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Abstract

In this project, a method for detecting and localizing human faces based on
affine invariant local feature face models and evidence accumulation has been
developed. It can be classified midway between template-based and pure
feature-based methods, so it benefits from the advantages of both approaches.

First, local parts of the face are detected and classified using a template-
based technique, thus obtaining robustness against illumination changes.
Then, the attention is focused on the spatial configuration of these local
features. To be able to deal with variation in pose and facial expression,
the geometrical arrangement of the local features is studied and classified in
an affine invariant space, where all differences due to affine transformations
(rotation, scaling, translation, squeezing...) are removed.

Finally, the system is also able to cope with partial occlusions of the face
by not requiring the detection of the full set of facial features in order to
form a hypothesis and check it. Using evidence accumulation, it is possible
to detect a face with some missing features, if the detected features provide
enough evidence. Also, different face models have been built, taking into
consideration all possible adverse cases: no mouth features, no nose features,
or no eye features detected.
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Chapter 1

Introduction

1.1 Context and Motivation

The problem of automatic face recognition is a complex and composite task.
It involves detection and localization of faces in a cluttered background,
normalization, and recognition or verification. Depending on the nature of
the application, e.g. sizes of training and testing datasets, resolution of the
images, variability in pose, lighting and background, noise, occlusion, and
finally speed requirements, some of the subtasks could be very challenging.

However, while the problem of face recognition has received a lot of at-
tention in the last decade, and there are good methods for face recognition
relying on normalized faces, the problem of correct localization of faces is still
open, especially in the cases where a greater variability in data is allowed. As
the practice has proved, the face detection and localization step is determi-
nant for subsequent processing. Even though human beings seem capable of
being able to perform this task effortlessly, it is not easy in computer terms.
It is this stage that has been addressed, in the context of high resolution
grayscale images with variability in pose, background and lightning condi-
tions and with possible occlusions due to different hairstyles, glasses, facial
hair, etc.

1.2 Methods Overview

Face detection methods can be mainly divided into two categories: template-
based (or image-based) and feature-based detection. In the first category,
a subset of the image is classified to determine whether there is a human
face at that location or not. The face detection problem is treated as a
pattern recognition one, ranging from simple template matching to more



sophisticated approaches such as wavelet decomposition. In the second class,
faces are detected by grouping facial features according to their geometric
configuration in a face model.

1.3 Proposed Approach

The presented method can be placed midway between the template-based
methods and pure feature-based techniques. While it is based on features,
there are also two levels of templates. One is at feature level — each feature
is treated as a whole object — and the other is at face level, where is the
face template — a flexible template of features. It is expected that com-
bining both techniques, the method will benefit from the advantages specific
to its ancestors: robustness against illumination changes (like in template-
based methods) and against pose variation (like in feature-based approaches).
Moreover, relying on features as a first stage of the algorithm will eliminate
the need of a multiscale sliding window search that is specific to template-
based methods. In this way, it is expected to have a direct way of estimating
the scale and position of the face. The features detected in this stage are
valuable information for face recognition.

1.4 Organization

The rest of this report is organized as follows: In Chapter 2, both approaches
to face detection (template-based and feature-based methods) are presented
in detail and their advantages and drawbacks are discussed. Chapter 3 con-
tains the basis of the approach, while Chapter 4 explains its implementation
and results. Finally, a critical discussion about the method, conclusions, and
future work can be found in Chapter 5.



Chapter 2

Existing Face Detection Methods

As mentioned before, existing face detection approaches reported in literature
can be broadly divided into template-based and feature-based methods. Next
sections present in detail each one of these approaches.

2.1 Template-based Detection

These methods treat the face as a whole feature (holistic approach). They all
consist of a strategy for exploring the image and a classifier which decides if
a window of the image contains a face or not. The most commonly employed
strategy is to explore the image with a sliding window, at different scales and,
eventually, at different orientations. However, template-based systems vary
in their implementation depending mainly on the need for computational
efficiency. The size of the scanning window, the subsampling rate and the
step size are typical parameters that can be tuned to obtain the desired
performance.

Early methods used templates predefined by experts. Decision was made
based on correlation values. This simple template-matching systems were
easy to implement, but they could not effectively deal with variation in scale,
pose and shape.

More recent and complex methods make use of learning algorithms to ex-
tract the relevant characteristics from example images. These learned char-
acteristics usually are probability distributions or discriminant functions that
are further used for classification. In a general object detection scheme, let
Q = {wi,ws,...,wpr} be the set of object classes. These methods estimate
the likelihood P (x |w.), ¢ = 1,..., M, for x to belong to the object class w,
using a training set of Ny patterns {xt}é\i ", each pattern belonging to one of
the classes in 2. In face detection Q = {f,nf}, that is the object classes are
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Figure 2.1: Some examples of eigenfaces.

restricted to: face and non-face. To classify a new pattern z, the maximum
likelihood principle is often used:

w" = argmax P (z |we) (2.1)

2.1.1 PCA Applied to Face Detection: Eigenfaces

As images can be regarded as high-dimensional vectors, and human faces
lie in a subspace of the overall image space, dimension reduction techniques
have been used for efficiency’s sake. One of the most successfully used is
Principal Component Analysis (PCA), first applied to the problem of face
representation by Sirovich and Kirby [50], and later on by Turk and Pentland
[57] and Moghaddam and Pentland [30] to detect and recognize human faces.
The main idea behind this approach is to estimate the [ikelihood functions
in a low-dimensionality space, but keeping most of the information (i.e. the
in-class variability of human faces).

Given a set of m-by-n images {I t}f; ", a training set of vectors {x'}, where
x € RN=™"_can be formed by lexicographic ordering of the pixel elements of
each image I*. The basis functions in a Karhunen-Loéve Transform (KLT)
[27] are obtained by solving the eigenvalue problem

A=oTLd (2.2)

where ¥ is the covariance matrix of the data, ® is the eigenvector matrix
of ¥ and A is the corresponding diagonal matrix of eigenvalues. In PCA, a
partial KLT is performed to identify the largest-eigenvalue eigenvectors and
obtain a principal component feature vector y = ®% %, where X = x—X is the
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Figure 2.2: The principal subspace F' and its orthogonal complement F'.

mean-normalized image vector (i = NLT Eiv:Tl Xt) and ®,, is a sub-matrix of
® containing the principal eigenvectors. These eigenvectors are the so-called
eigenfaces, the look of which can be seen in Fig. 2.1.

PCA can be seen as a linear transformation y = T (x) : RY — RM which
extracts a lower-dimensional subspace of the KL basis corresponding to the
maximal eigenvalues. This corresponds to an orthogonal decomposition of
the vector space RY into two mutually exclusive and complementary sub-
spaces: the principal subspace (or feature space) F = {@i}iﬂil, containing
the principal components, and its orthogonal complement F' = {(I)Z}fvz M1
as illustrated in Fig. 2.2.

In a partial KL expansion, the residual reconstruction error is defined as

N M
e(x)= Y v =xl-> v (2.3)
i=M+1 i=1
and can be easily computed from the first M principal components and the
Ly-norm of the mean-normalized image x. Consequently the L, norm of every
element x € RY can be decomposed in terms of its projections in these two
subspaces. The component in the orthogonal subspace F is referred to as the
“distance-from-feature-space” (DFFS), which is a simple Euclidean distance
and is equivalent to the residual error €? (x) in Eq. 2.3. The component of
x which lies in the feature space F' is called the “distance-in-feature-space”
(DIFS), which is not a distance-based norm, but can be interpreted in terms
of the probability distribution of y in F.

Assuming that Pp (x |w.) can be approximated as a high-dimensional
Gaussian density, and that the mean X and covariance ¥ of the distribution
from the training set {x’} have been estimated, the likelihood estimate of an
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input pattern x can be expressed as the product of two independent Gaussian
densities

P (x lwe) = Pr (x |we) Br (x w.) (2.4)

where Pg (x |w,) is the true marginal density in F-space and P (x |w,) is
the estimated marginal density in the orthogonal complement F-space. In
case Pr (x|w.) cannot be adequately modelled using a single Gaussian, a
Mixture-of-Gaussians model can be used.

To detect faces, the maximum-likelihood principle (Eq. 2.1) is used. The
density estimation P (x |w,) is computed for each image vector x at location
(i,7) and the class w, is determined. See [30] for details.

This method has been reported to achieve a good performance in large
test sets. One of its advantages is that it can be applied to detect other
objects such as eyes, nose and mouth, as it has been done by Pentland et al.
[29, 34]. However, a disadvantage of this system (and indeed, of all template-
based systems) is that each window has to be projected into a subspace before
classification. This involves a matrix multiplication for every image window
and the time spent is considerable.

2.1.2 Other Dimension-reduction Techniques

Sung and Poggio [54, 56] proposed an approach very close to the idea be-
hind eigenfaces. Their system consists on two components, distribution-
based models for face/non-face patterns and a multilayer perceptron classi-
fier. First, a modified version of the classical k-means clustering algorithms
is applied to the training set of face patterns and non-face patterns to divide
each set into 6 clusters. The non-face patterns are generated in a “bootstrap”
fashion, avoiding the problem of explicitly collecting a representative sam-
ple of non-face patterns (moreover, using the “bootstrap” method only those
non-face patterns close to face clusters are collected and modelled). The re-
sult of this process is 6 face centroids and 6 non-face centroids together with
their covariance matrices. Two distance metrics are computed between an in-
put image pattern and the prototype clusters. The first distance component
is the normalized Mahalanobis distance between the test pattern and the
cluster centroid, measured within a lower-dimensional subspace spanned by
the cluster’s 75 largest eigenvectors. The second distance component is the
Euclidean distance between the test pattern and its projection onto the 75—
dimensional subspace. The last step is to use a multilayer perceptron (MLP)
network to classify face window patterns from non-face patterns using the
twelve pairs of distances to each face and non-face cluster. The system seems
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to perform quite well on a well-known test set such as the CMU. However,
the number of face and non-face clusters are chosen quite arbitrary. It is not
clear how the system would perform for a different number of clusters, and
there is no general rule for selecting these parameters.

Yang et al. [61] proposed two methods using a mixture of linear sub-
spaces. The first one uses common Factor Analysis (FA), which is a sta-
tistical method for modelling the covariance structure of high dimensional
data using a small number of latent variables. FA assumes that the variance
of a single variable can be decomposed into common variance and unique
variance. Unlike PCA, which considers the total variance of all variables, FA
analyzes only the common variance of the observed variables, thus avoiding
“unwanted” variations, such as independent noise in the data. A mixture
of factor analyzers in this first method. Given a set of training images, the
Expectation-Maximization algorithm [8] is used to estimate the parameters
in the mixture model. This model is then applied to sub-windows in the in-
put image and outputs the probability of a face being present at the current
location.

The second method uses Fisher Linear Discriminant (FLD) [9] to project
samples from the high dimensional image space to a lower dimensional feature
space. The training face and non-face samples are decomposed into several
subclasses using Kohonen’s Self Organizing Map (SOM) [21|. A projection
matrix is then determined by Fisher Linear Discriminant which maximizes
the ratio between the between-class variance and within-class variance. The
whole training set is projected onto this subspace and Gaussian distributions
are used to model each class conditional density. Parameters of the model
are estimated with maximum likelihood. New patterns z are also classified
by using the maximum likelihood principle as in Eq. 2.1. Good results have
been reported for both methods. Nevertheless, important parameters such as
the number of clusters for the face and non-face class in the second method
are much dependent on the size of the training set. As in [54], generic rules
for selecting those parameters are not known.

Schneiderman and Kanade [49] describe a face detector based on a com-
bination of PCA and Bayes’ decision rule (Eq. 2.5, in the form of a likelihood
ratio).

P (x|w = face) P (w = non — face)
P (x |w = non — face) P (w = face)
The joint probability P (x|w) is estimated based on local appearance

and position of face patterns (subregions of the face) at multiple resolutions
using a naive Bayes classifier (i.e., no statistical dependency between the

(2.5)
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subregions). This is due to two main reasons. First, it provides better es-
timation of the conditional density functions of these subregions. Second, a
naive Bayes classifier provides a functional form of the posterior probability
to capture the joint statistics of local appearance and position on the object.
At each scale, a face image is decomposed into four rectangular subregions.
These subregions are then projected to a lower dimensional space using PCA
and quantized into a finite set of patterns, and the statistics of each projected
subregion are estimated from the projected samples to encode local appear-
ance. Under this formulation, the method decides that a face is present when
the likelihood ratio is larger than the ratio of prior probabilities (Eq. 2.5).
This method shows a good performance and is able to detect some rotated
and profile faces.

2.1.3 Other Template-based Methods

Many other template-based techniques have been proposed for classifying
image patches as face or non-face. For example, Neural Networks are quite
a popular technique. They have been implemented by, among others, Row-
ley et al. [42, 43]. Their system incorporates face knowledge in a retinally
connected neural network. The input fixed-size windows are preprocessed
through lighting correction (a best fit linear function is subtracted) and his-
togram equalization. After that, the windows are sub-scanned by a hidden
layer of the network. These different observations are combined to produce
a final output. The typical problem of multiple detections about window-
scanning techniques is tackled here through two heuristics: 1) if the number
of detections in a small neighborhood surrounding the current location is
above a certain threshold, a face is considered to be present at this location,
and 2) when a region is classified as a face according to the previous rule, then
overlapping detections are rejected as false positives. This is a robust system,
but is restricted to detecting frontal faces only. In order to improve this, the
method has been extended to detect rotated faces. This has been achieved
by using a router network which processes each input window to determine
the possible face orientation and then rotates the window to canonical orien-
tation. The rotated window is then fed to the neural networks as described
above. The detection rate for frontal faces is degraded, but a good detection
result is reported for detecting faces of different orientations. Nevertheless,
the pose variation problem is not considered.

A new learning architecture called SNoW (Sparse Network of Winnows)
is applied to face detection in Roth et al. [41]. It is a technique specifically
tailored for learning in domains in which the potential number of features
taking part in decisions is very large. SNoW for face detection is a neu-
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ral network consisting of two linear threshold units (LTU), representing the
classes of faces and non-faces. These LTUs are separate from each other and
are sparsely connected over their operating Boolean feature space. They are
updated following the efficient Winnow updating rule [26], which promotes
and demotes weights in cases of misclassification. As in Sung and Poggio’s
method, training is performed with the bootstrap learning algorithm, and
the images are preprocessed with the same procedure used in to previous
approach. This method gives a great frontal face detection result.

Support Vector Machines (SVMs) have also been used in face detection.
SVMs can be considered as a new paradigm to train polynomial function,
neural networks, or radial basis function (RBF) classifiers. Unlike most
classifier-training methods, which are based on minimizing the training er-
ror, i.e., the empirical risk, SVMs aim to minimize an upper bound on the
expected generalization error, following the structural risk minimization prin-
ciple. An SVM classifier is a linear one, where the separating hyperplane is
chosen to minimize the expected classification error of the unseen test pat-
terns. This optimal hyperplane is defined by a weighted combination of a
small subset of the training vectors, called support vectors. The classifier is
trained using a subset of the original data set, which is iteratively updated.
An optimal condition and a strategy for improvement sis specified so that
after each iteration the system can decide if it has reached the optimal so-
lution and define a way to improve the cost function if it has not. Osuna
et al. [32] developed an efficient method to train an SVM for large scale
problems, and applied it to face detection. In their method, an SVM with a
2nd-degree polynomial as a kernel function is trained with a decomposition
algorithm which guarantees global optimality. Similar to the previously men-
tioned methods, Osuna et al. also use the bootstrap method for generating
training samples and preprocess all images with histogram equalization. The
detection accuracy is comparable to that of other best methods.

Hidden Markov Model (HMM) is another face detection method reported
in literature. The underlying assumption of the HMM is that patterns can
be characterized as a parametric random process and that the parameters
of this process can be estimated in a precise, well-defined manner. In de-
veloping an HMM for a pattern recognition problem, a number of hidden
states need to be decided first to form a model. Then, one can train HMM
to learn the transitional probability between states from the examples where
each example is represented as a sequence of observations. The goal of train-
ing an HMM is to maximize the probability of observing the training data
by adjusting the parameters in an HMM model with the standard Viterbi
segmentation method and Baum-Welch algorithms |39]. After the HMM has
been trained, the output probability of an observation determines the class
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to which it belongs. Regarding the face detection problem, a face pattern can
be divided into several regions such as the forehead, eyes, nose, mouth, and
chin. A face pattern can then be recognized by a process in which these re-
gions are observed in an appropriate order (e.g., from top to bottom and left
to right). Instead of relying on accurate alignment as in the other template-
based methods, this approach aims to associate facial regions with the states
of a continuous density Hidden Markov Model. HMM-based methods usually
treat a face pattern as a sequence of observation vectors where each vector
is a strip of pixels. The boundaries between strips of pixels are represented
by probabilistic transitions between states, and the image data within a re-
gion is modelled by a multivariate Gaussian distribution. An observation
sequence consists of all intensity values from each block. The output states
correspond to the classes to which the observations belong. As it has already
been said, once the HMM has been trained, the output probability of an ob-
servation determines the class to which it belongs (face or non-face). Many
authors have used this approach when facing the face detection problem,
e.g., Samaria and Young [46], Nefian and Hayes [31], and Rajagopalan et al.
[40]. Experimental results show that this approach has a higher detection
rate than Neural Networks, although it also has more false alarms.

Schneiderman and Kanade later extended their method (commented in
Section 2.1.2, p. 14) with wavelet representations to detect profile faces
and cars [48]. A wavelet transform can capture information regarding visual
attributes in space, frequency, and orientation and thus should be well suited
for describing the characteristics of the human face. When tested with frontal
faces this system is outperformed by the Bayesian-PCA approach. However,
it shows its best when tested with profile faces. In that case, it performs far
better than the other system.

Many other approaches have been proposed, some of them based on In-
formation Theory. These techniques profit in the contextual constraint. In
the case of a face pattern, this contextual constraint is specified by a small
neighborhood of pixels. Context-dependent entities such as image pixels are
modelled using Markov Random Field (MRF) distributions, thus character-
izing mutual influences among them. Alternatively, the face and non-face
distributions can be estimated using histograms. Using Kullback relative
information |7]|, the Markov process that maximizes the information-based
discrimination between the two classes can be found and applied to detection
[6, 25].

Finally, some systems make use of Inductive Learning algorithms. For ex-
ample, Huang et al. applied Quinlan’s C4.5 algorithm [38] to learn a decision
tree from positive and negative examples of face patterns [15]. From these
examples, C4.5 builds a classifier (the decision tree), whose leaves indicate

17



class identity and whose nodes specify tests to perform on a single attribute.
This systems is reported to perform well in a set of frontal face images.

2.2 Feature-based Detection

As it has been seen when presenting template-based methods, they are very
sensitive to both rotation and scaling. To detect faces of different scales, the
input image or the template must be resized to an appropriate value so that
classification or matching can be carried out. The problem of in-plane and
out-of-plane (or pose variation) rotation, however, is more serious. In order
to detect rotated faces, another training set of faces of different views and
rotations may be required, or a completely new set of rules must be devised.
Feature-based methods offer a sensible solution to both rotation and scaling
problems.

These methods can be divided into two groups. The first one is a bottom-
up approach in which facial features are detected and grouped according to
their geometric relationships. The other approach is top-down, where facial
regions are first located, and further analyzed in more detail to confirm the
hypotheses.

2.2.1 Bottom-up Methods

The first approaches proposed in this category were based on simple edge
detection. In these approaches, edges need to be labeled and matched to
a face model in order to verify correct detections. Govindaraju et al. [10]
accomplished this by labeling edges as the left side, hairline, or right side
of a front view face and matching them against the face model using a cost
function, which uses the golden ratio (“4Mt = 1+2_\/g) A group of features
with a cost less than a predefined threshold formed an hypothesized face
candidate. Hypotheses are tested in a second stage, using the eyes and
symmetry about the vertical axis, to verify the detection. This method is
quite limited since it assumes faces are upright, unoccluded, and frontal.
Moreover, because of the variability of shape between different people, it is
hard to devise a reliable cost function.

More recent methods propose to detect full salient facial features, such
as eyes or noses, instead of simple edges. The feature detection can be per-
formed, for example, using any of the methods presented in Section 2.1. The
detection of prominent features then allows for the existence of other less
salient features to be hypothesized using anthropometric measurements of
face geometry. In [19], Jeng et al. proposed a system based on anthropomet-
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ric measures. They initially try to locate the eyes in a binarized preprocessed
image. For each possible eye pair the algorithm goes on to search for a nose,
a mouth, and eyebrows. Each feature has its associated evaluation function.
These functions outcomes are weighted by their facial importance with man-
ually selected coefficients, as shown in Eq. 2.6. The hypothesis obtaining the
highest score is determined to be the most likely face candidate. This system
is reported to obtain a good detection ratio on a test-set with a cluttered
background and subjects positioned in various directions.

E = 0-5Eeye + O-2Emouth + O-lEReyeb'row + O-IELeyebrow + 0-1Enose (26)

Leung et al. developed a probabilistic method to locate a face in a clut-
tered scene based on local feature detectors and random graph matching [23].
First, features such as eyes, nose and nostrils are identified by convolving the
input image with a set of Gaussian derivative filters at different scales and
orientations. A vector of filter responses at a particular spatial location is
then matched against a template vector response. A feature is detected at a
location if the degree of matching is above a threshold. The top two feature
candidates with the strongest response are selected to search for the other
facial features. Having selected these features, the expected locations of the
other features are estimated using a statistical model of mutual distances.
Constellations are formed only from candidates that lie inside the appropri-
ate locations, and the most face-like constellation is determined. Finding
the best constellation is formulated as a random graph matching problem in
which the nodes of the graph correspond to features on a face, and the arcs
represent the distances between different features. Ranking of constellations
is based on a Mazimum Likelihood (ML) scheme, i.e. the probability density
function that a constellation corresponds to a face versus the probability it
was generated by an alternative mechanism (i.e., non-face). A drawback of
this method is that since the distances between facial features are used in
the matching, it can accommodate only faces with little rotation in depth.

Instead of using mutual distances to describe the relationships between fa-
cial features in constellations, an alternative method for modelling faces was
also proposed by Burl, Leung et al. [4, 24]. The representation and ranking
of the constellations is accomplished using the statistical theory of shape,
developed by Kendall [20] and Dryden & Mardia [28]. The shape statistics
is a joint probability density function over N feature points, represented by
(xi, i), for the i—th feature, under the assumption that the original feature
points are positioned in the plane according to a general 2N-dimensional
Gaussian distribution. Also, instead of detecting the features using Gaussian
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derivative filters, features are found using the orientation template correla-
tion (OTC). OTC is a technique which operates on the orientation map of
an image, a representation introduced by G.H. Granlund in [11]. The main
advantage of OTC is its independence from illumination, unlike other cor-
relation methods. Finally, they apply the same ML method to determine
the location of a face. These methods are reported to be able to deal with
partially occluded faces, although no details are given on how this is accom-
plished.

In [64, 66|, Yow and Cipolla presented a feature based method that uses a
large amount of evidence from the visual image and their contextual evidence.
The first stage applies elongated Gaussian derivative filters to detect interest
points. The second step examines the edges around these interest points
and groups them into regions, according to proximity and similar orientation
between them. Those points that have roughly parallel edges on both sizes
are selected. They are then classified into different feature classes (eyebrow,
eye, nose and mouth) based on measurements such as edge length and edge
strength. An image region becomes a valid facial feature candidate if the
Mahalanobis distance between the candidate and the corresponding feature
model is below a threshold. The features are now grouped based on the face
model. Each facial feature and grouping is then evaluated using a Bayesian
network. The overall detection rate of this method is quite high and it can
detect faces at different orientations and poses. However, the reported false
detection rate is also quite high and the implementation is only effective
for faces larger than 60 x 60 pixels. Subsequently, this approach has been
enhanced with active contour models [65, 5.

There are many other proposed methods belonging to the bottom-up
feature-detection scheme. Just briefly mention Han et al. and their morpholo-
gy-based technique to extract what they call eye-analogue segments (defined
as edges on the contours of eyes) for face detection. Recently, Amit et al.
presented a method based on focusing and intensive classification. Focusing
is based on spatial arrangements of edge fragments extracted using intensity
difference. Each region of interest is then classified as face or background
using a learned CART tree.

Finally, even though it has been said that color information is used mainly
in top-down approaches, there are some bottom-up methods that make use
of it. For example, Jebara et al. [18] segment skin color regions in the image
and the feature detection is carried out by using a symmetry transformation.
The detected features are tracked in a sequence and a 3D structure of the face
can be constructed. Sun et al. [53] also use local symmetry information. A
local symmetry map is obtained and fused with the color map which present
the skin color likeness of each pixel. Facial features correspond with the local
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maxima of the map resulted. Theses features are then grouped according to
a face geometry model. Both methods are based on the assumption that
facial regions can be segmented from the background reliably using color
information only. This assumption limits their applicability.

2.2.2 Top-down Methods

As said before, in this class of methods, face regions are segmented from
the background using color information. Face candidates are formed from
these regions and further verified. These methods are very fast, faces can
be detected in real time. However, no method seems to be able to resolve
the problem of background objects having skin color, especially when they
are merged with the face region. Also, these methods are very sensitive to
varying lighting conditions.

Sobottka and Pitas proposed a method for face localization and facial
feature extraction using shape and color [51]. After segmenting the skin-like
regions, a growing algorithm is applied at a coarse resolution in order to
determine connected components. For each component, the best fit ellipse
is computed using geometric moments. Those ellipses that are good approx-
imations of the connected components are selected and considered as face
candidates. Subsequently, these candidates are verified by searching for fa-
cial features inside of the connected components. Features, such as eyes and
mouths, are extracted based on the observation that they are darker than
the rest of the face.

Saber and Tekalp [44] propose a similar method. They segment skin
color regions using Gibbs Random Field filtering. Next, an elliptical face
template is used to determine the similarity of the skin color regions based
on Hausdorff distance [16]. Feature detection is then carried out inside the
ellipses. The eyes centers are localized using several cost functions which are
designed to take advantage of the inherent symmetries associated with face
and eye locations. The tip of the nose and the mouth are located based on
the location of the eyes. One clear drawback of this system is that it is only
effective for a single frontal view face and when both eyes are visible.

In contrast to pixel-based methods, a detection method based on struc-
ture, color and geometry was proposed by Yang and Ahuja in [60]. First,
multiscale segmentation is performed to extract homogeneous regions in an
image. At each scale, a Gaussian skin color model is used to extract regions
of skin tone. These regions are merged until the shape of the total region is
approximately elliptic. The goodness of the approximation is based on the
number of pixels of the region inside its elliptic shape. Candidate regions
with dark areas or holes inside are considered human faces based on the ob-
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servation that facial features either do not have skin color or are darker than
their surrounding areas. Experimental results show that this method is able
to detect faces at different orientations with facial features such as beard and
glasses.

Instead of merging, Wei and Sethi [59] use an iterative partitioning of
the human skin region to detect faces. First, skin color classification at each
pixel location is performed, thus obtaining a binary image. Again, regions
that can be approximated well by an ellipse are considered face candidates.
The iterative process goes on further partitioning the rejected regions, and
tries to approximate them by ellipses. The partitioning process stops when
all subregions are too small and no face candidate is found. Faces are de-
tected by verifying features in the face candidate regions. After applying a
histogram-based thresholding, facial features should correspond to the dark
parts. Based on relative positions of these dark parts and their shapes within
a face region, a face region is classified as face or not.

There are some other methods that do not rely on color information.
Yang and Huang use a hierarchical knowledge-based method to detect faces
in grayscale images [63]. Their system consists of three levels of rules. The
rules at a higher level are general descriptions of what a face looks like while
the rules at lower levels rely on details of facial features. A multiresolution
hierarchy of images is created by averaging and subsampling. The lowest
resolution (Level 1) image is searched looking for uniform regions. The face
candidates are further processed at finer resolutions. At Level 2, local his-
togram equalization is performed, followed by edge detection. Surviving
candidate regions are then examined at Level 3 with another set of rules
that respond to facial features such as the eyes and mouth. One attractive
feature of this method is the low required computation, achieved by using a
coarse-to-fine or focus-of-attention strategy. Although it does not result in a
high detection rate, the ideas of using a multiresolution hierarchy and rules
to guide searches have been used in later face detection works.

Kotropoulos and Pitas [22| presented a method which is an extension
of the algorithm presented above. First, facial features are located with a
projection method. Let I(x,y) be the intensity value of an m x n image
at position (z,y), the horizontal and vertical projections of the image are
defined as HI(z) = ), I(x,y) and VI(y) = 3371, I(x,y). The horizontal
profile of an input image is obtained first, and then the two local minima,
determined by detecting abrupt changes in HI, are said to correspond to
the left and right side of the head. Similarly, the vertical profile is obtained
and the local minima are determined by the locations of mouth lips, nose
tip, and eyes. These detected features constitute a facial candidate. Subse-
quently, eyebrow/eyes, nostrils/nose, and the mouth detection rules are used
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to validate these candidates. An acceptable detection rate is achieved, but
the system has some drawbacks: it becomes difficult to locate a face in a
complex background, and it cannot readily detect multiple faces.

2.3 Hybrid Methods

Even though most of the existing face detection methods belong to one of
the two groups of approaches presented above, there are some of them that
could be included in both categories. These are methods that make use of
local features which are, in fact, image templates. These feature-templates
are then used for face detection, either via their geometrical arrangement or
by matching them on the image. As examples of these hybrid methods, the
works of Heisele et al. [13], and Viola and Jones [58] can be cited.

In the first one, they independently detect local parts of the face, arguing
that for small rotations, the changes in the components are relatively small
compared to the changes in the whole face pattern. Changes in the 2-D loca-
tions of the components due to pose changes are accounted for by a learned,
flexible face model. Then, a geometrical configuration classifier performs the
final face detection by combining the results of the component classifiers.

Viola and Jones, on the other hand, do not use facial features such as
eyes or nostrils, but rectangle features. More exactly, the features consist on
the difference between the sum of the pixels within two or more rectangular
regions. Evaluating these features could be done at any scale and location
in a few operations. They accomplish this by using an image representation
called integral vmage. Briefly, the integral image at location z, y contains the
sum of the pixels above and to the left of z, ¥, inclusive:

i(z,y)= Y, i@,y (2.7)

z'<zy <y

where i (x,y) is the integral image and i (z,y) is the original image. Using
a recurrent method, the integral image can be computed with a single pass
over the input image. Working with this representation, any rectangular sum
can be computed with four values of the integral image (i.e., the values of the
integral image at the corners of the rectangle of interest). Thus, the difference
between two rectangular sums can be computed with eight references to the
integral image. Finally, the face detection is carried out by applying a cascade
of weak classifiers, each one of them evaluating a rectangle feature. These
features are learned using the AdaBoost learning algorithm, aiming to reject
the highest possible number of false alarms in the earlier stages of the cascade.
In this way, a nearly real-time detector is achieved.
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2.4 Discussion

Having presented most of the existing face detection approaches, the ground
has been set to discuss and compare them all. Before this, it should be stated
that the way the methods have been divided (template-based vs. feature-
based) is not the only possible one. Furthermore, for example, feature-
based approaches could be divided into low-level analysis (edges, gray-levels,
color...) and feature analysis (eyes, nose...), instead of into bottom-up and
top-down.

Many problems arise when it comes to compare different face detection
methods. First, the reported results commented above differ on their training
sets and tuning parameters (in fact, most of the methods are tested on data
sets with a very small number of images). Moreover, a general consensus
about what a “correct detection” is, is far from being reached among the
research community — and the fact that many authors do not give any detail
on how have they obtained their reported results, is not helping in this sense.

The second factor is the training time and execution time, which are often
ignored. Third, the number of scanning windows in template-based methods
vary because they are designed to operate in different environments (i.e., to
detect faces within a determined range). For example, it seems clear that
if a method scans more windows than another one, it will obtain a higher
number of false alarms. So, it is important to report the system’s ROC curve
(the correct detections/false positives ratio). Finally, the evaluation criteria
should take into consideration the final purpose of the detector. It all depends
on the misclassification costs. In some applications, having a false alarm is
not so crucial as missing a face (though it requires a higher computational
efficiency). For example, in a validation/control access system, it is unlikely
that a false alarm would be identified as an individual of the database, so
the criterion should be set to minimize the false negative detections.

In order to compare methods fairly, a few benchmark data sets have been
compiled, e.g. the MIT database (collected by Sung and Poggio in [56]), the
CMU dataset (containing the MIT database, and compiled by Rowley et al.
[42]), the FERET database [36], the face database from AT&T Cambridge
Laboratories (formerly known as the Olivetti database) [45], the M2VTS
Database |37|, etc. Some surveys have compared the most representative
methods of each category on these “standard” test sets, and they have taken
into account the previous considerations in evaluating them. Their conclu-
sions can be summarized as follows:

1. Template-based approaches are the most robust techniques, specially
for detecting grayscale frontal faces. They also can detect slightly ro-
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tated faces. Nevertheless, it is necessary to have a face detector that
could detect well faces which are rotated in depth. However, it is very
hard to extend these systems to detect faces with out-of-plane rotation.
Another large training set of faces with different poses may be required
and even if such a training set is available, it is not guaranteed that
existing classification methods will still give a good performance.

. The feature-based approach promises an elegant solution to the prob-
lem of rotation in depth. However, it is very dependent on the feature
detection phase. What is more, the feature detection result is not well
localized. With a large variation in facial expression, it is not surprising
that the facial feature detection in a general scene is not reliable. This
make the relative distances between facial features unreliable for the
feature grouping step, and the feature-based methods themselves not
as robust as template-based methods.

. Most template-based algorithms are based on multiresolution window
scanning to detect faces at all scales, making them computationally
expensive.

. On the other hand, feature-based methods are applicable for real-time
systems where color and motion are available. In these situations, the
most widely used technique is skin color segmentation based on one of
the methods mentioned in Section 2.2.2.

. Nonetheless, color information has been used with limited success. This
is largely because of the fact that the background may also have human
skin color. However, the face skin color and the background color are
still different. A better color segmentation method may successfully
segment the face from background. The difficulty is that the size of the
face has to be large enough for the segmentation to be reliable. Also,
lighting condition and some features like glasses or facial hair may lead
to undesirable segmentation result.

. All things considered, seems clear that the future of face detection lies

in combining both classes of approaches (template-based and feature-
based):

(a) For the first type of methods, multiresolution window scanning
could be avoided by combining the template-based approach with
a feature-based method as a preprocessor with the purpose of
guiding the search based on visual clues such as skin color.
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(b) As for feature-based methods, they could be combined with a final
template-based check step (shall it be a simple cross-correlation
with a pattern, or a more complex process). Another enhancement
could be detecting the different facial features using a template-
based approach. Both these upgrades have been implemented in
this project.
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Chapter 3

Proposed Method

3.1 Introduction

As it has been already mentioned, the proposed method cannot be classified
as pure template-based nor feature-based, as it benefits from the advan-
tages of both approaches. Nonetheless, the attention has been focused on
the feature-based approach, using a Local Feature Face Model (LFFM) [55].
LFFMs model the face as a set of local parts arranged in a deformable spatial
configuration, and not as a whole. The presence and the location of a face is
determined according to the information provided by this spatial configura-
tion. But the geometric distribution of the features on the image plane (or
the image space) is not a reliable representation, as the useful information is
hidden by differences due to translation, rotation and scaling (TRS). Besides,
human faces are a class with a high inherent variability (for instance, due
to emotional expressions), and they can be rotated in depth, thus distorting
even a TRS-invariant configuration.

To cope with all these difficulties, the face models have been learned and
tested in an affine-invariant space (the so-called face-space, or affine-shape-
space). In such a space, no Euclidean shape descriptions are used (i.e. those
requiring absolute distances, angles and areas) and, instead, descriptions
involving relative measurements are employed (i.e. those which depend only
upon the configuration’s intrinsic geometric relations).
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3.2 Affine Shape

3.2.1 Affine Transformation

An affine transformation is an important class of linear 2-D geometric trans-
formations which maps variables into new ones (e.g. in image process-
ing, pixel intensity values located at position (z1, ;) in an input image are
mapped to a new position (z2,y) in an output image). The mapping is
carried out by applying a linear combination of translation, rotation, scaling,
and/or shearing (i.e. non-uniform scaling in some directions) operations.

The general affine transformation is commonly written in homogeneous
coordinates as shown below:

l”]:Axl“]JrB (3.1)
Y2 Y1
where A and B are a constant 2 X 2 matrix and 2 X 1 vector, respectively.
In total, 6 parameters to define the transformation.

Figure 3.1 shows some examples of affine transformations. Consider the
binary artificial image in Fig. 3.1(a). A pure translation transformation can
be carried out (Fig. 3.1(b)) by defining only the B vector:

A:Hﬂ,B:“ﬂ (3.2)

where b; and b, are the displacement (in pixels) applied to the original image.
Pure rotation uses the A matrix and is defined as:

[ ] =[] o

with 6 accounting for the rotation. Fig. 3.1(c) contains a 90-degree rotated
version of the image.
Similarly, pure scaling is:

A:l“él ai],B:lg] (3.4)

where a1; and ags are independent scaling factors. Two particular cases are
shown in Figures 3.1(d) and 3.1(e), respectively. In the first one, a;; and
a9 are held equal, and an uniform scaling is achieved. In the second one,
the image has been reflected along its vertical axis by setting a;; = —1 and
az = 1 (note that a translation has been posteriorly added in order to keep
the figure “inside the image”).

Finally, in Fig. 3.1(f), a combination of all of these partial transforma-
tions has been applied to the image.
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(a) Original Image (b) Translation (c) Rotation
(d) Scaling (e) Reflection (f) General Affine
Transformation

Figure 3.1: Examples of affine transformations.
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U

(a) IMAGE SPACE (b) IMAGE* SPACE (c) AFFINE SHAPE SPACE

Figure 3.2: Affine transformation from image space to affine shape space.

3.2.2 Affine-invariant Model

As reasoned before, the models are built in an affine-invariant space, by the
means of an affine transformation which maps the information-bearing data
(the locations of facial features) from the image space to the shape space.

Consider a face in an image as formed by N labeled feature points with
image space coordinates [z;,y;]" for i = 1,...,N. As it has also been stated,
an affine transformation is defined, in a 2-D space, by 6 parameters. Conse-
quently, 3 points are needed for determining the 6 parameters and for defin-
ing the transformation. Let these 3 points be: (z1,y1), (%2, ¥2), and (z3,y3).
Theoretically, any triplet of non-collinear points would be acceptable (see
Sec. 4.6 for more information). Then, the transformation parameters are
chosen in such a way they map (z1,y;) to the origin, and (x2, y2), (3,¥s) to
(1,0) and (0,1), respectively.

This process is schemed for N = 7 in Fig. 3.2, and its steps are next
explained in more detail:

e Fig. 3.2(a) shows the original 7 labelled features and their arrangement
in image space.

e Next (Fig. 3.2(b)), a new coordinate system (the so-called image*
space) is built, in which (z1,y;) gets mapped to the origin. The coor-
dinates of the other features are given by:

= 9
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This is equivalent to say that B = — [z, yl]T.

e Finally, to achieve an affine invariant representation, the feature points
are referenced to the basis defined by (z3, y5) and («3, y5). This is done
by defining the projection matrix A as follows:

* ¥ 771

A=|T20 (3.6)
Y2 Y3

In this way, (z3,v5) and (x3,y3) get mapped to (1,0) and (0,1), re-

spectively (Fig. 3.2(c)), and the remaining feature points [z}, y;]" are

represented by their affine coordinates |u;, UZ']TI

u | x;
lvi]_Axl;] (3.7)
with ¢ = 4...N (in this case, i = 4, ..., 7).

Grouping the affine coordinates, a general N-feature object is represented by
a (2N — 6)-dimensional affine shape vector:

U= [U4,...,UN,’U4,...,UN]T (38)

3.2.3 Classification

One approach for estimating the likelihood that a set of points describe the
shape of the object that is sought, is to try to estimate the pdf that charac-
terizes the class of objects. Then, for classifying an affine shape vector (Eq.
3.8) as being a face or not, its probability density function could be estimated
as in [24]. Assuming that the image space variables (x;,y;), for i = 1,..., N,
follow a general 2N-dimensional Gaussian distribution:

X = [.’El,...,.TN,yl,...,yN]TNNQN (I/,Q), (39)

then the affine shape variables in the affine shape vector (Eq. 3.8) are de-
scribed by the following distribution:

(N=3)t-e"% ||C] Tk P
fo(U) = 5= — 5] > MLy -5 (3.10)
klakQ =1
k3’k4

which is based on the Dryden-Mardia shape density [28], and it makes use
of the Laguerre polynomial (Lyg,) to approximate even powers of gaussian
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random variables that appear in the expression (this works as long as the
chosen reference features cannot become collinear). For full detail on how to
obtain Equation 3.10, see [24].

This result can be generalized to the case when the image space variables
should be modelled with a Mixture of Gaussians (as it is the case with face
shapes). In that case, as a Mixture of Gaussians is only a linear combination
of pdfs, the joint probability density function of the shape vector U is simply
a mixture of shape densities corresponding to the modes of the Gaussian
mixture density. The mixing parameters are estimated using the Expectation
Maximization algorithm.

The same process is carried out for the non-face class. Its joint pdf is
learned from a group of examples, formed by both full sets of random points,
and combinations of real feature locations and random points.

However, this methodology has a big problem: it does not allow to cope
with missing features, as the whole set of 2/V —6 variables is needed to evalu-
ate the likelihood of a candidate face. To overcome this, instead of obtaining
the likelihood of the full set of affine variables, the individual pdf of each one
of the N — 3 affine variables is estimated. In the affine shape space, features
get more or less grouped in clusters (Fig. 3.3). The compactness of these
clusters depends in great measure on the 3 features chosen to characterize
the affine transformation (more information in Sec. 4.6).

Each cluster is modelled with a bivariate normal distribution:

f(x)= 76*%[X—ui]TE{1[x—m] (3.11)

where p; and 3; are the mean vector and covariance matrix of the i-th
cluster, respectively. This probability densities define confidence regions sur-
rounding each corresponding cluster in where to look for supporting features
(for details, see Sec. 4.4.2). In this way, bad-labelled features are expected
to be removed, and hypotheses are formed. This can be done even if no in-
stances of a determined feature class are found, as the hypotheses formation
procedure is based on evidence accumulation.

3.3 Evidence Accumulation

As it has been shown, to construct a 2-D shape-space, 3 points are needed.

The algorithm consists basically on forming candidate triplets of features !,

!For computational efficiency’s sake, a conditional pruning is applied to reduce the
total number of possible candidate triplets. See Sec. 4.4.1 (p. 41).

32



Location of Affine Shape Variables Using Classes C5, C1 & C10
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Figure 3.3: Two examples of face models in affine-shape-space. The selected
feature classes (C5, C1, and C10 in the first example, and C7, C6, and C1 in
the second one) have been mapped to (0,0), (1,0), and (0, 1), respectively.
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and validating and reinforcing the hypotheses by collecting evidence from the
other features.

Evidence accumulation is an efficient way to form hypotheses, first pro-
posed by Hough for finding parametric curves in images, and further gen-
eralized and adapted for other purposes. It can be regarded as a kind of
model-based recognition approach where an internal object model is matched
to the image by some voting method. Local parts of the object are detected
from the image, and the detected candidate parts are combined to create
hypotheses. After some plausible hypotheses have been created, they are
verified one by one.

Detection /recognition approaches can be classified into sequential hypoth-
esis (or template matching) and evidence accumulation depending on how
they handle variations caused by global transformations|[52]. A sequential
hypothesis test directly matches the internal object model with an input
image at “blind-guessed” poses. As these guesses are based on no evidence,
most of the hypotheses are not useful at all and high computational resources
are required. On the contrary, evidence accumulation does not generate an
hypothesis by a “blind-guess”, but it aggregates partial matching evidences
to form a global pose hypothesis. Using this method, only the supported
hypotheses are verified, and a higher computational efficiency is achieved.

In [33], a face detection method based on evidence accumulation is pre-
sented. The goal of the evidence accumulation step is to determine a face
pose transformation 7' that maps points in the face model onto image points
(Eq. 3.12). The possible face pose is limited to a TRS—transform (Eq. 3.13).

ST

21, 08,1] =T x [, 95,1]" (3.12)
scosf —ssinf t,

T=| ssinf scosf t, (3.13)
0 0 1

Given a couple of point correspondences between the model and the im-
age, the transform 7' can be uniquely determined, since there are 4 parame-
ters and 4 constraint equations:

2t = 29scosf — yfssinf +t,

yi = 29ssinf + yfscosf + t, ~

T = x5scosf — y9ssinb + t, =T (3-14)
yh = 29ssinf + y9scosf + t,

The accumulation space is defined by a discrete 4—dimensional array indexed
by (tg,ty,0,s), and the estimated transformation 7" is accumulated in it.
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After some iterations, the most voted transformation is chosen. Finally, the
hypothesis is verified and the estimated transform is refined with a local-
matching procedure.

The implemented method includes an evidence accumulation operation.
It serves as an alternative to the joint probability density estimation seen
in the previous section. Performing evidence accumulation, it is possible to
cope with missing features. If a certain feature has not been detected, but
nontheless the other ones provide strong evidence of belonging to a face, a
hypothesis can still be formed and further validated.

But contrarily to the other method, what is going to be accumulated here
are the elements of the transformation matrix, not their TRS interpretation.
The purpose of the evidence accumulation step is to choose those hypotheses
with highly concentrated parameters, no matter their meaning. Though the
estimated transformation matrix is slightly different, an analogous accumu-
lation space is used (see Section 4.4.2 for details).
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Chapter 4

Implementation and Results

4.1 Considerations

Before summarizing the proposed method and giving details about each step
of the detection process, some working issues and assumptions must be con-
sidered.

e This algorithm has been designed to detect faces in grayscale high-
resolution still images. Color information has not been used, even if
the algorithm could be enhanced to use this information also.

e [t has been assumed the presence of at most one face in each image.
Also, a large rotation of the face (be it in-plane or out-of-plane) is not
dealt with (e.g., it has been assumed that there will not be upside-down
faces). The most common application of a face localizer is as a first
step of a face recognition system, so the assumptions made are coherent
with this.

e The face models have been learned, and the tests have been performed
on the BANCA database|2]. The BANCA database is a multi-modal
(audio and video) and multi-language database designed for research
in the field of automatic person authentication. Generally there is one
person present in the image and the ground-truth for the facial features
is given, making it ideal for benchmarking face detection/localization
algorithms. It has been compiled in three different environments: con-
trolled, degraded, and adverse. For each of the four languages (French,
English, Spanish, and Italian), there are 52 subjects (26 males and 26
females) each performing 12 recording sessions, with 4 session per sce-
nario. In total, there are 6240 images per language. Half of the images
in the English database (3120) have been used as training set, and the
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Figure 4.1: Training images with the ten considered features marked on them.

rest as testing set. The subjects are different in each subset (i.e., faces
appearing in the test set do not belong to any subject appearing in the
training set).

e Ten feature classes have been considered in this work. These are: the
left corner of the left eye (C1), the central point of the left eye (C2), the
right corner of the left eye (C3), the left corner of the right eye (C4), the
central point of the right eye (C5), the right corner of the right eye (C6),
the left and right nostrils (C7 and C8), and the left and right corners
of the mouth (C9 and C10). These features, which can be seen in Fig.
4.1, are a representative set of salient facial features. The BANCA
database includes ground-truth files (one file per image), containing
the manually-labeled location of each one of these 10 features. These
ground-truth files have been used for training and testing the system.

e The system has been implemented in C++ language, using the RAVL
! and TINA 2 libraries. Data from the train sets have been collected
and models have been learned using MATLAB and Perl.

4.2 Outline of the Algorithm

A summary of the proposed method can be seen in Alg 1. First, local facial
features are detected and labeled. This is carried out by an interest point
detector followed by a template-based scheme, which classifies the detected

'"Documentation and source codes can be found at http://ravl.sourceforge.net/
2Software and documentation available at http://www.niac.man.ac.uk/Tina/
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interest points into one (or more than one) of the defined feature classes.
Second, for speeding up the process, an anthropometrical-based geometrical
pruning is performed in order to reduce the total number of possible candi-
date triplets. Next, for each surviving candidate triplet, an affine-invariant
space is constructed and the other features are projected onto it. Only the
points falling inside their corresponding search regions are kept. Pairs of
such points are formed randomly and some transformation parameters are
estimated. These parameters are accumulated and only hypotheses obtaining
enough evidence are passed onto the final validation step.

Algorithm 1 Face Detection Method

Detect local features and label them;

for All possible feature triplets do
Apply constraints;

end

for All triplets having overcome all constraints do

Feature Selection;
Evidence Accumulation;

if There is enough evidence of being a face then
Cut image patch;
Validate face candidate;

if Validation Score sufficiently high then
Early stopping;
end

end
end

Select the highest Validation Score;

Following sections explain in deeper detail each one of the forementioned
steps.

38



4.3 Feature Detection and Classification

4.3.1 Detection of Interest Points

As high-resolution images are used, the template-based methods characteris-
tical sliding-window technique is avoided (since that would significantly slow
down the process). Instead, an interest point detector is used. Among all
existing detectors, the Harris Corner Detector [12] has been implemented,
regarding its good performace [47].

The Harris Corner Detector is based on a matrix related to the auto-
correlation function. This matrix M averages derivatives of the signal in a
window W around a point (z,y):

_ Zpkew (Iw (plc))2 Z:kaW I:v (pk) Iy (pk)
M) = | s L o)L ) Syew Uy (1))’ (4.1)

where I (pg) is the image function and pj; are the points in the window W
around (z,y). This matrix captures the structure of the neighborhood. If its
rank is two, (i.e. both of its eigenvalues are large), a corner is detected.

Two parameters can be tuned: the threshold and the window width.
Though obtaining a higher number of false detections, the threshold is fixed
quite low in order not to miss the true features. For the same reason, the
window width is set at its minimum: 3 pixels. If a wider window is used, the
conditions to overcame the threshold become more restrictive, and so there
are fewer detected corners. Fig. 4.2 shows the output of a Harris Corner
Detector.

4.3.2 Feature Classification

The list of points obtained in the first step correspond to candidate locations
for a facial feature. Most of these detected interest points are not facial
features at all. To reject false alarms, and to label candidates as belonging
to one or more of the defined feature classes, a template-based local feature
detection method is performed. The idea is that the appearance of local
features is much less affected by moderated out-of-plane rotations, than the
appearance of the whole face pattern is. Thus, while it has been shown that
holistic template-based methods are not reliable when faced with this sort
of problem (i.e., affine transformations), they can perform in an acceptable
manner when applied to local features.

The implemented method is based on Support Vector Machine® combined

3SVMs have been roughly presented in Section 2.1.3 (p. 16). A more detailed descrip-
tion can be found in [3].
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Figure 4.2: Interest points detected by the Harris Corner Detector in a clut-
tered scene.

with Independent Component Analysis (ICA), in a similar way than in [1].
ICA is a statistical and computational technique for revealing hidden factors
that underlie sets of random variables, measurements, or signals. It defines
a generative model for the observed multivariate data. In the model, the
data variables are assumed to be linear or nonlinear mixtures of some un-
known latent variables, and the mixing system is also unknown. The latent
variables are assumed non-gaussian and mutually independent, and they are
called the independent components of the observed data. These independent
components, also called sources or factors, can be found by ICA. It is a much
more powerful technique than PCA or FA, capable of finding the underlying
factors or sources when these classic methods fail completely. The main rea-
son being that ICA gets more than second order statistics (covariance), and
much of the information that perceptually distinguishes faces is contained in
the higher order statistics of the images. For more information on ICA, see
[17].

Ten SVM classifiers (one for each chosen feature class) have been trained.
First, fixed-size patches (16 x16, 32x 32... pixels) are cut around each feature.
For each patch, a PCA projection is performed to reduce the dimensional-
ity, passing from high-dimensionality (256, 1024...) to a more handleable
number of components (with 50 components, more than 95% of the total
variance is kept). From the PCA transformed space, the ICA is applied and
the SVM classifier is trained in the ICA space using a radial basis function
kernel. Once the SVM classifiers are trained, the feature classification step of
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the face detection algorithm is performed in an analogous way: patches are
cut around each detected interest point, then they are fed to the PCA-ICA
projection procedure, and finally each SVM classifier determines wether the
patch belongs to its associated facial feature class or not.

This feature classification step must be seen as a “black-box” producing 10
lists of candidate features out of an input list of detected interest points. This
means that any other well-performing template-based classification method
could have been used (i.e. Neural Networks, HMMs, etc.). In fact, during
the testing phase (see Sec. 4.7 for details) the full local feature detector
and classifier has been substituted by a much faster emulator. It consists
of a subroutine which generates an output analogous to that of the original
system, both the amount of it and its distribution. Actually, what it does is to
generate a certain number of inliers and outliers for each real facial feature.
This generated false alarms are labelled like their progenitor. Operating in
this way, the testing time is improved significantly while not reducing the
performance of the system.

4.4 Feature Grouping Analysis

4.4.1 Reducing the Search Space

As seen in Section 3.2, three points are needed to construct the affine-
invariant shape space in which to project the other features. If this had
to be carried out for every possible combination of 3 candidate features, an
extremely high computational power would be required. Having lists con-
taining a mean of M features each, the total number of subsets formed by
instances of 3 determined classes is O (M?). In order to reduce the search
space, an anthropometrical-based pruning is performed.

The geometrical pruning is based on a set of constraints concerning the
current triplet of 3 candidate features: the relative positions between them,
the angles they form, and the ratios of distances between them. The con-
straints are applied sequentially to the candidate triplets. If a constraint is
not overcome, the triplet is automatically rejected, and the process starts
again with the next candidate triplet. After applying this chain of con-
straints, in most of the cases the search domain is reduced above the 99%
(i.e., less than 1% of total possible triplets survive).

The constraints have been learned from collected data of the training set.
When explaining them in detail, the 3 chosen candidate features are referred
toas A, B, and C.
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Figure 4.3: Histograms of signed distances between features.

Relative Positions

Constraint#1 accounts for the geometric position of feature B relative to A,
while Constraint#2 accounts for the position of feature C' relative to both
A and B. That is to say, the vertical and horizontal positions of features
are compared. The decision is made according to the model learned from
the training set. For example, if a facial feature appears repeatedly in the
training set below another one, this can be assumed as a general rule (e.g.,
as it has been assumed that no upside-down faces are going to appear in
the database, it can be stated that mouth features always appear below eye
features).

The models are learned as follows: for each image, signed distances (hor-
izontal and vertical) between features are computed (all vs. all). These dis-
tances are modelled to follow a normal distribution, which is coherent with
experimental data (Fig. 4.3). The mean values and standard deviations of
these distances are computed. All possible situations are summarized in Ta-
ble 4.1, where uj and o, are the mean value and the standard deviation of
the horizontal distance (column; — column;), while p, and o, are the mean
value and the standard deviation of the vertical distance (row; — row,).

Distance Ratios

As Fig. 4.4 shows, 3 distances (d;, ds, and d3) have been defined for any given
triplet of features (F1, F2, and F'3). Raw distances between features are not
a good decision tool, as different scales are taken into consideration. So,
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Cases Decision made
up — 3o, > 0| Feature i is right of Feature j
Horizontal | pup + 30, <0 | Feature i 1s left of Feature j
else Ambiguous (no decision made)
Wy — 30, > 0 | Feature 1 s below Feature j
Vertical Wy + 30, < 0 | Feature 1 is above Feature j
else Ambiguous (no decision made)

Table 4.1: Constraint#1 and Constraint#2 applied to features ¢ and j.

instead of on distances, the constraints have been based on distance ratios:

Constraint #3 : D3, = 2_113

Constraint#4 : Ds3o = Z_:;

Constraint #5: Dy = Z—f

As the previous constraints, the distance ratios have also been learned
from the training set, and they have been modelled as univariate gaussian dis-
tributions. The decision rules are easy: if any distance ratio is outside a confi-
dence interval, the current triplet is rejected. Otherwise, it is kept for further
analysis. The confidence interval is defined as: [uDM —30p,;, p;; + 30Di,j],
where up,, and op, ; are the mean value and the standard deviation of the
corresponding distance ratio, respectively.

Angles

For a triplet of features, the angles they form are useful information about
their arrangement. To take profit of this, 3 angles have been defined for
any triplet of features: «, 3, and v (Fig. 4.4). Again, the constraints have
been learned from the training set, and they have been modelled with normal
distributions. The angles have been obtained out of the distances computed
for the previous constraints, and applying the Law of Cosines:

. d2 d27d2
Constraint #6 : o = arccos %3(13—2
d24d2—d2

Constraint #7 . 3 = arccos 2k

d3+d2—d?

Constraint #8 : ~ = arccos s

The decision rules for these constraints are analogue to those exposed
above for the distance ratios.
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Figure 4.4: Defined distances and angles for F1, F2, and F3 (belonging to
C1, C6, and C10, respectively).

4.4.2 Forming Hypotheses

As stated above, after applying the set of constraints the search space has
been drastically reduced. This is a more suitable environment where to form
hypotheses. To become an hypothesis, a candidate triplet must be strengthen
by supporting features, and by the evidence they provide.

As explained in Sec. 3.1, features need to be transformed and projected
into an affine-invariant space (the affine-shape-space), as they do not provide
reliable information while in the image-space. On the other hand, when pro-
jected to the shape-space, features get clustered in easily separable “feature-
clouds” (remember Fig. 3.3, p. 33).

Face Model

From the training set, the affine shape variables are computed and collected,
and the face models are built. Given a selection of 3 feature classes *, the
remaining 7 classes are modelled with a bivariate normal distribution each
one. Their mean vectors and covariance matrices are estimated from the data,

4For details on how to choose these 3 classes, see Sec. 4.6 (p. 51).
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SR_WIDTH

Figure 4.5: Search region for a certain feature cluster.

and they are kept in order to evaluate candidate features. The covariance
matrices’ eigenvalues and eigenvectors are also kept, since they are needed
to determine the search regions in which to look for supporting features. To
make things easy, these search regions have been designed rectangular, but
fitting the clusters as well as possible.

Fig. 4.5 shows a feature cluster and its corresponding search region,
whose parameters (size and orientation) are to be estimated. If the cluster
was horizontal or vertical (o« = 0 and o = %7, respectively), the size of its
search region would be given the partial standard deviations. As in general
it is not the case, the best way to obtain the size (and also the orientation) is
via a PCA analysis of the data. The eigenvector with the highest eigenvalue
determines the angle, while SR WIDTH and SR_HEIGHT are obtained
from the highest and lowest eigenvalues (\; and \q, respectively). The actual
expressions are:

SR_WIDTH = 6y/\;
(4.2)
SR_HEIGHT = 6/ )y

The eigenvalues account for the variance of the data. And it is a known
property of the normal distribution that 99% of the variance is kept in the
interval: mean_ point + 3 x standard_ deviation. So, using the values in Eq.
4.2, it is ensured that almost any good feature is going to be missed.

45



Feature Selection

Alg. 2 summarizes the procedure for accepting or rejecting a feature. The

Algorithm 2 Feature Selection
for All candidate triplets do

Construct transformation matrix;

for All remaining 7 feature classes do

for All detected features of current class do
Project feature to affine shape space, center it, de-rotate it;

if Feature is inside search region then
Add feature to a selected-features list.

end
end

end

end

transformation matrix A is constructed as in Eq. 3.6, and it is used to project
a feature f; into affine shape space:

fi=A(fi—-m) (4.3)

where p; is the first feature in the current triplet (the one which gets mapped
to (0,0)). Once in affine shape space, the feature is centered (i.e., the mean
value of its corresponding class cluster is substracted to it) and de-rotated
(the angle of its class’ cluster is also substracted to it). Now, the feature
has been aligned with the search region, so it is very easy to determine if it
falls inside or outside. If the current feature lies inside the search region, it
is evaluated with the learned probability density function (Eq. 3.11). The
result is normalized by the maximum value (i.e., the evaluation of the mean
vector (i), in order to be able to define a relative threshold thy (left as an
input parameter of the system). If the evaluation outcome surpasses thi,
the feature coordinates in image-space are kept in a list of selected features,
which are used in the next step, the search for supporting evidence.
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Searching Supporting Evidence

After having carried out the feature selection, if a triplet has not obtained
any supporting feature whatsoever, it is discarded and no further considered.
If it has, an evidence accumulation process is engaged, as briefly outlined in
Sec. 3.3.

For a given pair of selected features, there exists a transformation matrix
T to map their image-space coordinates out of the center of their cluster in
affine-shape-space:

Ji. o, — T x K1, M2, + P, (4.4)
fly f2y M1, M2, b1,
where p; is current triplet’s Point#1, f; and f, are the image-space coor-
dinates of Feature#1 and Feature#2, respectively, and p; and us are the

mean values (or centers of the clusters) of their respective classes. From this
expression, the transformation matrix T can be easily obtained:

T_(le M2w><f1$—p1w me_plm >_1_(T11 T12>
= = (4.5)
My, M2, fly — D1, ny - D1, Ty To

The elements of matrix T are the evidence that is accumulated. For each
chosen pair of features, matrix T is computed as in Eq. 4.5 and their elements
T;; are stored in a 4—dimensional array of bins (i.e., a 4—D histogram). Only
triplets with supporting features that obtain highly clustered transformation
parameters 7;; (and thus providing strong hints of belonging to the same
face), are going to be kept as hypotheses.

Even though the initial search space has been reduced, and only the well-
placed features have made it through the process, the algorithm is further
sped up by not considering all possible pairs of features. Instead, an iterative
process is performed: a sort of Bernoulli Trial is repeated in order to choose
pairs of classes and an example feature of each. In fact, it is not a Bernoull:
Trial, since the trials are performed on a discrete uniform probability distri-
bution (each one of the feature-providing classes has the same probability to
be chosen). This process is repeated a fixed number of iterations (i.e., a frac-
tion of the total number of combinations), and is summarized in Alg. 3. The
criteria followed for deciding whether there is or there is not enough evidence
is described in Fig. 4.6. For each candidate triplet, after having accumulated
the evidence, the total number of votes, as well as the indexes and number
of votes of the two most-voted bins are kept and used to make the decision.
If there is a single bin (or two neighboring bins) with a high percentage of
the votes (i.e., a number of votes above a threshold ths, set by the user), the
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Algorithm 3 Evidence Accumulation

if 2 or more different classes provide supporting features then

Compute the total number of possible feature pairs (K);

for A subset of K iterations do

Randomly choose a pair of feature samples;
Obtain transformation parameters 7;j; and accumulate them;

end

if There is enough evidence then
Keep current candidate triplet for final validation;

end

end

current candidate triplet it is considered to be a good hypothesis and worth
validating it. If not, the triplet is discarded and the process continues with
the next one.

Concerning the evidence accumulation process, there are two related as-
pects that must be taken into consideration: the histogram range and the
number of bins it contains. The bounds for every parameter have been ob-
tained from the training data. Each parameter has been modelled with a
normal distribution, and the margins have been chosen to contain almost all
the variability (again, the mean value + three times the standard deviation).

Having fixed the histogram’s range, the number of bins (B) must be
carefully chosen. If B is too small, the resolution will be too coarse and the
histogram will not accurately model the votes distribution (a sparse distri-
bution of votes could be taken as an acceptable one). But if B is too large,
then the accumulated evidence will get too scattered (too much resolution),
and an unrealistically large amount of data would be required to populate
adequately the histogram.

In the proposed method, B is left as a variable parameter. Learning and
training have been carried out for both B = 5 and B = 10 values. No
significant variation in performance has been observed.
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Figure 4.6: Evidence accumulation decision rules. After the voting process,
this is how it is decided if a candidate feature has obtained enough evidence
or not.

4.5 Validation

Finally, if a candidate triplet has reached this point, it means that it has
provided reasonable evidence of belonging to an actual face, and that is
worth taking into consideration. So, the final step of the algorithm is a
template-based validation procedure.

As in the local feature detection stage, any of the methods briefly de-
scribed in Sec. 2.1 could serve. In this case, a crosscorrelation-based tem-
plate matching proceeding is used. The presumed face patch is cut from
the image and it is crosscorrelated with the mean face. The mean face has
been obtained as the average of all faces in the training set. To get a mean
face as representative as possible, non-upright faces have been previously de-
rotated before averaging them. Also, since a non-uniform lateral illumination
is present throughout the database, a simple post-processing is applied to the
computed mean face: it is made symmetrical by averaging it with its specular
image along the vertical axis:

MF (i,j) + MF (i,w — j)
2

MF™ (i, 5) = (4.6)
where M F (i, j) is the actual mean face, w is the width of the mean face
patch, and the indices ¢ and j account for rows and columns, respectively.
To cut the image patch, the location of the centers of the eyes, as well as
the location of the corners of the mouth, are needed. As the transformation
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Figure 4.7: Cutting a face patch (either when computing the mean face or
evaluating a face candidate).

to map points from affine-shape-space to image-space has already been ob-
tained, it is just a matter of anti-transforming the mean value of each needed
class (C2, C5, C9, and C10). The shape and orientation of the rectangle
surrounding the face can be estimated from the relative positions of these
anti-transformed points (Fig. 4.7). The rectangle is oriented according to
the angle « (formed by the line connecting both eye centers and the bottom
of the image), and the rectangle dimensions are obtained as follows:

he =2 x dg
(4.7)

wi = a_ratio X he

where dy is the distance between the midpoint of the mouth corners and the
midpoint of the eyes centers, and a_ratio is the aspect ratio of the mean
face patch (19 x 25 pixels in this implementation).

The validation function returns a normalized value (ranging from —1
to +1) which is stored along with the current triplet’s coordinates. After
having studied all the candidate triplets, the one obtaining the highest score
(above a minimum threshold ths, set by the user) is chosen as the estimated
location of the face. To speed things up, an “early-stopping” mechanism
has been implemented. When validating a candidate, if there is enough
proof of being a face at the current location (i.e., the validation score is
above a certain threshold), the algorithm stops and a face is decided to be
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present there. Since this is a somewhat risky decision, the selected “early-
stopping” threshold th, must be quite high (around 0.8 or 0.9). Like the
other thresholds, this one is also set by the user.

4.6 Selection of Feature Classes for Face Models

As explained in previous sections of this document, to build an affine shape
face model three feature classes are needed. This raises an immediate ques-
tion: What happens if no instances of one of these needed classes are found?

The obvious answer is: since no affine-invariant space where to project
supporting features can be built, and so the detection process cannot con-
tinue, no face will be detected at all. The main reason for not detecting
any instance of a feature class is occlusion, due principally to the presence
of glasses and hair (let it be the hair style, or facial hair like beards or mus-
taches). The easiest and most straightforward solution is to learn and use
more than one single model, trying to cover all possible eventualities (i.e.,
occlusion of the eye, nose or mouth features). That leads to the another
question: Which are the most suitable classes for these models?

Having a set of 10 different facial feature classes, the total number G' of
groups that can be formed with 3 of these features is: G = C%; = 120. Before
answering which are the most suitable classes, it must be pointed out that
there are some of these 120 combinations that are not suitable at all. As an
inverse matrix has to be computed in order to obtain the affine coordinates
(Eq. 3.7), it must be ensured that this matrix is accurately invertible. This
is achieved if the matrix is not singular, and that can be checked with the
conditioning number. This number is defined as the ratio of the largest to the
smallest eigenvalue, and the matrix is considered to be invertible if this ratio
is not larger than the inverse of the machine accuracy or relative rounding
off error.

Geometrically, this can be fulfilled by avoiding triplets of collinear or
nearly-collinear features. In practice, what has been done is to avoid groups
formed entirely by eye features (which are almost collinear), which leaves the
total number of possible groups in: G' = C3; — C§ = 120 — 20 = 100.

Even though none of these 100 groups would lead to a degenerate solution
for the affine transformation, there are some of them that would lead to a
highly error-sensitive transform. This kind of groupings are those whose 3
features are close to each other. The practical consequence is that the feature-
clouds in the affine-shape-space become more dispersed or even overlapped
between them. This is an undesirable situation, unless there is no other
choice (i.e., the subject’s eyes are occluded by sunglasses, and only nose and
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‘ Combination ‘ Clustering Factor ‘

2-6-7 0.005127
3-6-7 0.005528
1-6-7 0.005647
2-5-7 0.005689
2-6-8 0.005924
1-5-7 0.005940
1-5-8 0.006072
1-6-8 0.006146
2-5-8 0.006191
3-6-8 0.006379

Table 4.2: Selected models (without mouth features).

| Combination | Clustering Factor |

1-6-9 0.001427
1-5-9 0.001523
2-6-9 0.001609
2-5-9 0.001903
1-6-10 0.001948
2-6-10 0.001979
1-4-9 0.002202
3-6-9 0.002295
1-5-10 0.002349
2-5-10 0.002606

Table 4.3: Selected models (without nose features).

mouth features have been detected). But as this is not going to be the most
usual case, it is preferable to form models with selections of feature classes
that conduct to a highly clustered data. In this way, the associated search
regions will be smaller, and that conveys stronger constraints to potential
supporting features.

As 3 different classes are needed to form a model, and it has been showed
that a model cannot be formed by eye features only, that forces the system
to find instances of at least two of the feature class groups: eye features,
nostrils, and mouth corners. If this is not fulfilled, the detection process
cannot be carried out at all.

Once again, the training part of the database has been used to determine
which are the most reliable triplets of feature classes for each of these adverse
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‘ Combination ‘ Clustering Factor ‘

8-9-10 0.116465
7-9-10 0.127947
7-8-9 0.332697
7-8-10 0.677998

Table 4.4: Selected models (without eye features).

situations:

1. Eye features not detected (because of hairdo, glasses, hat, etc.).
2. Nostrils not detected (because of pose, presence of a mustache, etc.).

3. Mouth corners not detected (because of presence of beard, mustache,
clothes, etc.).

All 100 possible models have been formed, and their clustering has been
compared. For each model, the eigenvalues of all the feature clouds have
been computed, and their average value is kept (hereafter, the Clustering
Factor).

Tables 4.2, 4.3, and 4.4, show the best selection of classes for building the
models (in clustering factor terms). The three cases have been taken into
account: no mouth features detected (Tab. 4.2), no nose features available
(Tab. 4.3), and no eye features present (Tab. 4.4). The selected combina-
tions (four for each case) have been marked in bold letter. Notice that the
selection criteria has not been just to pick the four lowest-clustering factor
combinations. Instead, the chosen selections, while having a clustering factor
as low as possible, intend to provide a wider variety of classes. For exam-
ple, if the 4 top-scoring combinations in Table 4.2 had been chosen, class#8
would not have been present in any model. So, the chosen combinations of
classes are (in clustering factor descending order):

No nose classes: 1-6-9, 2-5-9, 2-6-10, 1-5-10,
No mouth classes: 3-6-7, 2-6-8, 1-5-7, 1-5-8,
No eye classes: 8-9-10, 7-9-10, 7-8-9, 7-8-10.

During the execution of the method, after the features have been detected
and classified, the models to use are chosen. First, the best model according
to the found features is selected, and the face detection process is engaged.
If the detection fails, no matter the reasons, another model is selected, and

the process is started again, until a face is detected or there are no models
left.
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Figure 4.8: Model for the evaluation method.

4.7 Results and Evaluation

Having already described the theoretical background and all the details con-
cerning the implementation of the algorithm, it only remains to present the
obtained results, and to evaluate the overall performance of the system.

One of the considerations in the discussion in Section 2.4, is that the
reported results and systems performances are not generally reliable, as their
testing conditions differ significantly, and no details are given about how to
evaluate the detections. To put some remedy to this situation, a detailed,
objective and accurate evaluation method has been used, and is presented in
next section.

4.7.1 Evaluation Method

The implemented evaluation protocol is based on the positions of the true
eyes’ centers and the detected ones. As showed before, even if these features
(the centers of the eyes) could not be detected, they can be computed ap-
plying the estimated affine transformation to the mean vector of the eyes’
centers clusters. The real positions, on the other hand, are obtained directly
from the ground-truth files in the database.

Figure 4.8 shows a sketch of the scenario. Let Py and Py, be the true
positions of the eyes, and let P;; and P, be the detected positions. The score
given to a detection is based on some parameters concerning the lines connect-
ing both pair of eyes’ centers. A good parameter to model the relationship
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between both lines is the cosine of the angle they form (o = Py; P2, P11 Po2 ).

Other parameters used are some distance ratios between the defined points:
——
Py Py

Po1 Py

d, =

=5
P01P11

Po1 Py

dy =

=5
P02P12

dc = 7
P01P02

These four parameters are well suited for the job, because they do not
depend on the scaling nor the rotation of the lines (i.e., they are TRS-
invariant). Each one of them is computed and scored individually, according
to this scoring function:

exp (=2 ((w—p) +6%°) z<p-0
O (z;7,0,pn) = 1 p—0*<z<p+d? (4.8)
exp (7 (@ —p) = 8)) u+d<a

This is a smooth function of z, parametrized by v, J, and p, which are real
values. v defines the slope of the tails of the function, ¢ defines the width of
the plateau, and u sets the center of the function. Fig. 4.9 shows a plot of
the scoring function with v = 0.5, 6 = 1.5, and pu = 2.

4.7.2 Obtained Results

The face detection algorithm has been tested on the testset part of the
BANCA database. It consists of 3120 images from 26 people (none of them
appearing in the training set), in all three environment conditions (controlled,
degraded, and adverse). For each image, the detected locations of the cen-
ters of the eyes have been collected, along with the real positions from the
corresponding ground-truth file.

For each detection, the four parameters (cos«, d,, dp, and d.) are com-
puted, and they are scored according to their associated function ®. Table
4.5 summarizes the values of 7, §, and p used for each parameter, which are
next commented:

e The parameter p accounts for the center of the function. For cos o and
d, it is set to 1, as this is the expected value for a “perfect” detection:
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Phi(x; 0.5, 1.5, 2)

Figure 4.9: & Scoring Function.

if the detected and the true points were the same, the distance ratio
would be 1, and the angle they form would be 0 (and thus, its cosine
would be equal to 1). On the other hand, y is set to 0 for the other
two parameters (d, and d.), as the distances P01P11 and P02P12 would
be 0, should the detected and the true locations coincide.

The parameter 0 determine the width of the plateau (® is 1 from p —
62 to p + 0%). The chosen values of § set the tolerance intervals for
each parameter (i.e. those values for which is considered to be a good
detection). For the distances, a value of § = 0.3162 (6% = 0.1) has been
set, as it gives a 10% tolerance. The chosen value for cosa (0.1232)
ensures a tolerance of 10 degrees.

Finally, the parameter vy controls the slope of the two branches of the
function. It has been tuned to give a 0 score (or almost zero, as the
branches have an exponential form) to unacceptable values of the de-
tection.

As explained, the final score is obtained by multiplying the four parameter

scores. Figure 4.10 shows the obtained results. A threshold should be set for
classifying detections as “good” or “poor”. Since the final scores come from
the product of four partial ones, a high global score can only be achieved
if all parameters obtain high scores. For instance, supposing all detection
parameters (cos «, dg, dp, and d.) obtain a partial score of 0.9, their combined
value becomes only ~ 0.66. So, the final detection threshold has been set
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Figure 4.10: Algorithm results.

Y| 6 |

cosa | 2101232 |1
d, 2103162 | 1
dp 2103162 | 0
d. 2103162 |0

Table 4.5: ® function parameters.

Thres | % of scores above Thres
0.1 97.21
0.2 97.05
0.3 96.96
0.4 96.47
0.5 94.17
0.6 87.82
0.7 80.93
0.8 73.65
0.9 59.78
Table 4.6: Distribution of the scores.

o7



in 0.7: detections obtaining a higher score are labelled as “good detections”,
while detections with a final score below this threshold are defined as “poor
detections”. In Fig. 4.10, there are more than 80% of “good detections”, as
their scores are above the 0.7 threshold. The full score distribution can be
observed in Table 4.6. It can be seen that only about 5% of the scores are
below 0.5, and that about 60% of the detections are scored above 0.9, i.e.
“almost-perfect-detections”.

In Fig. 4.11, some examples of good detections can be observed. The first
and second images have obtained a score of 1, while the last one has received
a score of 0.7886. Following the previously exposed criterion, this would be
considered a roughly good detection. However, subjectively it does certainly
seem a good detection.

On the other hand, Fig. 4.12 shows examples of poor detections. They
have obtained scores between 0.4 and 0. Even though the real facial features
have clearly been missed, the subjective impression of the detection is not so
bad. At least, in all cases both eyes and mouth lie within the framed part of
the image.
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Figure 4.11: Examples of good detections
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Figure 4.12: Examples of poor detections.
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Chapter 5

Conclusions and Future Work

5.1 Discussion

A method for detecting and localizing human faces based on affine invariant
local feature face models and evidence accumulation has been presented.
It has been designed to work in the context of high resolution grayscale
images with variability in pose, background and lightning conditions and
with possible occlusions due to different hairstyles, glasses, facial hair, etc.
As the method can be classified midway between the template-based and pure
feature-based methods, it benefits from the advantages of both approaches.

By detecting and labelling local parts of the face using a template-based
technique (in this case, an SVM), robustness against illumination changes is
achieved. Variation in pose and facial expression is dealt with by project-
ing and classifying the these local parts in an affine invariant space, where
all differences due to affine transformations (rotation, scaling, translation,
squeezing...) are removed. Finally, the problem of occlusions is overcome by
not requiring the full set of facial features to be detected in order to form a
hypothesis and check it. Using evidence accumulation, it is possible to de-
tect a face with some missing features, provided that the others give enough
evidence. Also, different face models have been used, covering all possible
eventualities (i.e., no mouth features, no nose features, or no eye features
detected).

The system performs quite well: it obtains a 80% of good detections.
However, even in detections obtaining a high score, the precision is not as
good as it should be. This is mainly due to the local feature detection
scheme. It is reported to produce around 30 false alarms for each good
classification. This leads to having many missclassified features, and many
other non-features at all which are labelled as if they were.
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Furthermore, some of the false alarms produced by the local classifier are
inliers, i.e., false alarms appearing very close to a real feature. This kind of
false alarms are very difficult to reject. Since they lie near a good location,
the small difference can be assumed by the inner variability of the model, and
hypotheses can be formed with them. The final validation step should be able
to correct this problem. But, since it consists of a simple cross-correlation
(while still a valid method for rejecting improbable background false positive
detections), it sometimes selects a worse score-achieving hypothesis before
another better one.

5.2 Future work

As it has been explained in the previous section, most of the problems come
from the template-based steps of the algorithm (i.e., the local feature classi-
fier, and the final validation process).

e Concerning the local classifier, it has been said that it produces too
much false alarms. Obviously, a better local feature classifier system
with a better ROC curve is expected to improve the overall performance
of the system, as it would significantly reduce the amount of possible
candidates and hypothesis right from the start.

e About the validation procedure, its main problem is its simplicity. A
cross-correlation with a mean face, while being able to distinguish a face
pattern from a background one, it is not well-suited to choose among a
set of candidate patches differing only by a small shifting and/or rota-
tion. Though at cost of losing some computational efficiency, the sys-
tem performance would be enhanced if using a well-trained, template-
based method (such as those presented in Sec. 2.1) as the final checking
procedure.

Although the proposed method has shown some robustness, there is still work
to be done. A really robust face detection system should be effective under
full variation in:

lighting conditions,

orientation, pose, and partial occlusion,

facial expression, and

e presence of glasses, facial hair, and a variety of hair styles.
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