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ABSTRACT
This paper proposesa multiresolution Matching Pursuitde-
compositionof natural images.Matching Pursuitis a greedy
algorithm that decomposesany signal into a linear expan-
sionof waveforms takenfrom a redundantdictionary, by it-
eratively picking the waveform that bestmatches the input
signal. Sincethecomputationalcostrapidly grows with the
sizeof thesignal,weproposeamultiresolution strategy that,
together with a dictionary training, significantlyreducesthe
encoding complexity while still providing an efficient rep-
resentation. Sucha decompositionis perceptually very ef-
fectiveat low bit ratecoding, thanks to similiaritieswith the
HumanVisualSysteminformationprocessing.

1 INTRODUCTION

Matching Pursuituseis spreading in imageandvideo cod-
ing dueto its goodprofile in very low bit-rateapplications
[2, 4] andin denoising [1]. MP goodperformancein very
low bit-rate applicationscomesmainly from two factors: Its
non-linearity, which allows to betterrepresent a signalwith
a lower numberof terms,andits similarity with theHuman
VisualSystem,which will bepointedout further in this pa-
per. MP non-linearityallows for detectingthemaincontours
of animagewith avery low numberof terms.

2 MATCHING PURSUIT

2.1 The algorithm
Thebasisof MatchingPursuitcanbefoundin Mallat [9] and
Mallat andZhang[10]). They defineMatchingPursuitasa
greedy algorithm that decomposes any signal into a linear
expansion of waveforms taken from a redundant dictionary.
Thesewaveformsareiterativelychosentobestmatchthesig-
nal structures,producing a sub-optimal expansion. Vectors
areselectedonebyonefromthedictionary, while optimizing
the signalapproximation (in termsof energy) at eachstep.
Eventhough theexpansionis linear, it givesanon-linearsig-
naldecomposition.

Let �����
	��������� bea dictionaryof ������������� vec-
tors, having unit norm. This dictionary includes ��� �!���
linearly independentvectors thatdefinea basisof thespace"$#&%(')#+*

of signalsof size ,.-/�0,21 . Let 35476 betheresid-
ualof an 8 termrepresentationof agivensignal 6 .

A MatchingPursuitis an iterative algorithm that subde-
composestheresidue 9;:�< by projecting it on a vectorof �
thatmatches9=:�< at best. If we consider 9?>@<A�2< first MP
iterationwill represent thesignalas:6B�C3EDF6A�HGI6)JK	��ML@NO	��MLQPR9 � <SJ (1)

where 3 - 6 is the residualvectorafter approximating 3 D 6
in thedirectionof 	T�ML . Since 3 - 6 is orthogonalto 	T�ML , the
module of 6 will be:U 3ED�6 U 1 �HVWGX3/DY6)JZ	��ML@N
V 1 P U 9 � < U 1�[ (2)

As thetermthatmustbeminimizedis theerror
U 9 � < U ,U 9 � < U 1 � U 3ED�6 U 1+\ V]GI3EDF6)JZ	��ML@N
V 1 J (3)

the ^@�H_`� to be chosen is the one that maximizesV]GI3 D 6)JZ	��ML@N
V , or, generalizing, VWGX3;476)JZ	��Ma�N
V . In somecasesit
is not computationallyefficient to find theoptimal solution,
andasuboptimal solutionis computedinstead:V]GI3 4 6)JZ	��ML@N
VTbdcfeKgih�(��� V]GI3 4 6)JK	��(N
VjJ (4)

where ck_5lnmoJFp�q is an optimality factorwhich is 1 when
the optimal solution hasbeenchosen. This suboptimality
factor c will depend on the searching methodusedto find
thesolution(seesection3 for anexample).

From (1), one easily seesby induction that the r term
decompositionof 6 is givenby:

6A� sEt -u4�v D GX3 4 6)JZ	 � a�NO	 � a5Pw3 s 6 (5)

andwith thesameprinciplewecanalsodeducefrom (2) that
the x 1 norm of thesignal 6 is:U 6 U 1 � sEt -u4�v D V]GI3 4 6)JZ	 � a�N@V 1 P U 3 s 6 U 1 J (6)

where
U 9=yz< U , whendealingwith finite dimensionsignals,

convergesexponentially to 0 when r tendsto infinity and,w-E��,{1 is finite (see[7] for aproof).
MatchingPursuitcodingefficiency is highly dependenton

the dictionary adaptation to the signal to represent. In the
next sectionwe describea generalframework for handling
geometric dictionaryconstruction.
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Figure1: Anisotropic refinementatomsversusIsotropic Ga-
boratoms.Anisotropy (right image)givesbettercontourres-
olution.

2.2 Properties of Matching Pursuit
MP propertiescanbedividedin two differentkinds: proper-
tiesthatareintrinsicalto thealgorithm, nomatterwhichkind
of functionshavebeenusedtoperformthesignaldecomposi-
tion,andpropertiesthatdependof thedictionary(they appear
only if thedictionaryusedhasthemaswell).

The main propertiesderived directly from the Matching
Pursuitalgorithm areinvertibility (if thedictionaryis at least
complete),energy conservation (thatcomesfrom Eq. 6 and
theinvertibility property)andovercompleteness, whichgives
robustness to quantization (due to the fact that the coding
spaceis of higher dimensionthanthe signalspace)andex-
ponentially bounded error decay (whichimpliesa fastinitial
error decay).

Most of the otherpropertiesdepend on the dictionary at
hand. In particular covariance with respectto geometric
transformationsis a very desirable feature. Let us quickly
explain agenericway of achieving sucha construction.

Supposewe havea group of geometrictransformations |
together with a unitaryrepresentation } of | in theHilbert
spaceof oursignals~ . It is a classicalresultof group repre-
sentationtheory[3] thatthedictionary�����n} l��o�O	/J����0_0|;
is a densesubspace of ~ for any 	�_�~ . This dictionary is
invariant underany geometric transformationin | by con-
struction. Moreover theMP expansionof any deformedsig-
nal is very simply relatedto the expansionof the original
signal: } l�����6A�����u4�v D G�	 � a�V 3 4 6�NO	 ����� a�J
where � denotesgroup composition. Summarizing, we have
completeinvarianceof theMP expansionwith respectto ge-
ometric transformations.Grouptransformationscanbecom-
bined with more general manipulation for creatingspecial
dictionaries. Suppose we createa dictionary by applying
both a unitary group representation } and another unitary
operator 3k� to agenerating function 	 :������} l��o���
3 � 	Q����_�|�c2_0�= [ (7)

Thenthis dictionarywould still benefitfrom the invariance
propertiesof | . A very fruitful example usedthroughoutthe

remaining of thispaperis obtainedby taking | ascomposed
of translations androtations andextendedasin Eq. (7) with
anisotropic dilations :

3 lX�7-FJn�T1
�O	�l��SJK�7�Q� �� � - � 1 	B� �� - J �� 17� [
This dictionary is theninvariant under translations, rotations
andisotropic scaling�)-����T1 . In ourcasethedictionaryused
is composedof Anisotropic Refinementatoms. The basic
function is a Gaussianin oneaxisandthesecondderivative
of theGaussianin theotheraxis[13]:	��)l��SJK�7�Q��lI� \ � � 1 �Z¡S¢(£¤¦¥W§
¨ �o© ¨�ª [ (8)

This particular setof atomsis verywell suitedfor represent-
ing smoothcontours in imagesasalreadypointedout in [13]
andthis factis alsoillustratedonFigure1.

3 EVOLUTIONARY MATCHING PURSUIT

Theuseof a redundantbasisthroughMP seemsinteresting
from animagerepresentationpoint of view, but it represents
a heavy computationalcost.In fact,whendealingwith large
dictionaries,thecomputationof a scalarproduct of every el-
ementof thedictionary andthesignalto representandtake
theatomwith the largestprojection energy becomesalmost
impossible.In this scope,theuseof efficient approximation
tools,suchasGeneticAlgorithms,is needed.

GA do not give the optimal solution,but an approxima-
tion. This fact, though, doesnot representa problem when
dealingwith MP decomposition. It will, of course,causea
decrease of quality in the final MP representation,but this
lossof quality is negligible compared to the computational
gainobtained.

TheGA usedhereis a simplealgorithmthathasdemon-
stratedto bewell adaptedto theneeds of this concretecase.
It hasa population formed by a certainodd number r of
individuals.Eachindividual is in factonedictionarycompo-
nent,andit is composedby fivegenes (whicharetheparam-
etersthatdefinethedictionary component,so,positionin �
and � , scalingin � and � androtation). At every generation,
theseindividualsareevaluated andonly the fittest (the one
thathashigher scalarproduct norm) passesto thenext gen-
erationwithout change.The restcompete in pairs,andthe
winnerof every pair is placedin a matchingpool. Theindi-
vidualsin thematchingpoolarerandomly crossed-over, and
their descendants(

sEt -1 individuals) areplacedat the next
generation togetherwith

sEt -1 mutations of the fittest. The
evaluation processis repeateduntil a desirederror threshold
or a certainnumber of generationshasbeenreached(see[8]
for a detaileddescription of GA).

4 MULTIRESOLUTION MATCHING PURSUIT

As the searchfor the optimal function meanscomputing a
greatamount of scalarproducts betweenimages,MP hasa
veryhighcomputationalcost,whichdirectlydepends on the
imagesize. To speedcoding, a multiresolution schemehas
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Figure2: Multiresolution MP scheme.

Figure3: Comparisonof two MP codedimages.Left image
hasbeencodedwith onelayerMP (PSNR=25.7987dB) and
theright onewith multiresolutionMP (PSNR=26.0016dB).

beenchosen.In this scheme,the imageis downsampledby
two several times. The MP algorithm is first appliedto the
smallestimageandwhenthedesirednumber of coefficients
in thelowestresolution layerhasbeenreached, arecomposi-
tion of thenext level image(double size)is performed. This
recompositionis doneby takingadvantageof thedictionary
covarianceto dilations(seesection2.2). Thesubtraction of
this recompositionto thenext resolutionlevel imageis per-
formed, andMP is appliedto this residual(seeschemein
Fig. 2).

Multiresolution MP normally givesbetterresultsthatone
resolution MP (seeFig. 3), basicallybecause multiresolu-
tion decreasesthenumberof atomsin thedictionary for the
searching algorithm (thescalingfactoris now boundedto the
smallestimagesize). With thesamenumberof generations
in theGA, theobtainedsolutionis thuscloserto theoptimal.
A clearstudyof GA parametersat eachlevel of resolution
hasgot to be performed. The optimal number of termsin
theMP expansionateachresolutionis alsocurrently investi-
gated.

5 MP IN A LEARNT DICTIONARY SET

As the MP dictionary usedhereis highly redundant,some
of the functionsarehardly ever used,they canbe rejected
(asdoneby Neff andZakhor in [11]). Therejectionof these

Figure 4: Comparison of two images having 420 coef-
ficients. Left image is coded with the whole dictionary
(PSNR=31.2294 dB), and the right one with a subsetof
64 functions, learnt from MP decompositionof ten images
(PSNR=29.2315dB).
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Figure5: Graphic of thePSNRevolutionwith thediminution
of thesizeof thesubset.

functionswill giveamorecompactrepresentationandreduce
thebit-rateto codeanimage.Oneway of doing it is decom-
posinga representative numberof imagesin thewholedic-
tionary, andthentrainthedictionary from thedecomposition
of theseimages.Then, MP canbeappliedin a learntsubset
of functions.Thisgiveshigher compressionrates(anatomis
just representedby anindex in a list). It will alsospeedthe
MatchingPursuitprocessbecausetherewill belesselements
to compare.

A possiblelearning rule for thesubsetcouldbeto choose
theatomsthatappearmoreoften.So,if asubdictionaryof ,
atomsis desired,thefirst , atomsthatmostoftenappear in
a representative setof MP decompositions wouldbechosen.
This, though, givesan incorrect result,becausesomeatoms
that have a very small impactin the final resultarechosen.
Thereasonis thattheatomsthatappear more oftenareusu-
ally theonesthatcomeaftera highnumber of iterationsand
theenergy they bring to thefinal resultis verysmall.

To avoid this,a learningrulebasedontheenergy theatom
gives to the final reconstructionhasbeenused. The new
learning rule will selectthe first , atomsthat have higher
energy. Oneexampleof MP decompositionusinga64atoms
subsetis shown in figure4.

Thequalityof theimagecodedin a subsetwill depend on
thenumber of atomsthis subsethas.Intuitively, imagequal-
ity will increasewith thesizeof thesubdictionaryused.This
is truewhenusinganalgorithm which finds theoptimalso-
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lution, but the useof a suboptimal minimization algorithm
changes this logical evolution. Decreasingthe number of
functionsin thechosensubsetmeansreducing thesearching
space.Logically, whenreducing the searchingspace,with
thesamecomplexity in theapproximationalgorithm, theso-
lution foundwill becloserto therealone.With theGA used
in thescopeof thispaper, and128x128images,thebestcom-
promisesubsetsizeversus algorithmaccuracy hasprovedto
bewhentakinga64atomssubset(seeFig. 5).

6 SIMILARITIES OF MRMP AND HVS

Multiresolution MatchingPursuit(MRMP) sharessomein-
terestingpropertieswith the HumanVisual System(HVS).
Thesesimilarities explain, to some extent, why MRMP
codedimagesoften have a bettervisual quality than their
waveletor DCT equivalentevenfor lowerPSNRvalues.

MRMP similaritieswith the HVS comein two main fla-
vors : thosedirectly coming from the algorithm andthose
dependingon theparticulardictionary used.

Oneof the first goalsof the HVS is to perform a sparse
coding of visual information[12]. By natureMRMP yields
a very sparsecoding of imagessince, as alreadypointed
before, PSNRincreasesquickly with the number of coeffi-
cientsusedin the expansion. In fact MRMP seeksparticu-
lar structuresin the imageandwill recursively extract them
from thedata.At very low bit rates,or for few coefficients,
the selectedatomstendto be independent from eachother.
This gainin informationwill of coursesaturateasthenum-
berof termsgetsbigger, but quickly yieldsa good andvery
sparseapproximationof thedata.In thiswayMRMP is more
oriented towardsmeaningful structureswherewaveletsand
DCT merelyseepixels.

Concerning thedictionary, severallinks with theHVS can
behighlighted.Firstweknow thatvisualinformationis sub-
mitted to a chain of processing. At an early stageretinal
ganglion cells detectcontours usinga strategy that mimics
the zero-crossingsof a Laplacianpyramid. At later stages
theinformationis processedin theprimary visualvisualcor-
tex (areaV1) by several neural cells. Among these,Sim-
ple Cells have a receptive field that hasbeenshown to be
well approximatedby Gaborfilters [6]. They aresensitive
to theposition,scaleandorientation of stimuli. Now in the
MRMP algorithmpresented in section4, the imageis first
decomposedat low resolutionandthiscoarseapproximation
is subtractedfrom a finer level of the pyramid. This result
in a schemesimilar to the Laplacianpyramid of Burt and
Adelson[5] and thusmimics the early processingstageof
theHVS. Thenat eachresolution, MRMP usesa dictionary
of atomsthat are sensitive to the position, scaleand local
orientation of contours, which againresembles someof the
processingachievedby SimpleCells.Finally theanisotropic
scalingof our dictionary allows us to represent contour in-
formation with few atomsby locally stretchingthe atomin
thedirectionof theedge,while we refineit in the direction
of thegradient.

7 CONCLUSIONS

WeintroducedMRMP, analgorithmthatusesMatchingPur-
suit in a multiresolution fashionwith a dedicateddictionary
of scale-covariantatoms.Sparsecoding of natural imagesis
achievedwithin our algorithmby usinga mixtureof proper-
tiesthatmimic sparsestructure codingin theHumanVisual
System.This allows to obtainsuperior visual quality when
comparedto traditional lineartransformssuchaswaveletor
DCT.

Sucha technique, though at a preliminary stage,might
yield very interestingresultswhencombined with efficient
coding strategiesfor very low bit rateimagecompression.
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