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Abstract. One of the most computationally expensive problems in nu-
merical linear algebra is the computation of the ε-pseudospectrum of
matrices, that is, the locus of eigenvalues of all matrices of the form
A + E, where ‖E‖ ≤ ε. Several research efforts have been attempting
to make the problem tractable by means of better algorithms and uti-
lization of all possible computational resources. One common goal is to
bring to users the power to extract pseudospectrum information from
their applications, on the computational environments they generally
use, at a cost that is sufficiently low to render these computations rou-
tine. To this end, we investigate a scheme based on i) iterative methods
for computing pseudospectra via approximations of the resolvent norm,
with ii) a computational platform based on a cluster of PCs and iii)
a programming environment based on MATLAB enhanced with MPI func-
tionality and show that it can achieve high performance for problems of
significant size.

1 Introduction and Motivation

Let A ∈ Cn×n have singular value decomposition (SVD) A = UΣV ∗, and let
Λ(A) be the set of eigenvalues of A. The ε−pseudospectrum Λε(A) (pseudospec-
trum for short) of a matrix is the locus of eigenvalues of Λ(A + E), for all
possible E such that ‖E‖ ≤ ε for given ε and norm. When A is normal (i.e.
AA∗ = A∗A), the pseudospectral regions are readily computed as the union of
the disks of radius ε surrounding each eigenvalue of A. When A is nonnormal,
the pseudospectrum is no longer readily available and we need to approximate
it. As has been discussed elsewhere, the pseudospectrum frequently provides im-
portant model information that is not available from the matrix spectrum, e.g.
for the behavior of iterative methods on large, sparse nonnormal matrices; see
the bibliography at web.comlab.ox.ac.uk/projects/pseudospectra, [1, 2, 3]
as well as [4] for a related PVM package. An important barrier in providing pseu-
dospectral information routinely is the expense involved in their calculation. In
the sequel we use the 2-norm for matrices and vectors, R(z) = (A− zI)−1 is the
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resolvent and ek the kth standard unit vector. Also s(x, y) := σmin(xI+ιyI−A),
herein written compactly as s(z) for z = x+ ιy, is the minimum singular value
of matrix zI −A. Two equivalent definitions of the ε−pseudospectrum are

Λε(A) = {z ∈ C : σmin(A− zI) ≤ ε} = {z ∈ C : ‖R(z)‖ ≥ 1
ε
}. (1)

Relations (1) immediately suggest an algorithm, referred to as GRID, for the
computation of Λε(A) that consists of the following steps: i) Define grid Ωh

on a region of the complex plane that contains Λε(A). ii) Compute s(zh) :=
σmin(zhI − A) or R(zh), ∀zh ∈ Ωh. iii) Plot ε-contours of s(z) or R(z). GRID’s
cost is modeled as

CGRID = |Ωh| × Cσmin , (2)

where |Ωh| is the number of nodes of the mesh and Cσmin is the average cost
of computing σmin. GRID is simple, robust and embarassingly parallel, since the
computations of s(zh) are completely decoupled between gridpoints. As cost
formula (2) reveals, its cost increases rapidly with the size of the matrix and
the number of gridpoints in Ωh. For example, using MATLAB version 6.1, the
LAPACK 3.0 based svd function takes 19 sec to compute the SVD of a 1000 ×
1000 matrix on a Pentium-III at 866 MHz. Computing the pseudospectrum on
a 50×50 mesh would take almost 13 hours or about 7, if A is real and we exploit
the resulting symmetry of the pseudospectrum with respect to the real axis.
Exploiting the embarassingly parallel nature of the algorithm, it would take over
150 such processors to bring the time down to 5min (or 2.5, in case of real A).
As an indication of the state of affairs when iterative methods are used, MATLAB’s
svds (based on ARPACK) on the same machine required almost 68 sec to compute
s(z) for Harwell-Boeing matrix e30r0100 (order n = 9661, nnz = 306002 non-
zero elements) and random z; furthermore, iterative methods over domains entail
interesting load balancing issues; cf. [5, 6]. The above underline the fact that
computing pseudospectra presents a formidable computational challenge since
typical matrix sizes in applications can reach the order of hundreds of thousands.
Cost formula (2) suggests that we can reduce the complexity of the calculation
by domain-based methods, that seek to reduce the number of gridpoints where
s(z) must be computed, and matrix-based methods, that target at reducing the
cost of evaluating s(z).
Given the complexity of the problem, it also becomes necessary that we use

any advances in high performance computing at our disposal. All of the above
approaches are the subject of current research.1 Therefore, if the pseudospectrum
is to become a practical tool, we must bring it to the users on the computational
environments they generally use, at an overall cost that is sufficiently low to ren-
der these computations routine. Here we present our efforts towards this target
and contribute a strategy that combines: Parallel computing on clusters of PCs
for high performance at low cost, communication using MPI-like calls, and pro-
gramming using MATLAB, for rapid prototyping over high quality libraries with
1 See also the site URL http://web.comlab.ox.ac.uk/projects/pseudospectra.
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a very popular system. Central to our strategy is the Cornell Multitasking Tool-
box for MATLAB (CMTM) ([7]) that enhances MATLAB with MPI functionality [8]. In
the context of our efforts so far, we follow here the “transfer function framework”
described in [9]. Some first results, relating the performance of the transfer func-
tion framework on an 8 processor Origin-2000 ccNUMA system were presented
in [10]. In [5], we described the first use of the CMTM system in the context of
domain-based algorithms developed by our group as well as some load balancing
issues that arise in the context of domain and matrix methods. In this paper, we
extend our efforts related to the iterative computation of pseudospectra using
the transfer function framework.

1.1 Computational Environment

As a representative of the kind of computational cluster that many users will not
have much difficulty in utilizing, in this paper we employ up to 8 uniprocessor
Pentium-III @ 933MHz PCs, running Windows 2000, with 256KB cache and
256MB memory, connected using a fast Ethernet switch. We use MATLAB (v.
6.1) due to the high quality of its numerics and interface characteristics as well
as its widespread use in the scientific community. The question arises, then,
how to use MATLAB to solve problems such as the pseudospectrum computation
in parallel? We can, for example translate MATLAB programs into source code
for high performance compilers e.g. [11], or use MATLAB as interface for calls to
distributed numerical libraries e.g. [12]. Another approach is to use multiple,
independent MATLAB sessions with software to coordinate data exchange. This
latter approach is followed in the “Cornell Multitasking Toolbox for MATLAB” [7],
a descendant of the MultiMATLAB package [13]. CMTM enables multiple copies
of MATLAB to run simultaneously and to exchange data arrays via MPI-like calls.
CMTM provides easy-to-use MPI-like calls of the form A = MMPI Bcast(A); Each
MMPI function is a MATLAB mex file, linked as a DLL with a commercial version of
MPI, MPI/Pro v. 1.5, see [14]. Like MATLAB, CMTM functions take as arguments
arrays. As the above broadcast command shows, CMTM calls are simpler than
their MPI counterparts. The particular command is executed by all nodes; the
system automatically distinguishes whether a node is a sender or a receiver
and performs the communication. Similar are the calls to other communication
procedures such as blocking send-receive and reduction clauses. For example,
in order to compute a dot product of two vectors x and y that are distributed
among the processors, all nodes execute the call MMPI Reduce(x’*y, MPI ADD);
Each node performs the local dot product and then the system accumulates all
local sub-products to a root node. Table 1 lists the commands available in the
current version of CMTM. Notice the absence of the MPI ALL type commands (e.g.
Allreduce, Allgather). Whenever these commands are needed, we simulate
them, e.g. using reduce or gather followed by broadcast.

Baseline measurements In order to better appreciate the performance of our
cluster and the results for our main algorithm, we provide baseline measurements
for selected collective communication operations. All experiments in this work
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Table 1. Available CMTM commands (version 0.82) (actual commands prefixed
with MMPI).

Abort, Barrier, Bcast, Comm dup, Comm free, Comm rank

Comm size, Comm split, Gather, Iprobe, Irecv, Recv

Reduce, Scatter, Scatterv, Send, Testany, Wtime

Table 2. Timings (in sec) for broadcasting and reducing summation of vectors
of size 40000:20000:100000 using CMTM on p = 2, 4 and 8 processors

MMPI Bcast MMPI Reduce

p 40000 60000 80000 100000 40000 60000 80000 100000

2 0.03 0.05 0.06 0.08 0.05 0.05 0.06 0.081

4 0.07 0.09 0.12 0.15 0.09 0.13 0.13 0.16

8 0.09 0.13 0.17 0.22 0.13 0.15 0.19 0.24

were conducted in single user mode. Table 2 contains the measured timings with
varying number of processors and problem sizes when using CMTM to broadcast
vectors and also to reduce by summation. As expected, MMPI Reduce is always
more time consuming than MMPI Bcast, while both take longer as the cluster
size increases.

2 The Transfer Function Framework

An early, interesting idea for the economical approximation of the pseudospec-
trum, presented in [15], was to use Krylov methods and obtain approximations to
σmin(zI−A), from σmin(zI−H), where H was either the square or the rectangu-
lar upper Hessenberg matrix that is obtained during the Arnoldi iteration and I
is the identity matrix or a section thereof to conform in size with H . A practical
advantage of this approach is that, whatever the number of gridpoints, it re-
quires only one (expensive) transformation and compression (when m < n) of A
to upper Hessenberg form. It still requires, however, the (independent) computa-
tions of σmin(zhI −H), for every gridpoint zh, since, unlike eigenvalues singular
values do not respect the shift property, i.e. typically σ(zI−A) �= z−σ(A). The
above approach was further refined in [16]. Let now D∗, E be full rank - typically
long and thin - matrices, of row dimension n. Matrix Gz(A,E,D) := DR(z)E
is called in the literature transfer function. It was shown in [9] that the transfer
function provides a useful framework for describing existing and defining new
methods for computing pseudospectra. The central method in [9] was based on
the selection D = W ∗

m and E = Wm+1, where Wm = [w1, . . . , wm] denotes
the orthonormal basis for the Krylov subspace Km(A,w1) constructed by the
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Arnoldi iteration, so that

A Wm =WmHm,m + hm+1,mwm+1e
�
m, (3)

where Hm,m is the square upper Hessenberg matrix consisting of the first m
rows of Hm+1,m. We note that Wm+1 = [Wm, wm+1] and Hm+1,m =
[Hm,m;hm+1,me

�
m]. We will be referring to m as the “transfer function di-

mension” and will be writing Gz,m(A) for Gz(A,Wm+1,W
∗
m). With the afore-

mentioned selection for D and E, for large enough m we have ‖R(z)‖ ≈
‖Gz(A,Wm+1,W

∗
m)‖, which provides an approximation to ‖R(z)‖ that im-

proves monotonically with m and would be used in the sequel to construct
the pseudospectrum based on relation (1); cf. [9]. Even though computation
of Gz(A,Wm+1,W

∗
m) = W ∗

m(A − zI)−1Wm+1 appears to require solving m + 1
linear systems of size n, a trick allows us to reduce the number of (large) linear
systems to one because

Gz,m(A) = [(Ĩ − hm+1,mφze
�
m)(Hm,m − zI)−1, φz)], (4)

where φz = W ∗
m(A − zI)−1wm+1; cf. [9]. Therefore, in order to compute

‖Gz,m(A)‖ we have to solve a single (large) linear system of size n for each
shift z; furthermore, the right hand side, wm+1, remains the same for each shift,
something that will be exploited by the iterative solver (cf. the next section). We
also need to solve m Hessenberg systems of size m, and to compute the norm
of Gz,m(A). We discuss the actual parallel implementation of this approach for
our cluster environment in Section 2.1.

The Arnoldi iteration As with most modern iterative schemes, the effective im-
plementation of the transfer function methodology uses the Arnoldi iteration,
via an implementation of relation (3), as a computational kernel, to create an
orthogonal basis for the Krylov subspace [17]. We organize the iteration around
a row-wise partition of the data: Each processor is assigned a number of rows
of A and V . At step j, we store the entire V (:, j) that must be orthogonalized
into each processor. This requires a broadcast, at some point during the itera-
tion, but allows thereafter the matrix-vector multiplication to take place locally
on each processor. Due to lack of space we do not go into further details but
tabulate, in Table 3, results from experiments on our cluster and programming
environment with three different types of Arnoldi iteration: CGS-Arnoldi, MGS-
Arnoldi and CGSo-Arnoldi, where the first is based on classical Gram-Schmidt
(GS) orthogonalization, the second on modified GS and the third on classical GS
with selective reorthogonalization. Notice the superlinear speedup for the larger
matrices due to the disribution of the large Krylov bases. The random sparse
matrices were created using the MATLAB’s built-in function sprand(n, n, ρ) with
ρ equal to 3× 10−4, that is n× n matrices with approximately ρ ∗ n2 uniformly
distributed nonzero entries.

2.1 TRGRID: GRID with Transfer Functions

The property that renders Krylov type linear solvers particularly suitable in
the context of the transfer function framework for pseudospectra, in particu-
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Table 3. Runtimes (in sec) for three versions of Arnoldi orthogonalization on
p = 1 to 8 processors on random sparse matrices of size n

Arnoldi p \ n 40000 60000 80000 100000 p \ n 40000 60000 80000 100000

CGS 1 328 512 1716 5885 2 150 241 340 440

MGS 362 560 1453 3126 172 265 365 476

CGSo 389 606 1780 6962 181 289 405 522

CGS 4 80 126 179 235 8 53 80 113 143

MGS 129 158 209 268 92 125 188 201

CGSo 101 150 211 275 64 97 135 164

lar formula (4), is the shift invariance of Krylov subspaces, i.e. the fact that
Kd(A,w1) = Kd(A− zI, w1) for any z. This means that we can reuse the same
basis that we build for Kd(A,w1), say, to solve linear systems with “shifted”
matrices, e.g. A − zI; see [18]. Since our interest is in nonnormal matrices, we
used GMRES as the linear solver. The pseudocode for our parallel algorithm is
listed in Table 4.
Remember that after completing the (parallel) Arnoldi iterations (Table 4,

line 1), with the row distribution described earlier, the rows of the bases W
and Ŵ are distributed among the cluster nodes. For the sake of economy in
notation we use the same symbolism when we deal with local computations too,
while in reality we are referring only to a subset of the rows of W and Ŵ . Each
processor (see lines 2-4, 9-12) works onM/p gridpoints (we have assumed that p
exactly divides M). In line 3, each node computes its share of the columns
of matrix Y . For the next steps, in order for the local φz to be computed,
all processors must access the whole Y , hence all-to-all type communication is
needed. In lines 9-12 each processor works on its share of gridpoints and columns
of matrix Φz. Finally, processor zero gathers the approximations of {1/s(zi)}M

i=1.
What remains to clarify is the computation of φz,i and Φz (lines 6-7). We have
φz,i = W ∗

i ŴiY , where Wi and Ŵi, i = 0..., P − 1 are the subsets of contiguous
rows of the basis matrices W and Ŵ that each node privately owns. Then,
Φz =

∑P−1
i=0 φz,i and we use reducing summation to compute Φz in parallel,

since CMTM allows reduction processes to work on matrices as well as scalars. It
is worth noting that the preferred order used when applying to implement the
two matrix-matrix multiplications of line 6 depends on the dimensions of the
local matrices Wi, Ŵi and on the column dimension of Y and could be decided
at run time. In our experiments, we assumed that the Krylov dimensions m, d
were much smaller than the size of the matrix, n, and the grid, M . TRGRID
consists of two parts. The first part (line 1) consists of the Arnoldi iterations
used to obtain orthogonal bases for the Krylov subspaces used for the transfer
function and for the solution of the size n system. In forthcoming work we detail
techniques that exploit the common information present in the two bases ([10]).
An important advantage of the method is that after the first part is completed
and basis matrices W and Ŵ become available, we only need to repeat the
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Table 4. Pseudocode for the parallel TRGRID algorithm for the CMTM environment

Parallel TRGRID
(* Input *) Points zi, i = 1, ..., M , vector w1

with ‖w1‖ = 1, scalars m,d.
1. All nodes work on two parallel Arnoldi iterations

[Wm+1, Hm+1,m]← arnoldi (A, w1, m)

[Ŵd+1, Fd+1,d]← arnoldi(A, wm+1, d)

Each node has some rows of Wm+1, Ŵd+1

Node zero distributes the M gridpoints
so that processor pr id holds points in the M/p-sized set I(pr id)

2. for i ∈ I(pr id)

3. Y (:, i) = argminy{‖(Fd+1,d − ziĨd)y − e1‖}
4. end
5. Node zero gathers matrix Y and broadcasts it back

6. Each node performs local multiplication φz,i = W ∗
mŴdY

7. Node zero collects Φz =Reduce(φz ,SUM)
8. Node zero distributes back the columns of Φz

9. for i ∈ I(pr id)

10. Di = (Ĩ − hm+1,mΦz(:, i)e
�
m)(Hm,m − ziI)

−1

11. ‖Gzi(A)‖ = ‖[Di, φzi ]‖
12. end
13. Node zero gathers approximations of 1/s(zi)

second part, from line 2 onwards to compute the pseudospectrum. Based on this
property and given the previous results for Arnoldi we measure the performance
of only the second part of TRGRID. A second observation is that the second
TRGRID involves only dense linear algebra. Remember also that at the end of the
first part, each processor has a copy of the upper Hessenberg matrices. Hence, we
can use BLAS-3 to exploit the memory hierarchy of each processor. Furthermore,
assuming thatM ≥ p, the workload would be evenly divided amongst processors.
Of course, the method is always subject to load imbalances due to systemic
effects. However, since the second part of parallel TRGRID requires only limited
communication, increased network traffic is not expected to have a significant
effect on performance. Let us now investigate the performance of the main body
of parallel TRGRID on our cluster’s nodes. We experimented with the HB-matrices
gre 1107 (n = 1107, nnz = 5664) and pores 2 (n = 1124, nnz = 9613) scaled
by 1e − 7, as well as with two random sparse matrices of size n = 2000 and
4000 with density ρ = 0.01. On the domain [−1.8, 1.8]× [−1.8, 1.8], we employed
a 50× 50 grid for the HB matrices and a 30× 40 grid for the random matrices.
Figure 1 illustrates the ε = 0.1 contours for the two HB matrices. The Krylov
dimensions were m = d = 75, 100, 120 and 150 respectively. Table 5 illustrates
the performance results. In all cases, except for the random matrices when p = 8
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Table 5. Performance of parallel TRGRID

gre 1107 pores 2 sprand(2000) sprand(4000)

p 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Time (sec) 174 76.2 36.2 18.7 340 155 76.3 38.1 244 118.8 59.3 31 501 245 123 63.9

Speedup - 2.3 4.8 9.3 - 2.2 4.5 8.9 - 2.1 4.1 7.87 - 2.04 4.1 7.84
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Fig. 1. Pseudospectrum contour ∂Λε(A), ε = 1e − 1 for gre 1107 (left) and
pores 2 (right)

are used, we observe typically superlinear absolute speedups due to the fact that
the Krylov bases are distributed.

3 Conclusions

The widespread availability of the high quality numerics and interface of MATLAB
together with an MPI-based parallel processing toolbox and the results shown
in this paper for matrix-based methods and in [5] for domain based methods,
indicate that the computation of pseudospectra of large matrices is rapidly be-
coming accessible to everyday users who prefer to program in MATLAB and whose
only hardware infrastructure is a PC cluster. Further work in progress includes
the incorporation of these methods into a toolbox, the exploitation of multi-
threading, enhancement of the numerical infrastructure with lower level parallel
computational kernels, e.g. SCALAPACK-like and, finally, resolving the numerical
issues that arise when combining the transfer function approach with domain
based methods (in line with [10]).
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[18] Frommer, A., Glässner, U.: Restarted GMRES for shifted linear systems. SIAM

J. Sci. Comput. 19 (1998) 15–26 204


	Parallel Computation of Pseudospectra Using Transfer Functions  on a MATLAB-MPI Cluster Platform
	Introduction and Motivation
	Computational Environment

	The Transfer Function Framework
	TRGRID: GRID with Transfer Functions 

	Conclusions


