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Abstract

This paper presents a new scalable and highly flexible color image
coder based on a Matching Pursuit expansion. The Matching Pursuit
algorithm provides an intrinsically progressive stream and the proposed
coder allows us to reconstruct color information from the first bit received.
In order to efficiently capture edges in natural images, the dictionary of
atoms is built by translation, rotation and anisotropic refinement of a
wavelet-like mother function. This dictionary is moreover invariant un-
der shifts and isotropic scaling, thus leading to very simple spatial resiz-
ing operations. This flexibility and adaptivity of the MP coder makes
it appropriate for asymmetric applications with heterogeneous end user
terminals.

1 Introduction

Most visual coding schemes generally first compress luminance image compo-
nents, and then extend coding to color components. They use color spaces with
luminance and chrominance channels, where the latter may easily be down-
sampled, due to the fact that they carry much less information than the lu-
minance component. Moreover, in the classical coding paradigm, decorrelation
between channels is generally seen as an advantage. However, when a similar
strategy is applied to scalable color image coding, it often causes colors to only
appear after a certain time, or with important distortion.

In this paper, we present a scalable color image coder, based on Matching
Pursuit, that codes color information altogether, from the first information bit.
The proposed image representation algorithm takes advantage of the correlation
between the color channels, instead of trying to reduce it, as opposed to common
coding schemes. The Matching Pursuit representation uses anisotropic refine-
ment of wavelet-like mother functions, since such a dictionary has been shown
to perform very well at low bit rates for gray scale images and is moreover in-
trinsically scalable [1]. The coder then chooses the same basis function for the
three channels, and just recomputes the projection coefficient for each channel.
Such an algorithm can be thought of as a vector greedy algorithm [2] trying
to simultaneously approximate all three channels. Using a common waveform
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dramatically reduces the coding rate, since in Matching Pursuit (MP) repre-
sentation over a redundant dictionary of atoms, indexes (i.e. position, scale
and rotation, see [3]) generally carry most of the information, and thus repre-
sent the major part of the compressed stream. Such a strategy, in addition to
providing excellent compression performance, allows for truly multiresolution
representation of color images.

This paper is organized as follows: Section 2 describes the Matching Pursuit
image coder, and discusses the choice of the color space. Section 3 gives the
details of the quantization and entropy coding processes, adapted to the color
image representation generated by the MP algorithm. Experimental results are
given in Section 4. Finally Section 5 concludes the paper.

2 MP Color Image Coding

2.1 Matching Pursuit for Color images

Matching Pursuit (MP) image representation with a dictionary based on anisotropic
refinement atoms and Gaussians has proved to give good compression results [3],
in addition to intrinsic spatial and rate scalability properties [1]. MP is a greedy
algorithm that iteratively chooses the atom of a redundant dictionary that pro-
vides the best correlation with the input signal (see [4, 5] for details on the
algorithm). Let D = {gγ}γ∈Γ be a dictionary of P > M1 × M2 unit norm vec-
tors. This dictionary includes M1 × M2 linearly independent vectors that define
a basis of the space C

M1×M2 of signals of size M1 × M2. Also, let Rnf be the
residual of an n term representation of signal f , with R0f = f . The signal
decomposition with MP then can be written as follows:

f =
N−1
∑

n=0

〈Rnf, gγn
〉gγn

+ RNf, (1)

where gγn
is the dictionary vector that maximizes the energy taken from Rnf

at every iteration:

|〈Rnf, gγn
〉| = arg max

D
|〈Rnf, gγ〉| . (2)

Instead of performing independent iterations in each color channel, a vector
search algorithm is used in the proposed color image encoder. This is equiva-
lent to using a dictionary of P vector atoms of the form { ~gγ = [gγ , gγ , gγ ]}γ∈Γ.
In practice though, each channel is evaluated with one single component of
the vector atom, whose global energy is given by adding together its respec-
tive contribution in each channel. MP then naturally chooses the vector atom,
or equivalently the vector component gγ , with the highest energy. Hence the
component of the dictionary chosen at each Matching Pursuit iteration satisfies:

γn = arg max
γn

√

〈Rnf1, gγn
〉2+〈Rnf2, gγn

〉2+〈Rnf3, gγn
〉2,
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where Rnf i, i = 1, 2, 3 represents the signal residual in each of the color chan-
nels. Note that this is slightly different than the algorithm introduced in [2],
where the sup norm of all projections is maximized :

max
i

sup
D

|〈Rnf i, gγn
〉| .

All signal components are then jointly approximated through an expansion of
the from :

f i =

+∞
∑

n=0

〈Rnf i, gγn
〉gγn

, ∀i = 1, 2, 3.

Note that channel energy is conserved, and that the following Parseval-like
equality is verified :

‖f i‖2 =

+∞
∑

n=0

|〈Rnf i, gγn
〉|2, ∀i = 1, 2, 3.

The search for the atom with the highest global energy necessitates the
computation of the three scalar products ci

n = 〈Rnf i, gγn
〉, i = 1, 2, 3, for each

atom gγn
, and for each iteration of the Matching Pursuit expansion. The number

of scalar products can be reduced by first identifying the color channel with the
highest residual energy, and then performing the atom search in this channel
only. Once the best atom has been identified, its contribution in the other
two channels is also computed and encoded. The reduced complexity algorithm
obviously performs in a suboptimal way compared to the maximization of the
global energy, but in most of the cases the quality of the approximation does
only suffer a minimal penalty (Fig. 2(b) is an example of MP performed in the
most energetic channel).

2.2 Color space choice

The choice of the color space has to be adapted to the proposed coding strategy,
and minimize the distortion introduced to the image due to the coding scheme
itself and the quantization. Simultaneously, the color space has also an impact
on the compression performance. Interestingly, the MP encoder seems to favor
correlated color spaces, since atom indexes induce higher coding costs than color
coefficients.

In order to reach a maximal correlation between the color channels, and thus
the possibility to reach higher compression ratios, the RGB color space seems a
natural choice. This choice can be justified by the following simple experiment.
The coefficients [c1

n, c2
n, c3

n] of the MP decomposition can be represented in a
cube, where the three axes respectively corresponds to the red, green and blue
components (see Fig. 1(a)). It can be seen that the MP coefficients are inter-
estingly distributed along the diagonal of the color cube, or equivalently that
the contribution of MP atoms is very similar in the three color channels. This
very nice property is a real advantage in overcomplete expansions where the
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Figure 1: Distribution of the MP coefficients when MP is performed in the RGB
color space (left), with the diagonal of the cube shown in red, and in the YUV
color space (right).

(a) YUV most ener-
getic

(b) RGB most ener-
getic

Figure 2: Japanese woman coded with MP using the most energetic channel
search strategy in YUV color space 2(a) and in RGB color space 2(b).

coding cost is mainly due to the atom indexes. In the contrary, the distribution
of MP coefficients resulting from the image decomposition in the YUV color
space, does not seem to present an obvious structure (see Fig. 1(b)). In the
coding algorithm proposed in this paper, these coefficients become much more
difficult to code efficiently. In addition, the YUV color space has been shown to
give quite annoying color distortion for some particular images (see Fig. 2(a)).

Most of the image coding techniques use color spaces such as YUV, LAB of
CrCbCg. These color spaces have less redundancy among channels than RGB.
For example, YUV has all the luminance information in the Y channel, and the
U and V channels have less information. LAB and CrCbCg color spaces have
the drawback that they have some user defined parameters, not standardized
for all the displays. They do not present the same amount of redundancy among
channels as RGB does. The techniques which use the YUV color space gener-
ally take profit from the fact that the human eye is less sensible to color than
luminance localization in images, and hence downsample the U and V channels
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Figure 3: Histograms of the MP coefficients when represented in HSV coordi-
nates.

in order to reduce the amount of data. Such a downsampling is not helpful any-
more in the context of the proposed MP coder, since the same function is used
for the three color channels, in order to limit the coding cost of atom indexes.
Since, in addition, the use of the same function in Y, U and V channels may
induce color distortion, RGB becomes clearly the preferred color space for the
MP coder.

3 Parameter coding

3.1 Coefficient quantization

A fundamental goal of data compression is to obtain the best possible fidelity
for a given data rate or, equivalently, to minimize the rate required for a given
fidelity. Due to the structure of the coefficient distribution, centered around
the diagonal of the RGB cube, an efficient color quantization strategy is not
anymore to code the raw value of the R, G and B components, but instead to
code the following parameters: the projection of the coefficients on the diagonal,
the distance of the coefficient from the diagonal and the direction where it is
located. This is equivalent to coding the MP coefficients in an HSV color space,
where V (Value) becomes the projection of RGB coefficients on the diagonal
of the cube, S (Saturation) is the distance of the coefficient to the diagonal
and H (Hue) is the direction perpendicular to the diagonal where the RGB
coefficient is placed. The HSV values of the MP coefficients present the following
distribution: the Value distribution is Laplacian centered in zero (see Fig. 3(c)),
Saturation presents an exponential distribution (see Fig. 3(b)), and a Laplacian-
like distribution with two peaks can be observed for Hue values 3(a). Once the
HSV coefficients have been calculated from the available RGB coefficients, the
quantization of the parameters is performed as follows:

• V is exponentially quantized with the quantizer explained in [6]. The
choice of exponential quantization is driven by the exponential decay of V
coefficients as the iteration number increase. The value that will be given
as input to the arithmetic coder will be Nj(l)−Quant(V ), where Nj(l) is
the number of quantization levels that are used for coefficient l.
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Figure 4: PSNR comparison between JPEG 2000 and MP. The PSNR has been
computed in the CIELAB color space.

• H and S are uniformly quantized, since the iteration number does not seem
to have any particular influence on their magnitude.

3.2 Entropy coding of the parameters

The entropy coding of the quantized parameters is performed through and adap-
tive arithmetic coder based on [7], with the probability update method used
in [8]. The detailed implementation of this arithmetic coder is given in [3],
where it was used for a MP scalable image coder for gray scale images. The
only difference is the number of fields to be entropy coded (color images need
two extra fields to represent color information). Note that this coder is still
under study, and currently does not yet behave optimally. A more elaborated
study of the entropy of the parameters, and improved histogram initialization
and update methods are necessary to obtain better compression performance.
However, the bit-stream obtained is still representative enough of the behavior
of the MP coder.

4 Results

In the previous section it has been shown that the choice of the RGB color space
is the most adapted to the MP algorithm which uses the same mother function
for the three color channels. All results presented in this section thus use RGB
color space for MP expansion.

Fig. 4 first compares the compression performance of the proposed MP en-
coder with state-of-the-art JPEG-2000. It can be seen that MP advantageously
compares to JPEG-2000, and even performs better at low bit rates. This can
be explained by the property of MP to immediately capture most of the signal
features in a very few iterations. At higher rates, the advantage of redundant
expansion obviously decreases in comparison to orthogonal signal decomposition
as performed by JPEG-2000. Note that the PSNR values have been computed
in the Lab color space [9], in order to closely evaluate the Human Visual System
perception. Fig. 5 proposes visual comparisons between MP and JPEG-2000,
and it can be clearly seen that MP indeed offers better visual quality at low bit
rate.
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(a) 0.1 bpp (b) 0.3 bpp (c) 1.0 bpp (d) 0.1 bpp

(e) 0.3 bpp (f) 1.0 bpp

Figure 5: Top row, MP of sail with coefficients quantized in HSV color space.
Bottom row, JPEG2000 for the same bit-rate.

(a) 50 coeffs (b) 150 coeffs (c) 500 coeffs

Figure 6: MP of sail for 50, 150 and 500 coefficients.

In addition to interesting compression properties, the MP bitstream offers
highly flexible adaptivity in terms of rate and spatial resolution. Fig. 6 shows
the effects of truncating the MP expansion at different number of coefficients.
It can be observed that the MP algorithm will first describe the main objects
in a sketchy way (keeping the colors) and then it will refine the details. The
stream generated by MP thus truly offers an intrinsic rate scalability in image
representation.

Finally, MP decompositions with anisotropic refinement atoms are covariant
under isotropic dilations [3, 1]. This means that the compressed image can be
resized with any ratio α, including irrational factors (see Fig. 7). These spatial
scalability properties, added to very low complexity decoder implementation,
make MP especially useful for asymmetric applications with heterogeneous end-
user terminals.
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Figure 7: Example of spatial scalability with MP streams.

5 Conclusions

In this paper we have extended to color images a scalable coding scheme initially
developed for gray scale images. The MP color image coding takes advantage of
the redundancy of the color channels to reduce the coding rate. The compression
performance efficiently compares to state of the art techniques like JPEG 2000
at very low bit-rates, even though it can still be improved by taking advantage
of the coefficient distribution. The MP color image coder presented in the
scope of this paper additionally allows for rate and spatial scalability, with
the particularity that colors already appear from the first decoded bits. In
addition, the distortion introduced by MP for very low bit-rate images is a sort
of “sketching” of the image, instead of ringing artifacts or blocks. This sketchy
image is quickly understood and accepted by the human observer, in contrary
to highly blocky images.
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