
SEGMENTATION OF NATURAL IMAGES USING SCALE-SPACE
REPRESENTATIONS:

A LINEAR AND A NON-LINEAR APPROACH

OscarDivorra Escoda,AnaPetrovic andPierreVandergheynst
SignalProcessingLaboratory(LTS)

SwissFederalInstitute of Techonlogyin Lausanne(EPFL)
CH-1015Lausanne,Switzerland

WWW homepage:http://ltspc4.epfl.ch
e-mail:

�
oscar.divorra,ana.petrovic,pierre.vandergheynst � @epfl.ch

ABSTRACT

In general purposecomputer vision systems,unsupervised
imageanalysisis mandatory in orderto achieveanautomatic
operation. In this papera different approachto imageseg-
mentation for natural scenesis presented. Scale-Spacerep-
resentationis usedto extract the structure from meaningful
objectsin theimage.Two differentscale-spacesareanalysed
in thepaper. On onehandIsotropicDiffusion(linearscale-
space)is presentedasthebasisfor anuncommittedfront end,
not relyingonany specialfeatureof theimage.On theother
handthe Total VariationDiffusion (non-linear scale-space)
which makesa specialemphasison edges is alsoanalysed.
A hierarchical decompositionof the imageis performedon
the basisof the specialcharacteristics of eachscale-space.
Iso-intensitypathswill betrackedin thecaseof linearscale-
space,whereasin thecaseof non-linearscale-spacetheevo-
lution of level setsthrough scalewill be tracked. In the
framework of linearscale-space,theuseof additional infor-
mationto improve therobustnessin thestructureextraction
is introduced. Appart from the setof several diffusedver-
sionsof theimage,a representationof edges through scaleis
included to supervise thegenerationof thehierarchical tree
thatrepresents theimage.

1 INTRODUCTION

1.1 Scale-Space

Evidenceshavebeenfound thattheHumanVisualSystem
(HVS) performssomestructureanalysison theincomingvi-
sualdata[4, 7]. Thestructureof imageshasa closerelation
with multi-scalerepresentation[4]. Oneof the clearestex-
amplesof multi-scale(or multi-resolution)datarepresenta-
tion is Scale-Space[14]. Sucha representation is composed
by thestackof successive versions of theoriginal datasetat
coarserscales. It is assumedthat, the bigger the scale,the
lessinformationreferredto local characteristicsof the input
datawill appear. We also imposethat general information
applying to large scaleswill last through scale.Taking that
into account, it is reasonable to think thatlocalandhighres-
olution scaleinformation canbe relatedto general andlow
resolution information. This will enableusto extract image
structure.

1.2 Scale-Space Flavors
Scale-spacescanbe generatedon the basisof many dif-

ferent principles. It is just necessaryto be ableto obtaina
description of imagestructuresthroughscale.According to
the application, it will be possibleto derive the scalestack
from differentscaleoperators.In theliterature,differentap-
proachescanbefound. Generalcomparisonsareavailablein
[11, 19]. A rough classificationmight be:

Linear Scale-Space is aoneparameterfamilyof imagesde-
rivedfrom thelineardiffusion(or heat)equation [7].

Non-Linear Scale-Spaces relax the constraint of uncom-
mitment in the processingof visual information, but
keepthemainpropertiesof ascale-space[9, 10, 12, 16].

Depending on a prior knowledgeabout thecharacteristicsof
theimagesto analyse,anon-linearonecanbeselected.This
will allow to takeadvantageof somespecialfeatureandwill
allow to preservesomeimageparticularity.

2 LINEAR SCALE-SPACE

Whenthereis noknowledgeabouttheimage,it is notpos-
sible to predictwhich will be the mostadvantageous scale-
space. In that case,the best is to stay on the basisof an
uncommittedvisualfront-end[17] where propertieslike lin-
earity, spatialshift invariance,isotropy andscaleinvariance,
will bekept.Suchasetof propertiesis satisfiedby theLinear
Scale-Space.

Assumptions made by Lindeberg [17] are based on
the idea of using successive convolutions to generatethe
scale-space. Koenderink first realized[7] whatshouldbethe
basisfor imagestructureanalysis.Under several constraints,
hedefinedthediffusionequation, given by (1), asthegener-
atorof its scale-space.�������	�
��� � ��� �����	�
���
 (1)

where
�

standsfor theluminanceof theimagewhichdepends
on

�	 , position, and � , scale.
From(1) andfrom the constraintof usingconvolution to

generatethesubsequentscalelevelsonefindsthattheunique
kernel thatsatisfiesbothis theGaussian:
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Thereis animportant additional result.Spatialderivatives
of the Gaussianareaswell solutionsof the diffusion equa-
tion, andtogether with thezeroth order Gaussianderivative
they form a completefamily of differential operators [17].
From this, multiscaledifferential analysis can thusbe per-
formed.

2.1 Edges Through Scale
The secondderivative of the Gaussianis givenexplicitly

by:')( � 	�
*+� � �-,.0/�132 ,4� 	�5768*95: / 5<;>=@?�ACB � 	 5 6D* 5: / 5<E % (3)

Insteadof usingit directly, weapproximateeq.3byusingthe
Differenceof Gaussians( F)G ( ). Todetectedgesin scale,the
differencebetweentwo consecutive levels of the 0th order
linear scale-spaceis computedfollowed by a zero-crossing
detection:F)G ( � 	�� �IHKJ =&?9AML � � 	��ONP� 5: / 5J Q � H 5 =&?9ARL � � 	��ONP� 5: / 55 Q %

(4)
where/ JKS / 5 . In Fig. 1 oneseeshow mostimportant edges
lastthroughscale.

Theuseof edgerepresentationthroughscaleon thebasis
of the secondderivative of a Gaussian,is nothing elsethan
a waveletrepresentation of theimage.In this particular case
theuseof a secondderivative of a Gaussianis known asthe
MexicanHat wavelet[15]. This is another analogy with the
HVS [4]. Sincethereareevidencesof certainsimilaritiesbe-
tweensomepartsof theHVS analysisandwaveletanalysis.

Figure1: EdgerepresentationthroughscaleusingDOG(lev-
els1,4and7). 1 sampleper3octaves(first sampleonthefirst
octave)

2.2 Linear Scale-Space Segmentation: Linking up
through space

The algorithm for the construction of the structure, is
basedonthetracking of theiso-intensitypathsthroughscale
[11]. Otheralgorithms whereproposedrelying on extrema
[20, 13], but weconsideredto bemoreconsistentandgeneric
to searchfor the iso-intensitypaths[11], sinceimagepixels
cannotbefully describedby extrema.

Figure2 shows a simpleschemaof the idea. Levels are
linkedin a treelike structure. Theselinks convergethrough

scaleaccording to the reduction of informationimposedby
thelow-passfiltering.

Thebasicproblemthatarisesis thesearchof parent pix-
els at a largerscale.Vincken [11] proposesasmain linkage
criteriathegraylevel differencebetweentwo differentpixels
of differentneighborlevels.Thosepixels having thesmallest
differencefromalimitedspatialneighborhoodwill belinked.
Thatmeans thattakinga valid pixel from a determinedlevel
(a pixel who hasat leastone link from the level below), a
searchonacircularareaaroundthatpoint will beperformed.
Thissearchareais proportionalto theinnerscale.

ScaleT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TU"UU"UU"UU"UU"UU"UU"UU"UU"UU"UU"UV"VV"VV"VV"VV"VV"VV"VV"VV"VV"VV"VWWWWWWWWWWWX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"Y Z"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"Z[[[[[[[[[[[[\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\]]]]]]]]]]]] ^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^____________```````````aaaaaaaa
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Figure2: Hierarchicalanalysisof theimagestructurelinking
pixelsthroughlevels.

Thislinking procedure[11, 2,1,3] from level to level does
not take into account the orientation of structures. It looks
for the nearestmost suitablepixel in a circular area. This
is performedindependentlyof theshapeof theregion where
bothpixels(child andparent)belong. Thisuncontrolled link
searchturns into thepossibilitythatpixels canbelinkedout-
sidetheregion they represent.Although it is locally truethat
themostsimilarpixels in theupperlevel areverylikely to be
thebestparentsfor thechild pixel,whensearchwindowsare
large, childrenpixelscanfind sometimesbetterfits for their
graylevel somedistanceawayfrom thesupposedidealpixel.
In this situation,whenpathsevolve throughscale,this small
mistake turnsinto adivergenceof a wholebranch.

Figure 3 shows the algorithm we proposeto reduce the
divergence of pathsduring linking. Whenlookingfor there-

window is out of the region
Part of the search
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Figure3: Wronglinkageproblem.

lationbetweentwo pixels,we testif they belongto thesame
region or blob at that scale. This means that whenlooking
for linkage,all thoselinks that crossan edgeof the second
derivative representation at the samescalelevel will not be
taken into account. It follows that the areaof searchfor a
parent pixel is modified. Only thatareathat is includedinto
theblobof thechild pixel is takeninto account in thesearch
window.
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2.3 Segmentation Experiments
2.3.1 EdgeSupervisionInfluence

Edgedetectionis intended to avoid incorrect linking be-
tweendifferent regions separatedby anedge. In Fig. 4 we
seethe effect of the useof edges. Both segmentationsare
computedusingthesameparameters,andaresegmentedon
the basisof the samescalelevel. The only differenceis in
theuseof edgesto supervisethecorrect linking.

Figure4: Comparisonof theeffect of edgedetectionon the
segmentation. Segmentation of the imageSergi. Level of
segmentation: /�x � :$y

pixels (left: not usingedges, right:
usingedges).

An improvement is clearly seen. In the Fig. 4 the most
relevant detailsaresignaledwheretheuseof edges aremore
influent. In Fig. 4 (left) weseehow partof theheadismerged
to thebody, andnext to thepicture on thewall, thereis a lit-
tle box, which doesnot appearon thesegmentation without
edges.In Fig. 4 (right), sincewe usetheedgesateachscale,
wekeepfrom linking throughthem,andwesuccessin avoid-
ing theincorrectlinking of thehead,improving thedefinition
of thecontours.Finally theregion thatdefinestheboxonthe
wall is kept,andnotwrongly merged.

2.3.2 ScaleSelection

Figure5: Obtainment of meaningful objects(down) using
theScale-Spacesegmentation(regionsup).Levelof segmen-
tationareleft: / x ��z # pixels,right: / x � :{y

pixels.

Image structuregives a hierarchical descriptionof the

scenethroughscale.As it is explainedin section2.2,in order
to obtainthesegmentsascalelevel is selected.Thisselection
contributesto set the roots of the hierarchical treethat will
representthe whole segments and to implicitly selecttheir
approximatesize. In theunderlying ideaof thepresentseg-
mentation principle, this selectionof roots would becarried
by a high abstractionlevel layer. This would interpret the
structures obtainedfrom theanalysisusingthescale-space.

3 NON-LINEAR SCALE-SPACE: TOTAL VARIA-
TION DIFFUSION

As shown in theprevioussectionwith thehelpof numer-
ical simulations,locally supervising imageedgesimproves
segmentationresults.This is easilyexplainedin thesettings
of ouralgorithm by thefactthatwedon’t link pixelsthatbe-
long to different stucturesthrough scales.A simpleway of
achieving thesametaskin anunsupervisedmannerwouldbe
to usea nonlinear scale-spacein which coherentstructures
arepreservedby theflow. According to theHVS, edgesare
very important primitivesin natural images.We emphasize
that they should beconserved in orderto avoid wrong link-
ing andthis pavestheway to usingnon-lineardiffusionasa
natural scale-spacecandidate.

First studiedby PeronaandMalik [8] for imageprocess-
ing, non-lineardiffusion is realizedthrough a general Partial
Differential Equation (PDE)of theform :���� � � div |~} ��� ' ��� 5 ��)
 (5)

where

' �
is the imagegradient and } is a decreasingfunc-

tion. The idea is to smoothout homogeneous region as in
thelinearheatflow, while enhancingboundaries.Interested
readers arereferredto [10, 6, 9] for exhaustive reviewsof all
associatedtechniques. Onesuchexample, that we will use
in thefollowing, ariseswhenonewantsto minizetheTotal-
Variationnormof theimage[5]:�@���

TV � �$��� � ' ��� % (6)

Gradient descentof thepreviousequationleadsto solving:���� ��� div B ' �� ' ��� E % (7)

An example of sucha nonlinear flow is shown in Figure7.
Let us definethe isolevel setsof an image

�
as the setsof

pixelssatisfying: �!����� 	P
 ��� 	�� �I�0� % (8)

Sincethe TV flow is an anisotropic diffusion, it will have
a tendancy to smoothregular partsof the image,while pre-
servingits edges.The net effect of this evolution is a sim-
plification of the isolevel setsof the image: weak edges
arebeingeroded while strongedgeswill last longerwhich
meansthat small uncontrastedobjectswill be merged into
prominent structures(this canalreadybe seenin Figure7).
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Figure 6: Exampleof nonlinearTV flow.

Actually it canbeshown that the isolevel curvesof the im-
age,i.e thebordersof isolevel sets, will movein thedirection
of theirnormalwith aspeedproportionalto theinverseof the
gradient magnitude[10].

Sinceedgesarepreserved in this new scale-space(inter-
preting time � as a scaling parameter), and since simpli-
fication arisesat the isolevel setsstage,we can now pro-
posea segmentation algorithm basedon the ideasdevel-
opedin section2.2. We first build thenonlinearscale-space
stack,� � 	P
�� , by lettingtheimageevolveundertheTV flow.� � 	�
�� is the solutionof (7) at time � with the original im-
ageas initial conditions. For each � we thencompute the
isolevel sets

� �
. A thorough inspectionshows thatthenum-

berof thesesetsquickly diminishesas � increases.Moreover
theedgesof natural structuresarebeingautomatically han-
dled this way. Thenfor two consecutive evolution times � J
and � 5 we seekto link the corresponding isolevel sets. Let
�����

be oneof thesesetsat time � J . We simply look at all
thesets

�����
at time � 5 thatoverlap

�����
andwe link with the

isolevel setwhoselevel valueis closerto thatof

�����
. In such

a simplestrategy, all level setsat time � J arebeinglinkedto
parents at time � 5 . Wethenmanage this treein awaysimilar
to thelinearcase.Theresultsof this algorithm aredisplayed
in Figure7 andshow a definitive improvementwith respect
to theheatflow basedalgorithm.

Figure7: Example of segmentationusingtheTV flow.

4 CONCLUSIONS

In this work we have introducedtwo effective segmenta-
tion algorithms. In the linear scale-spacecase,the useof
edgesupervision improves the results. On the otherhand,
the fact thatedgesarepreserved in thediffusion processit-
self (Nonlinearcase)is a greatadvantageof the non-linear
case.Moreover, sincethelinking procedureis in a verypre-
liminary stage,we considerthe resultsvery promising and
very likely to beimproved.In additionto thestudyof anop-
timal linking procedure,thesearchof otherPDEsbasedon
imageprocessingconstraints (affine andcontrastinvariance
for example) will bevery interesting.
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