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Abstract. The autocorrelations have been previously used as features for1D
or 2D signal classification in a wide range of applications, like texture classi-
fication, face detection and recognition, EEG signal classification, and so on.
However, in almost all the cases, the high computational costs have hampered
the extension to higher orders (more than the second order). In this paper we
present a method which avoids the computation of the autocorrelation coeffi-
cients and which can be applied to a large set of tools commonly used in statis-
tical pattern recognition. We will discuss different scenarios of using the auto-
correlations and we will show that the order of autocorrelations is no longer an
obstacle.

INTRODUCTION

Usually, in the framework of statistical pattern recognition, one pattern can be
viewed as a function of time and/or spatial coordinates. Moreover, in most cases
the class membership does not change as the pattern is translated or scaled. In such
situations we would like to design a classifier that is invariant to a given class of
affine transformations. One approach consists in transforming each pattern through
a function which would induce this invariancy: if we consider each pattern as a point
in a vector space, we wish to map all points corresponding to translated (and/or
scaled) versions of one pattern in a single point. In addition, patterns which differ
in other ways should map into distinct points, and in some sense, patterns which are
similar should map into points that are close together.

As it will be shown, the autocorrelation functions possess the uniqueness prop-
erty for even orders ([14]) and they are translation invariant. The autocorrelations
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have been used in a wide range of applications: character recognition ([14]), geo-
spatial data mining ([4]), affine-invariant texture classification ([6]), time series clas-
sification ([10]) and face detection and recognition ([15], [9], [7]). However, in most
cases, the applicability of the autocorrelations has been limited to first or second or-
der, due to high computational costs. An intersting approach is presented in ([11])
where the authors use the autocorrelations up to the third order and obtain a scale
invariant classification by integrating over different scales. They succeed to reduce
the number of computations by using the shift-invariant property of the autocorre-
lations and by a priori determining the lags for which the autocorrelations are not
equivalent. The same approach is taken in ([12], [9]), but it has the disadvantage of
not being easily extendable for higher orders or larger local domains.

Our interest is in finding an approach which scales well with the increase of the
autocorrelation order, allowing us to generalize the use of autocorrelations. We will
present the properties of the autocorrelation functions and will explore different ap-
proaches for autocorrelation-based pattern recognition. The paper is organised as
follows: Section 2 discusses the properties of the autocorrelation function and sets
the background for the following sections, where the Principal Component Analy-
sis (Section 3) and kernel-based (Section 4) methods are applied to autcorrelation
feature vectors.

GENERALIZED AUTOCORRELATION FUNCTIONS

Definition and Properties

Let ψ : D ⊆ Rm → R be a real-valued function. Then-order autocorrelation
function associated with functionψ is defined as (see Figure 2.1 for an example):

r
(n)
ψ (τ1, . . . , τn) ∆=

∫
ψ(t)

n∏

k=1

ψ(t + τk)dt (1)

It is easy to see thatr(n)
ψ is shift-invariant, in the sense thatψ(t) andψ(t + τ) have

the samen-th order autocorrelation.
On the other hand, for two functionsψ1 andψ2 it can be proven ([14]) that

the second order (and higher even order) autocorrelation functions are equal only if
ψ1(t) = ψ2(t + τ), meaning that the two patterns have the same representation in
autocorrelation space ifψ2 is a shifted version ofψ1.

This also means thatψ1 can be recovered fromr(2k)
ψ1

except for an unknown
translationτ . Generally, in the case of pattern recognition, this is a valuable prop-
erty.

Considering the set of admissible values forτk being discrete and havingmk

distinct values, it follows that the space ofn-th order autocorrelations has
∏n

k=1 mk

dimensions, making the explicit computation of autocorrelations prohibitely expen-
sive.



Inner products of autocorrelations

The inner product of two autocorrelation functions is given by (see also Appendix
A):

〈r1, r2〉 =
∫ {∫

ψ1(v)ψ2(v + s)dv

}n+1

ds (2)

In the following, we will investigate the properties of those vectors, using the dis-
crete version of (2):

〈r1, r2〉 =
∑

τ

{∑
t

ψ1(t)ψ2(t + τ)

}n+1

(3)

For anyψ, the values ofr(n)
ψ (τ1, . . . , τn) can be ordered sequentially (for exam-

ple, by letting the variablesτk run faster thanτi over the set of admissible values,
for anyk > i), obtaining a (column) vectorr(n)

ψ . To simplify the notation, in the
following we will denote byrk then-th order autocorrelation vector corresponding
to the functionψk.

Let now{r1, . . . , rm} be a set of linearly independent autocorrelation vectors
(not necessarly orthogonal), letR = [r1| . . . |rm] be the transformation matrix hav-
ing these vectors as its columns, and letr be a new vector to be projected on the
space spanned by{rk}m

k=1. The vectorr can be decomposed into two components:

r = rW + r⊥W (4)

whererW ∈ W = Span({rk}) andr⊥W is orthogonal onW . Then, the orthogonal
projectionrW ontoW is given by (see Appendix B for a derivation of this result):

rW = R(R′R)−1R′r (5)

Note that all productsR′r and R′R imply only computations of inner prod-
ucts between autocorrelation vectors which can be computed by means of (2)-(3),
avoiding the explicit computation of autocorrelations. This method of avoiding the
explicit computation of autocorrelation vectors is similar to thekernel trick, used,
for example, in the context of Support Vector Machines ([19]).

Extended feature vectors

Combining autocorrelation of different orders in order to obtain a more descriptive
feature vector can be done as follows. LetI = {i1, . . . , im} be a set of indices
and letr(I)

ψ be the vector obtained by concatenating the autocorrelationsr(k)
ψ , where

k = i1, . . . , im, then it is obvious that
〈
r(I)

ψ1
, r(I)

ψ2

〉
=

∑

k=i1,...,im

〈
r(k)

ψ1
, r(k)

ψ2

〉
(6)



meaning that computing the inner product of two compound feature vectors can be
done by simply summing the inner products of the components.

Another consequence of this observation is the fact that the autocorrelations
may be computed over any topology of the local neighborhood: one may consider
a partition of the domainD and then use the local autocorrelation coefficients as
discriminant features, still one can use (6) to compute the inner products. All the
methods described bellow use the simple autocorrelations vectors, but can be ap-
plied directly to extended autocorrelation vectors as well.

APPLYING PCA TO AUTOCORRELATION FEATURE VECTORS

Principal Component Analysis (PCA) is a technique for extracting the structure
from a high-dimensional data set. PCA can be viewed as an orthogonal transfor-
mation of the coordinate system in which the data is described. This transformation
is performed in the hope that a small number of principal directions will suffice to
well-approximate the data. There are different methods to perform PCA, the most
common requiring the diagonalization of the covariance matrix, or, equavalently, to
solve the eigenproblem

Cλi = λivi (7)

whereC is the covariance matrix andλi are the eigenvalues corresponding to the
eigenvectorsvi. Naturally, we are interested only in the non-trivial solution of (7).

Let{rk} be a set of mean-centered autocorrelation vectors. The equivalent prob-
lem of (7) is

RR′vi = λivi (8)

where the elements of the matrixRR′ are formed by outer productsrir′j . The rank
of RR′ cannot exceedm, the number of data/autocorrelation vectors, even if its
dimensionality is usually much bigger thanm ×m. We can solve the problem (8)
indirectly, by first solving the smaller problem

R′Rwi = λiwi. (9)

By left-multiplying with R we obtain

(RR′)(Rwi) = λi(Rwi) (10)

If λi 6= 0 (the only case we are interested in), then

vi =
Rwi√

λi

(11)

is the solution of (8) whenwi is the solution of (9). Since the ranks ofRR′ and
R′R are equal, there are no eigenvectors missed or added by this indirect method.



Then, the projections of the vectors{rk}k on the principal directions will be
given by

ai = R′vi =
R′Rwi√

λi

(12)

Generally,vi are not validn-th order autocorrelations so the projection of a
vectorr on vi cannot be computed directly as a simple inner product. Instead we
have to use

r′vi =
r′Rwi√

λi

(13)

All of the above development has been done supposing that the vectorsrk are
centered around their mean. We will remove now this restriction and we will prove
that the centering in the autocorrelation space can be carried out indirectly, without
computing the autocorrelations. In (8-13) we have to replace the matrixR with R∗
whereR∗ = [r1 − r̄| . . . |rm − r̄], with r̄ being the mean autocorrelation vector.
Computing the productR′∗R∗ reduces to compute the inner products〈ri− r̄, rj− r̄〉
for all i, j = 1, . . . , m:

〈ri − r̄, rj − r̄〉 =

= 〈ri, rj〉 − 1
m

m∑

k=1

〈ri, rk〉

− 1
m

m∑

k=1

〈rj , rk〉+
1

m2

m∑

k,l=1

〈rk, rl〉

(14)

which translates into

R′∗R∗ = R′R− 1
m

1mm(R′R)− 1
m

(R′R)1mm

+
1

m2
1mm(R′R)1mm

(15)

where1mm is anm×m matrix of ones.
Finally, we have to compute the projection ofr∗ = r0 − r̄ on the principal axis,

wherer0 is a new autocorrelation vector which has to be projected on the principal
directions. Similar to (15), we have:

r′∗R∗ = r′0R− 1
m

11m(R′R)− 1
m

(r′0R)1mm

+
1

m2
11m(R′R)1mm

(16)

and from (13) we have the projection on thei-th principal direction:

r′∗v∗i =
r′∗R∗w∗i√

λ∗i
(17)

wherev∗i,w∗i andλ∗i are obtained by considering equations (9) and (11) withR∗
replaced forR.



HIGHER-ORDER AUTOCORRELATIONS IN THE CONTEXT OF KERNEL-
BASED METHODS

A standard technique of transforming a linear classifier into a nonlinear one, consists
in projecting the initial space into a feature space, through a non-linear mapping
Φ(·). Now, being given a fixed mappingΦ X → K, we define thekernelfunction
as the inner product functionk : X ×X → R, i.e., for allx1,x2 ∈ X:

k(x1,x2)
∆= 〈Φ(x1), Φ(x2)〉 (18)

For a set ofm vectorsxi ⊂ Xm, the Gram matrix

Gij
∆= 〈Φ(xi), Φ(xj)〉 = k(xi,xj) (19)

is calledkernel matrix.
Usually we are not given the functionΦ(·), but the kernel functionk(·, ·). Some

of the kernels used in practice are

Polynomial kernel

kP (xi,xj) = (〈xi,xj〉+ 1)p

Sigmoidal kernel

kS(xi,xj) = tanh(κ〈xi,xj〉+ δ)

Radial Basis Function kernel

kRBF (xi,xj) = exp(−γ‖xi − xj‖2) = exp(−γ(〈xi,xi〉+ 〈xj ,xj〉 − 2〈xi,xj〉))

It follows that for all kernel functions that can be expressed in terms of inner
products of data, we can use the technique developed above to carry out the com-
putations of the kernel matrix. Then, performing a kernel PCA ([18]) or training a
Support Vector Machine ([19],[5]) is an immediate task ([15],[16]).

EXPERIMENTS

In order to assess the validity of the method presented here, we carried out a number
of tests on the datasetWaveformfrom the UCI database ([1]). The set consists of
5000 samples of1D signals, distributed equally in 3 classes. The goal of the ex-
periment was to study the influence of different parameters in a binary classification
task: discriminate between the first class (calledA) and the other two (B andC).



The discrimination function was based on thedistance from feature space(DFFS):
a sample is classified as belonging to classA if its DFFS to the feature space of
classA is less than a threshold.

In all experiments, 500 vectors from classA (randomly chosen) have been used
to perform PCA in autocorrelation space, and to determine the threshold. Other
500 vectors from classA and 500 from classesB andC have been used to test the
classification. Table 1 presents some results obtained by autocorrelations features in
comparison with some other methods (notation ACorr(n,d) is used to designate an
autocorrelation function of ordern havingd distinct values for each of the variables
τi (lags)).

Table 1: Classification rates (%)
Method Rate
Optimal Bayes classifier ([1]) 86.0%
Nearest Neighbor ([1]) 78.0%
CART decision tree ([1]) 72.0%
ACorr(2,5) 80.5%
ACorr(2,7) 79.0%
ACorr(3,5) 81.6%
ACorr(3,7) 78.0%
ACorr(4,7) 81.5%
ACorr(4,7) 80.0%

APPENDICES

Appendix A Inner product of two autocorrelation vectors

Let ψ1 andψ2 be two functions defined on the same domainD ⊂ Rm. Then the
inner product of the autocorrelation functions can be derived as follows ([14], [15]):

〈r1, r2〉 =

=
∫

. . .

∫
r1(τ1, . . . , τn) · r2(τ1, . . . , τn) dτ1. . .dτn

=
∫

. . .

∫ {∫
ψ1(t)ψ1(t + τ1) . . . ψ1(t + τn) du

}

·
{∫

ψ2(u)ψ2(u + τ1) . . . ψ2(u + τn) du

}
dτ1 . . . dτn

=
∫ ∫

ψ1(t)ψ2(u)
{∫

ψ1(t + τ)ψ2(u + τ)dτ

}n

du dt

=
∫ ∫

ψ1(t)ψ2(s + t)
{∫

ψ1(v)ψ2(v + s)dv

}n

ds dt

=
∫ {∫

ψ1(v)ψ2(v + s)dv

}n+1

ds



Appendix B Orthogonal projection of autocorrelation vectors

Using the notations from section 2.2, any vectorr can be written as a sum of two
components:r = rW + r⊥W . SincerW ∈ W , it is a linear combination of vectors
r1, . . . , rm, so there exists a vectorc ∈ Rm such as

rW = Rc

From the fact thatr⊥W is orthogonal onW we have

R′r = R′(rW + r⊥W = R′rW = R′Rc

It follows that

c =(R′R)−1R′r

rW =R(R′R)−1R′r

Thus we have the orthogonal projection ofr on W . Further, we can obtain the
modulus of the projection and the distance from the spaceW by

‖rW ‖2 = 〈rW , rW 〉 = (R′r)′(R′R)−1(R′r)

‖r⊥W ‖2 = ‖r‖2 − ‖rW ‖2 =

〈r, r〉 − (R′r)′(R′R)−1(R′r)
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Figure 1: First and second order autocorrelations of a functionF (x) and of its noisy ver-
sion F ′(x). Note how the autocorrelations are less affected by the noise, than the original
representation of the function.


