = G�(x; y) � I(x; y):

The internal energy in (1) can be de�ned as follow [4] :

Eint(v(s)) =
1

2
[�(s)j@v(s)

@s
j2 + �(s)j@

2
v(s)

@s2
j2] (2)

The internal potential energy is composed of a �rst-order term controlled by �(s)
and a second-order term controlled by �(s). The �rst-order term makes the snake
behave like a string (i.e. resists stretching), whereas the second-order term makes
it act like a rod (i.e. resists bending). For example in a spline description of the
curve, setting �(s) to zero at a point allows the snake to become second-order
discontinuous and develop a corner.

The usual method used to minimize (1) consists in solving its Euler-Lagrange
equations making the snake dynamic by converting its potential energy to kinetic
energy through an energy dissipation function (see for example [5] or [10]).

Although many authors use this scheme to solve their problems, none of them
explain how (2) is derived neither whether the parameters of the snake (� and �)
are related with some physical interpretation. In Section 2, we give a complete
derivation for � and � based on the theory of the elasticity and the mechanics
of the deformable solid. We show that these parameters are strongly related with
physical values such as the Young modulus, the tension force,... In Section 3 we �rst
introduce the concept of variations and we then derive the Euler-Lagrange as well as
the motion equations of the snake. Some examples of segmentation are �nally given
in Section 4. In this Section, we also propose some improvements of the original
method in order that the snake better converges on the features of interest. We
especially replace the external forces with the gradient vector 
ow (cf. [10]) and
propose a new approach that improves the performance of the snake in presence of
corners.

2 The Parameters � and � of the Snake

In this section we answer the question: Where do the stretching and bending pa-
rameters of the snake (i.e. � and �) come from and how are they related with some
physical reality? For that purpose, we need information from the theory of elas-
ticity and from the mechanics of the deformable solid. Both topics are usually not
familiar to the people coming from the signal processing community and although
we try simplifying the problem and being as complete as possible, the reader may
need more information. In that case we recommend him the excellent references [7]
and [3].
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2.1 Principle of Superposition

As in the signal and system theory, the principle of superposition is valid in elas-
ticity under some assumptions. This property is very useful since the complete but
complicated motion of a deformable solid can be expressed as the superposition of
several elementary motions that are simpler to analyze. In our case, the snake is
considered to be a deformable curve which is a function of the x and y coordinates
only - and not the z or height - since we wish the snake to stick to the potential
surface (embedded in <3). Thus, unconstrained movement along the third spatial
dimension (i.e. height) is required. Hence we permit the snake to have two defor-
mational degrees of freedom in the plane, that is, in the x, y coordinates. A direct
consequence to this, is that the internal energy term of the snake will not depend on
torsion and that second-order derivatives will be suÆcient [5]. Moreover the snake
can be thought of as a beam with a cross section which tends towards zero. To
describe the motion of the snake and according to these assumptions it suÆces to
analyze two elementary motions:

� De
ection of an elastic string

� De
ection of the central line of a beam.

2.2 De
ection of an Elastic String

Let a string (i.e. a rod with a cross section equal to zero) be stretched by a uniformly
distributed tension force T and placed in a referential as shown in Figure 1. The
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Figure 1: De
ected String by a Distributed Transverse Load f(x).

string is de
ected by a distributed transverse load f(x) per unit of the string. We
suppose that the transverse de
ection y(x) is small and the change in the stretching
force T produced by the de
ection is negligible. It means that the tension force
after de
ection is still given by T . In the case of the snake, this de
ection may
be seen as a modi�cation of the surface of the image where the snake (string) lies.
A hole in the image (i.e. where the pixel values are weak) acts as if a de
ection
f(x) pushed down the snake (the snake is attracted down under the in
uence of
the gravitational force). On the other hand, a small hill in the image acts as if a
de
ection f(x) pushed up the snake.

In these conditions it is possible to calculate the internal energy of the string.
This energy is also referred to as the strain energy U1. It is equivalent to the work
of the stretching force T all along the string. If the stretch of the string is referred
to as e and the curve parameter along the deformed string as s, we have

U1 =

Z
dW =

Z
T de = T

Z
(ds� dx) =

Z
(
p
1 + (y0)2 � 1) dx:
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Since we are dealing with the linear theory, (y0)2 � 1 and we �nally get

U1 =
1

2
T

Z
(y0)2 dx: (3)

2.3 De
ection of the Central Line of a Beam

In this section we are going to derivate the terms related with the curvature of the
snake. For that purpose, the de
ection of the central line of a beam is analyzed. It
is justi�ed to only consider the central line of a beam since the snake correspond to
the limit of the beam when its surface tends toward zero. When the beam reaches
this limit, it is only compose of its central line.

Let the axis of a beam of constant cross section coincide with the x-axis, and
suppose that the beam is bent by a transverse load p = f(x) estimated per unit
length of the beam. The static equations will be established according to the nota-
tions of the Figure 2. Moreover we suppose the assumption of Bernoulli valid. It

-

6

x

y

- �

� -

�-
�-

�-
-�

xx � �x

6

?
a

6

?
a+ Æ(x; y)

1
2Æ

m
(x)

R

?
� -

�x

1
2 jÆm(x)j
?

Figure 2: Part of the beam limited by its cross sections situated in �x � x and
x. (a) before the deformation, (b) after the de
ection. On that �gure, Æm(x) is
negative.

means that the cross sections remain plane after deformation and thus the \�bers"
of the beam remain parallel respective to x. After de
ection, the �ber length is
�x+ Æ(�x), with

Æ(�x) = Æ(x; y) = Æm(x)
y

a+
:

Æm(x) is the maximal (respectively minimal) stretching of the �ber in y, when its
initial length is �x. For the small de
ections (elastic deformations), the Hook's law
says that the tensile stress �11 at a point (x; y) is proportional to the stretch "11 at
this same point

"11 =
Æ(x; y)

�x
= "m11

y

a+
; "m11 =

Æm(x)

�x

) �11(x; y) = E"11(x; y) = �m(x)
y

a+

where E is the elasticity modulus and �m(x) = E Æm(x)
�x

. Since the tensile stress is
known the bending moment of the beam can be expressed as

M = �
Z

�11(x; y)y dS1 = � 1

a+
�m

Z
y2 dS1
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or equivalently

�m = �a+
I
�M

with I =
R
�1

y2 dS1. It is called moment of inertia of the cross section �1 respective
to the z-axis. And from the Hook's law we have

"m =
�m

E
= �Ma+

IE
:

Moreover it can be shown [7] that the strain energy density W is given by

W =
1

2
�m"m

and thus

W =
M2y2

2EI2
: (4)

The strain energy per unit length is obtained by integrating (4) over the cross
section of the beam

Z
�1

W dS1 =
M2

2EI2

Z
�1

y2 dS1 =
M2

2EI
: (5)

To go a step further, we have to express the inertia moment M as a function of
the curvature radius � of the beam. From Figure 2 we have

�x

2
� 1

�(x)
= �Æm(x)

2a+

1

�(x)
= � Æm(x)

�x a+
=

"m11
a+

= � �m

a+E
=

a+M

Ia+E
=

M

EI
: (6)

On the other hand, [9] shows that the radius of curvature � of the curve y = y(x)
is given by

1

�
=

y00

(1 + y02)
3

2

: (7)

Then replacing � in (6) with its expression in (7) and assuming that we are still
dealing with the linear theory (y0)2 � 1, it yields

y00 =
M

EI

and thus from (5)

Z
�1

W dS1 =
1

2
E I (y00)2:

To obtain the total strain energy U2 it suÆces now to integrate the above relation
all along the beam

U2 =
1

2
E I

Z
(y00)2 dx: (8)
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2.4 Parameter Interpretation

The results of the previous sections can be easily extended to the two dimensional
case. Indeed a snake is usually represented as a curve of two variables in the plane
and each of theses variables is also a function of a same parameter as described in
Section 1. Substituting in (3) and (8) x, respectively y for s, respectively v and
using the property of superposition, this yields for the total strain energy U of the
snake

U =

Z
Eint ds = U1 + U2 =

1

2

Z
(T jv0(s)j2 +EI jv00(s)j2) ds: (9)

Identifying (9) with the internal energy (2) it is easy to see how the two parameters
of the snake are related with the di�erent physical values, that is

� = T
� = EI:

(10)

� � is equal to the tension force in the snake. Thus, the bigger �, the bigger
the stretching force, so that the snake resists more the stretching. It agrees
with the results published in the literature (see for example [4] or [5]). If � is
big the snake tends to shrink and have an intrinsic bias toward solutions that
reduce its length.

� � is equal to the product of the elasticity modulus E and the inertia moment
I of the snake cross section. The elasticity modulus is the proportional coef-
�cient between the tensile stress and the stretch of a deformable solid. If E
is weak, a small tensile stress will produce a great amount of stretch defor-
mation. Moreover the radius of the cross section will be reduced in the same
proportion. Thus a material with a great E better resists the tensile stress
than a material with a small elasticity modulus.

On the other hand, the inertia moment of beam is related with its resistance
to the bending. I is usually used to increase the resistance of a beam without
changing its material (and thus E). The bigger I , the better the beam resists
the bending.

In our ideal case, the snake has a cross section which tends towards zero, thus
the inertia moment tends towards zero too. It means that to have a non zero
� (= EI), i.e. a snake which resists the bending, the elasticity modulus must
tend towards in�nity ! It is obvious since we have an in�nitely thin material
which have to resist the bending.

3 The Euler-Lagrange and Motion Equations

The Euler-Lagrange equations of the snake, i.e. the equations which describes
the curve and satis�es (1) can be obtained from the theory of the variations. To
derive the Euler-Lagrange equations of the snake we follow the same framework as
proposed in [1].

3.1 An Example by Way of Introduction

Let the material point P , rolling without friction along the curve C from the point
P0(x0; y0) to P1(x1; y1), be under the in
uence of the gravitational force only. The
gravitational force is oriented along the y-axis as shown in Figure 3. From the
principle of energy conservation

m

2
v2 = mgy
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Figure 3: Material point P rolling along the curve C without friction.

we can calculate the velocity for any time t

v =
ds

dt
=
p
2gy

where s is a spatial parameter that describes the curve. The time T that the point
needs to go from P0 to P1 along the curve C is given by

T =

Z
C

dt =

Z
C

dt

ds
ds =

Z
C

1

v
dt

with ds =
p
1 + y02 dx. Thus

T =

Z x1

x0

p
1 + y02

p
2gy

dx: (11)

How should the curve C be chosen in order that the travel of the point be as short
as possible? In other words: What is the function among all the functions y(x)
which satis�es the boundaries y(0) = y0 and y(1) = y1 and which minimizes (11)?
The fundamental problem of variational methods usually consists in �nding the
extremal value of an integral which represents a physical quantity.

3.2 Euler-Lagrange Equations

As in the previous section, we consider here only the one dimensional case. The
extension towards a more generalized curve in the plane is straightforward (see
Section 2.4). In order to study the variational method we look for a function y(x)
satisfying the boundary conditions y(x0) = y0 and y(x1) = y1 so that the integral

I =

Z x1

x0

F (x; y(x); y0(x); y00(x)) dx (12)

has an extremum. F is an arbitrary function and we assume that I is well de�ned.
Moreover we also suppose that y(x) is at least continuously derivative up to the third
order. Let's de�ne the function ~y(x) = y(x) + ��(x), where �(x) is any arbitrary
function with the boundary conditions:

�(x0) = �(x1) = �0(x0) = �0(x1) = 0 (13)
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and � a parameter. Replacing y(x) for ~y(x) in (12), we have

I(�) =

Z x1

x0

F (x; y(x) + ��(x); y0(x) + ��0(x); y00(x) + ��00(x)) dx: (14)

Since y(x) is an extremum of (12), the function I(�) must have an extremum for
� = 0 and thus its �rst derivative vanishes for � = 0. Derivating (14) respective to
�, we have

I 0(0) = 0 =

Z x1

x0

[
@F (x; y; y0; y00)

@y
�(x) +

@F (x; y; y0; y00)

@y0
�0(x) +

@F (x; y; y0; y00)

@y00
�00(x)]; dx:

(15)

After integrating by parts once the second term of (15) and twice the third term,
and using the boundary conditions (13) we get

I 0(0) =

Z x1

x0

�(x)

�
@F

@y
� d

dx

�
@F

@y0

�
+

d2

dx2

�
@F

@y00

��
= 0 (16)

The coeÆcient of �(x) under the integral (16) must be zero in order that (16) holds.
Indeed, �(x) may be any function and for example it could be chosen such as it
is equal to 1 when its coeÆcient is positive and equal to �1 when its coeÆcient is
negative. Thus

@F

@y
� d

dx

�
@F

@y0

�
+

d2

dx2

�
@F

@y00

�
= 0: (17)

This equation is called Euler-Lagrange equation.
In the case of the snake, we have

F (s;v(s);v0(s);v00(s)) = Esnake = Eint +Eext =

1

2
[�(s)j@v(s)

@s
j2 + �(s)j@

2
v(s)

@s2
j2] +Eext(v(s)): (18)

This yields

d

ds
(�(s)v0(s))� d2

ds2
(�(s)v00(s)) �rEext(v(s)) = 0: (19)

3.3 Motion Equations

Equation (19) can be viewed as a force balance equation

Fint + F
(p)
ext = 0: (20)

(20) describes the static state of the snake. If we want to express the dynamic
comportment of the snake, (20) must be rewritten

Fint +F
(p)
ext + F

(nc) = �
@2v

@t2
: (21)

where � is the mass density, @2v
@t2

the acceleration vector and F(nc) represents the
non conservative forces which dissipate the kinetic energy and stabilize the snake.
They are given by

F
(nc) = �
 @v

@t

8



with 
 a constant damping coeÆcient or viscosity factor. To be as close of the

physics as possible, we can rewrite the expression of the external energy asE0(i)
ext(x; y) =

�G E(i)
ext(x; y), where G is equivalent to a gravitational constant to give more or less

importance to the external forces and E
(i)
ext(x; y) is one of the energies de�ned in

Section 1. Finally the motion equations for both coordinates x and y are

�
@2x

@t2
+ 


@x

@t
� @

@s
(�(s)

@x

@s
) +

@2

@s2
(�(s)

@2x

@s2
) = ��G @E

0(i)
ext

@x
(22.a)

and

�
@2y

@t2
+ 


@y

@t
� @

@s
(�(s)

@y

@s
) +

@2

@s2
(�(s)

@2y

@s2
) = ��G @E

0(i)
ext

@y
: (22.b)

This system of partial di�erential equations may be solved with a classical method of
numerical integration such as �nite di�erences or �nite elements. For the numerical
implementation we followed the work done by Leymarie and Levine in [5].

4 Examples and Improvement of the Basic Model

In Subsection 4.1, many examples of edge detection in di�erent situations will be
investigated. We present �rst some images where the snake well behaves in order to
show that the basic snake may also be robust and very e�ective in some situations.
Then we give some examples which emphasize the limitations of our basic model.
In Subsections 4.2 and 4.3 improvements of the basic snake are proposed in order
to correct some of its primary weaknesses.

4.1 Basic Model

The �rst example consists in segmenting the coin situated in the lower left corner of
Figure 4. This is a quite simple situation since the di�erent coins are well isolated
from one to another. Moreover no additive noise is present in the image. The result
of the segmentation is given in Figure 4 with the following parameters: � = 3,
� = 2, 
 = 2, �t = 0:5, � = 1, G = 5. The snaxel length was kept at 1 pixel by
resampling of the snake during the convergence by dynamic reparameterization of
the snake as described in [6]

In the next example, the same coin is segmented, but some Gaussian noise was
added to the image (see Figure 5 (a)). The signal-to-noise ratio (SNR) of the
image is equal to 12 dB. In that case, only 6 discrete points were placed around
the coin to be segmented. This coarse initial contour is suÆcient to ensure a good
segmentation of the coin even in presence of noise. The result of the segmentation is
given in Figure 5 (b) with the following parameters: � = 3, � = 2, 
 = 2, �t = 0:5,
� = 1, G = 5. The snaxel length was kept at 1 pixel by resampling of the snake
during the convergence.

The third example of this subsection deals with the segmentation of an object
whose a part of its contours is hidden by other objects (see Figure 6). In areas
where the contours of the object to segment are hidden by another object (in our
case the rings of Saturn hide some parts of the planet) the information provided
by the edge detector is no more available and the convergence is entirely based on
the intrinsic internal energy of the snake. That is, the snake provides us with a
subjective contour illusion characterized by its intrinsic smoothness. However some
artifacts appear at the intersection between the planet and the ring. They could
certainly be removed increasing the value of the bending parameter (�). The snake
parameters for this example were: � = 5, � = 2, 
 = 2, �t = 0:5, � = 1, G = 5. The
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(a) (b)

Figure 4: (a) Original image. (Image eight.tif from the Image Processing Toolbox
of Matlab.) (b) Result of the segmentation by a classic snake of the coin situated
in the lower left corner (green curve). The magenta curve represents the initial
conditions (actually 8 discrete points connected by straight lines).

snaxel length was kept at 1 pixel by resampling of the snake during the convergence.

In the following part of the present section we are going to focus our attention
on some poor properties of the basic snake. Improvements will be proposed in
Subsections 4.2 and 4.3. First, because of its de�nition, the snake always tries to be
smooth in order to minimize its internal energy (see Equation (2)). This property
may be a great advantage especially when the images to process are strongly noisy,
but this property becomes a disadvantage at corners where the snake should be
second-order discontinuous. It is in contradiction with the model stated in Section 1
and the snake performances are very poor at these locations. However if the snake
has a high enough resolution (i.e. if the distance between snaxels is small (� 1)) the
smoothing e�ect is minimized (see for example Figure 7). Moreover if the sampling
is done such that a snaxel is exactly situated at a corner the �nal result is satisfying
even if the distance between snaxel is important (Figure 8). In more complicated
cases such as shown in Figure 9, the classic snake provides with poor performances.
Moreover the �nal solution strongly depends on the initial conditions and even
with basic images, as those we are dealing with, the right convergence is not always
reached (see Figure 9 (b)). On Figure 9 (c) another limitation of the classic snake
is shown, that is, the active contour does not converge into concavities. The cases
illustrated in Figure 9 (b) and (c) can be easily improved by introducing a new
external force �eld called gradient vector 
ow (GVF) [10] instead of the simple
force derived from the gradient (Subsection 4.2). In order to improve the behavior
at corner, we propose a new approach based on the dynamic modi�cation of the
rigidity parameter (�). � is progressively decreased around a corner until reaching
a null value at the exact corner location. Setting � to zero allows the snake to
become second-order discontinuous and the develop a corner (see Subsection 4.3).

4.2 Gradient Vector Flow

The gradient vector 
ow (GVF) was originally introduced by Xu and Prince in [10]
in order to improve some poor properties of the force �eld generated by the gradient
operator:

� The gradient of an edge map r(�E0(i)
ext(x; y)) has vectors pointing toward the

edges, which are normal to the edges at their locations

10



(a) (b)

Figure 5: (a) Original image for the second example. It consists in the same coin
as above but in presence of an additive Gaussian noise (SNR = 12 dB). (b) Result
of the segmentation by a classic snake (green curve). The magenta curve represents
the initial conditions (actually 6 discrete points connected by straight lines).

Figure 6: Segmentation of the planet of Saturn. The snake algorithm provides us
with a subjective contour illusion where the planet areas are hidden by its rings.
(Magenta curve: initial contour, green curve: result of the segmentation.)

� These vectors generally have large magnitude only in the immediate vicinity
of the edges

� In homogeneous regions where the image is nearly constant, r(�E0(i)
ext(x; y))

is nearly zero.

Although the �rst property is highly desirable, the last two properties are not. The
second one induces a very small capture range and because of the third one, homo-
geneous regions will have no external forces. The overall approach is to use the force

balance equation (20) and introduce a new external force �eld F
(p)
ext = v(x; y), which

is called gradient vector 
ow (GVF). The idea is based on the Helmholtz theorem
which states that the most general static �eld can be decomposed into two com-
ponents: an irrotational (curl-free) component and a solenoidal (divergence-free)
component. In the classic case the static �eld is irrotational, since it is the gradient
of a potential function. A more general static �eld can be obtained by allowing the
possibility that it comprises both an irrotational and a solenoidal component. The
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Figure 7: Segmentation of a square with the classic snake. The behavior at corners
is good if the snake resolution is high enough (in this exemple, the distance between
snaxel = 1 pixel).

GVF is de�ned so that v(x; y) = (u(x; y); v(x; y))0 minimizes the energy functional

" =

ZZ
�(u2x + u2y + v2x + v2y) + jrf j2jv �rf j2 dx dy

with

f(x; y) = �E0(i)
ext(x; y)

as de�ned in Section 1.
1This variational formulation follows a standard principle, that of making the

result smooth when there is no data. In particular, we see the when jrf j is small,
the energy is dominated by sum of the squares of the partial derivatives of the vector
�eld, yielding a slowly varying �eld. On the other hand, when jrf j is large, the
second term dominates the integrand, and is minimized by setting v(x; y) = rf .
This produces the desired e�ect of keeping v nearly equal to the gradient of the
edge map when it is large, but forcing the �eld to be slowly-varying in homogeneous
regions. The parameter � is a regularization parameter governing the tradeo�
between the �rst and second term in the integrand. (...) Using the calculus of
variations, it can be shown that the GVF �eld can be found by solving the following
Euler equations

�r2u� (u� fx)(f
2
x + f2y ) = 0

�r2v � (v � fx)(f
2
x + f2y ) = 0

where r2 is the Laplacian operator. These equations provide further intuition be-
hind the GVF formulation. We note that in a homogeneous region (where the image
is constant), the second term in each equation is zero. Therefore, within such a re-
gion u and v are each determined by Laplace's equation, and the resulting GVF �eld
is interpolated from the region boundary, re
ecting a kind of competition among
the vectors. This explain why GVF yields vectors that point into the concavities.

The introduction of the GVF instead of the gradient force provides two great
advantages. The �rst advantage is the convergence of the snake into concavities
(Figure 10 (a)) and the second one, a less sensibility to the initial conditions (Fig-
ure 10 (b)). Indeed, with the same initial conditions as in Figure 9 (c) the snake
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Figure 8: Segmentation of a square with the classic snake. The behavior at corners
is good even with a low snake resolution if a sampling is situated exactly at a
corner position (distance between snaxel = 4 pixels). Each circle along the snake
corresponds to a sampling. (Magenta curve: initial contour, green curve: result of
the segmentation.)

(a) (b) (c)

Figure 9: (a) Poor performances of the classic snake at corners. (b) Dependency of
the classic snake on initial conditions. (c) The classic snake does not converge into
concavities.

converges towards the right or at least the expected solution. The introduction of
the GVF strongly improves the convergence of the classic snake towards the desired
solution, but it also deteriorates the performances at corners. Although the classic
snake is not designed for corner matching because of its intrinsic smoothness, the
results can be quite satisfying if the snake resolution is suÆcient. The snake behav-
ior at corners in presence of the GVF is poorer than with the classic snake because
of the di�usion e�ects explained in the previous paragraph. Figure 11 shows the
�eld evolution around a corner in the gradient case (a) and in the GVF case (b).
From the �gure, it is obvious that in the latter case the �eld components di�use the
force and the corner location is not as well de�ned as in the classic case. This same
e�ect is however highly desirable for the increasing of the capture range as well as
for the convergence of the snake into concavities. The di�usion e�ect is illustrated
in Figure 12.

1The next paragraph is cited from [10].
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(a) (b)

Figure 10: Improvement due to the GVF introduction. (a) Convergence into con-
cavities. (b) Smaller dependency on initial conditions. (Magenta curve: initial
contour, green curve: result of the segmentation.)

As shown through the above examples, the GVF turns out to be very power-
ful, but it proves some lack of performance in presence of corners. It is thus not
the universal solution to our problems and improvements of the snake behavior in
presence of corners is presented in the next subsection.

4.3 Improvement at Corners

In that subsection, we present a new scheme that increases the snake performances
in presence of corners. The basic idea is to relax the rigidity (�) around a corner
and set it to zero at the exact corner location in order to allow the snake to become
second-order discontinuous and thus to develop a corner. The equations (22.a) and
(22.b) have to be solved taking into account the fact that � is not constant any
more. It complicates the numerical implementation but the convergence time is not
too much deteriorated.

The values of � are computed in a preprocessing step described as follow:

1. Detection of corners in the image

2. At each corner location, we associate a symmetric Gaussian distribution with
a standard deviation of a few pixels (typically 2 - 3 pixels). This generates a
new image which we refer to as I.

3. I is normalized respective to its greater value, sign-inverted and �nally 1 is
added to the result (I 0 = 1 � I=max(I)). The resulting image (I 0) is thus
1 everywhere except around the corners where it decreases according to a
symmetric Gaussian distribution until 0 at the corner location.

4. Finally I 0 is multiplied by the value of � that the snake should have if � was
constant.

We thus obtain a map of values of � where the rigidity is important everywhere but
at corner locations. A typical map of � is shown in Figure 13. For the examples
presented in this report, the corner locations were placed manually. This task can
of course also be done by the mean of any corner detectors already existing in the
image processing literature.
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(a) (b)

Figure 11: Gradient external forces (a) and GVF external forces (b) around a corner
location.

An comparison between the classic snake and the new method presented above
is shown in Figure 14. The results are not as good as we could hope, but it is
clear that around the corner locations the condition on the rigidity is relaxed and
the curve tends to be second-order discontinuous. If we zoom in towards the steps

in the middle of the image, we better see the contribution of the new method (see
Figure 15). However due to the intrinsic smoothness of the snake and especially due
to the elasticity term (�) the snake tries minimizing its length. The consequence of
it is that the snake passes through the steps without being attracted by the corners.
This can be improved by modifying the external energy of the snake. For example, a
new energy �eld can be de�ned as the addition of the classic gradient �eld with the
� map I 0 de�ned above. In that case both the external and internal energies of the
snake will be very small around the corners and the snake will better approximate
the edges to match. An illustration is given in Figure 16. Comparing Figure 16 (a)
and (b), it is obvious that the improvement due to the new external energy is really
worthwhile. However, the snake remains too smooth at the �rst and third corner
of the step. This situation can again be improved if the variation of � is introduced
as above. Figure 16 (c) shows that the corners are well matched as well as for their
locations as for the second-order discontinuity of the curve.

5 Conclusion and Outlook

The �rst part of this work deals with the complete derivation of the motion equations
of the classic snake as introduced by Kass et al. [4]. We propose an approach based
on the mechanics of the deformable solid and we then rely on the snake parameters
with some physical values. We show that the membrane-like and thin plate-like
interpretations are justi�ed. In the last chapter we give some examples of edge
detection and we show some limitations of the basic method. Many solutions are
then proposed in order to improve the snake convergence and the poor performances
in presence of corner. We especially introduce a new convergence scheme based
on the variation of the rigidity (�) in function of the image content. We also
propose a modi�cation of the external energy which better attracts the snake at
a corner location. The combination of both new methods seems to produce a
real improvement in the convergence quality without complicating the numerical
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(a) (b)

Figure 12: Gradient external forces (a) and GVF external forces (b). In the GVF
case, the capture range is wider and due to the di�usion process, the vectors points
into the concavity.

implementation and thus without degrading the computing time too much.
This deep study on the basic snake model shows that these types of active

contours can be very eÆcient and robust. The snake has the potential advantage of
robustness to image and noise due to the smoothness constraints and the integration
of energy along the entire length of the snake. However, the following diÆculties
may arise when using the basic or improved algorithm presented in this report.

� � and � depend too much on the image to process

� The convergence is relatively slow due to the high number of snaxels that
de�ned the curve

� It is diÆcult to control the snake behavior during the evolution

� The snake is represented by a sequence of separated points which o�ers poor
resolution and accuracy. An increase in the number of points does not always
lead to better results.

All these reasons imply the need for a new and continuous description of the
curve. We believe that a spline (or B-spline) representation as well as a new ex-
pression of the smoothness constraint are necessary. That is why we are proceeding
our work in the directions proposed in [8] or [2]. A B-spline representation allows
the local control of the snake evolution and a continuous description the resampling
of the di�erent control points. For example, a redistribution of the control points
has the great advantage to increase the snake resolution at hard corner locations
without increasing the number of snaxels and thus the computation time.
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(a) (b)

Figure 14: (a) Basic snake. (b) Basic snake with a non constant rigidity (� =
�(x; y)jsnake). (Magenta curve: initial contour, green curve: result of the segmen-
tation.)

(a) (b)

Figure 15: (a) Basic snake. (b) Basic snake with a non constant rigidity (� =
�(x; y)jsnake). Around the corners, the snake in (a) is smoother than in (b) as
expected.

(a) (b) (c)

Figure 16: (a) Basic snake. (b) Modi�ed energy �eld without corner detection. (c)
Modi�ed energy �eld with corner detection.
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