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Abstract— This paper presents a Rate-Distortion
analysis for a simple horizon edge image model. A
quadtree with anisotropy and rotation is performed on
this kind of image, giving a toy model for a non-linear
adaptive coding technique, and its Rate-Distortion be-
havior is studied. The effect of refining the quadtree
decomposition is also analyzed.

I. Introduction

It is known that the Rate-Distortion (R-D) behavior of
wavelets is not optimal for natural images because they are
not capable of seeing the regularity of edges [1]. In fact
the optimality of monodimensional wavelets is lost when
using 2D separable basis, giving a R-D decay of O(R− 1

2 )
[2]. This motivates a lot of research in order to find a more
efficient way for coding images [3], [4], [5], [6].
The goal of this work is to try to find an efficient tech-

nique to represent edges. To compute the R-D behavior
we will use the “Horizon”model for piece-wise smooth im-
ages where the edge is also a smooth curve. For an image
I(x1, x2) defined on the unit square [0, 1]2, the horizon
model defines the image as:

I(x1, x2) = 1x2≥y(x1) 0 ≤ x1, x2 ≤ 1, (1)

where y(x1)∈Cp is p-times continuously differentiable and
has finite length inside the unit square. A way to represent
this image is through a quadtree decomposition, which is
in fact a toy model for wavelets. Do, Dragotti, Shukla
and Vetterli [7] already demonstrated that the R-D of this
model decays as R−1. To improve its R-D behavior, they
introduced refinement in the isotropic quadtree technique,
as further explained in Section II.
In this paper we do another step towards the under-

standing of the behavior of edges in compression. For this,
anisotropy and rotation are directly introduced in the ba-
sic quadtree structure, obtaining a toy model for an adap-
tive non-linear image representation tool like bandelets [8].
Anisotropy makes the first derivative of the edge function
appear in the R-D expression. Furthermore, when rota-
tion is also included in the scheme, R-D is affected by the
curvature of the edge, showing that the rate needed to
represent a given contour is directly proportional to its ge-
ometrical complexity, which is coherent with the empirical
and previous theoretical results.

II. Optimal quadtree based compression
The optimal quadtree is based on a dyadic division of

the unit interval [0, 1]2 (see Fig. 1(a)). At each scale, the
algorithm will keep on dividing the edge squares until the
maximum number of iterations J has been reached. Fi-
nally, a refinement (coding with a certain number of bits
where the edge crosses the square) will be performed. Then
the edge will be represented by the lines that join these re-
finement points (so it will be represented as a piece-wise
linear function). This approach gives a rate distortion de-
cay of:

D(R) ∼ logR
R2

. (2)

III. Anisotropic Quadtree
Let us now release the assumption of the original

quadtree decomposition in order to bring adaptivity in
the scheme. The difference between the dyadic quadtree
and the anisotropic quadtree is the size of the partitions.
The x axis will maintain the dyadic partition, but the y
axis partition will never cross the edge, as can be seen in
Fig. 1(b). After the first partition, the dyadic rectangle
containing the edge will be divided into two along the x
axis. This process will be repeated iteratively until the de-
sired accuracy or bit-rate is reached (i.e. until the height
or the width of the rectangle has the size 2−J). In ad-
dition, a certain number of bits can be assigned to code
the edge position in the division border, so that a straight
line can approximate it. For this case, we supposed that
the maximum slope of the edge inside the interval is one
(|y′(x)| ≤ 1), otherwise one could simply switch the axes.
Let J be the number of bits used for quantizing each of

the two axes. Naj
is the number of all the rectangles at

iteration j and Ne the number of edge-rectangles:

Naj
∼ 2j , Ne ≤ 2J+�log2 y′

max�. (3)

(a) Isotropic (b) Anisotropic

Fig. 1. Example of two different quadtree decompositions.
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As next iteration rectangle will be inside previous iteration
one, the number of bits needed to code the size of each
rectangle will decrease with the iteration number as:

Nbits ≤ J − (j − 1) + �log2 y′max	. (4)

Taking into account the bits needed to code whether a
rectangle is black, white, edge or intermediate and the
size and position, the total bit-rate needed to code the
anisotropic quadtree will be given by:

R = (2 +Nbits)Na + 2M ·Ne, (5)

whereM is the number of bits used for the refinement. The
first term counts the bits needed to describe the tree par-
tition position and whether the partition is black, white,
intermediate or edge, and the second term represents the
bits needed to code the edge position in the finest parti-
tion. Merging (3) and (4) with (5), considering M=J and
high bit-rate and simplifying, we obtain:

R ∼ J · 2J+�log2 y′
max�. (6)

The final distortion (at resolution 2−J ) is:

D(R) =
∫

[0,1]2
(I − Î)2 ≤ C · 2−J−M , (7)

where Î is the reconstruction of I. When consideringM=J
and high bit-rate, it gives D(R) ≤ C2−2J , and from the
previous expression and (6) we obtain:

D(R) ∼ 22�log2 y′
max� log2R
R2

. (8)

In the above expression we see that the R-D of the irregular
quadtree is similar to the one of the regular quadtree but
with a factor 22�log2 y′� that comes from using anisotropy.
The use of rectangles gives a factor 2�log2 y′� and the coding
of the position where the edge crosses the border of the
rectangle gives the other 2�log2 y′�.

IV. Introducing Rotation
The anisotropic quadtree shows that the edge represen-

tation can be improved in a R-D sense if partitions follow
the behavior of the edge. Developing this idea it is possible
to use not only rectangular, but even rotated boxes. Let
us take the curve in the unit interval [0, 1]2 and join the
two extreme points with a line that represents its average
slope. This line can be then moved up and down such that
it does not cross the edge anymore in order to create the
box. This procedure is repeated iteratively continuing to
split the x axis inside the previous box in a dyadic way
(see Fig. 2(b)). As in the anisotropic quadtree algorithm,
the y axis partition will basically depend on the edge.
At each iteration j (0 ≤ j ≤ J) and for each box k the

distortion is limited by the area of the box that encloses
the edge (see Fig. 2(a) ):

Dk
j ≤ Sk

j H
′k
j = Sk

j H
k
j cosθ = 2

−jHk
j . (9)

Inside every box the edge function will be approximated
by its second order Taylor expansion at the central point of
the partition, taking as initial partition the unit interval.
Defining x− as the lowest point in the x axis which is

inside the interval to analyse and x+ as the highest one,
the coordinates of the two extreme points of the curve
quantized on a dyadic grid will be (x−,Q[y(x−)]) and
(x+, Q[y(x+)]). The line which joins these two points is:

yLQ(x) = Q[y(x−)]+
Q[y(x+)]−Q[y(x−)]

x+ − x−
(x−x−), (10)

where Q[·] stands for uniform quantization. The parallel-
ogram cannot cross the edge, therefore its superior and
inferior distances to the line are:

d+ = max {0, sup(y − yLQ)} ≥ 0
d− = max {0, sup(yLQ − y)} ≥ 0. (11)

Then the height of the parallelogram confining the edge
will be:

H = Q [d+ + d−] . (12)

Three cases have to be considered: d+ and d− are both
bigger than zero, one of them is equal to zero, and finally
d+ = d− = 0. The distortion is at most the area of the
parallelogram that contains the edge, as already shown in
(9). So, when the evolution of H with the number of bits
is found, the evolution of the distortion as a function of
the iteration number will be known as well.

A. Case d+ > 0 and d− > 0

1) Distortion: Let’s first compute the distances d+ and
d− in order to find out H. If xd+ is the point in the x axis
where yLQ − y is maximum, we get:

d+ = y(xd+)− yLQ(xd+). (13)

The above expression, when approximating the curve and
y(x−) of (10) by its second order Taylor expansion at the
central point of the interval being analysed, turns to:

d+ =
[
y′

(
x++x−

2

)
− y(x+)−y(x−)

x+−x−

] (
xd+−x−

)±
± 2−J

(
xd+−x−
x+−x−

)
± 2−J

2 +

+ 1
2y

′′
(

x++x−
2

)[(
xd+− x++x−

2

)2
−

(
x+−x−
2

)2]
+

+ O

((
xd+ − x++x−

2

)3)
+O

((
x−−x+

2

)3)
.

(14)
It is possible to show that the first term in (14) is
O

(
2−3j

)
[6] and that the 4th term is bounded by

1
2

∣∣∣y′′
(

x++x−
2

)∣∣∣ 2−2(j+1). This expression is related to the
second derivative computed in the middle point of each
interval k at each iteration j. From now on, to simplify
the notation, it will be referred to as Kk

j .

Kk
j =

∣∣∣∣y
′′

((
k +

1
2

)
2−j

)∣∣∣∣ , (15)



with 0 ≤ k ≤ 2j −1. Since the curvature of a function is
y′′(x)

(1+y′2)
3
2
, K can be considered as its approximation. As

the edge is a C2 curve, the set of Kk
j is bounded:

β = max
0≤k≤2J−1

Kk
j < ∞. (16)

From (14) it follows that the asymptotic behavior of d+ is
given by:

d+ ∼ 1
2
Kk

j 2
−J−log2β +

3
2
· 2−J . (17)

In fact the other terms are O(2−3j) (one order of mag-
nitude smaller), so they can be rejected when computing
the asymptotic behavior. Finally d− can be found with
exactly the same method and has identical behavior.
The iterative algorithm is going to stop when the re-

quested resolution is reached, i.e. when Hj = 2−J . Sub-
stituting in (12), the number of iterations needed to reach
this parallelogram height can be obtained as a function of
the resolution and of the curvature of the edge:

jstop = max

{
0,

⌈
1
2
(J + �log2β	+ 1)

⌉}
. (18)

Notice that now the parallelogram has the a
a2 anisotropy

present in curvelets [4]:

width
height

=
2−jstop

2−J
= 2− log2 β 2

− J
2

2−J
∼ width
width2

, (19)

The final distortion (j = jstop) is:

D =
∑2jstop−1

k=0 (d+ + d−) 2−jstop =
= 2−2jstop

(∑2jstop−1
k=0 Kk

jstop
2−jstop+

∑2jstop−1
k=0 3·2−jstop

)
.

In the right-hand side of previous equation, the second
sum gives a constant, while the first, when jstop → ∞,
converges to the Riemann integral of the second derivative
of the curve, which can be seen as an approximation of the
total variation TV of the edge, with the only difference
that we have a sum of Kk

j instead of the Riemann integral
of the curvature. Calling it T̃V the final expression of the
distortion turns to:

D ∼
(
T̃V + 3

)
· 2−2jstop ∼

(
T̃V + 3

)
· 2−J−log2β . (20)

2) Rate: Each rotated box is coded by means of Hj

and a left and a right vertex. At iteration j, as at least
two of the vertices of the following parallelogram will be
inside the previous one, the number of bits needed to code
one vertex of the box k will evolve as follows:

Nk
bits V = J − 2(j − 2) + ⌈

log2
(
Kk

j−1
)⌉
. (21)

Therefore, the total rate will be:

R =
jstop∑

j=0

(2Nbits V +Nbits H) · 2j , (22)
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Fig. 2. Anisotropic quadtree with rotation.

where Nbits H = Nbits V is the number of bits needed to
code the height of each box. Simplifying:

R ≤ 3J+2 +
jstop∑

j=1

((J−2(j−1) + �log2β	)·3+2)·2j .

This is an arithmetico-geometrical progression, whose
sum, when J big enough, can be approximated by [9]:

R ∼ 2
1
2 (J+�log2β�). (23)

3) Rate-Distortion: Combining this equation with (20)
we obtain the asymptotic R-D behavior:

D(R) ∼
(
T̃V + 3

)
· 2−2log2R ∼

(
T̃V + 3

)
·R−2. (24)

B. Case d+ > 0, d− = 0 or viceversa
This case turns to have the same R-D than the previous

one, because the evolution of the rectangle height is leaded
by the distance bigger than zero.

C. Case d− = d+ = 0
This case is very favorable to our coding scheme, because

it means that with just one iteration the minimum distor-
tion requirement is reached. The parallelogram height will
be H = 2−J , and the rate will consist in the bits needed
to code the two vertices and the box height, R = 3J . This
makes a R-D behavior coherent with the results obtained
in [7]:

D(R) = 2−
R
3 . (25)

V. Adding refinement
The anisotropic quadtree with rotation has a good R-D

decay, but it has the drawback that the reconstructed edge
may loose its original continuity. The introduction of re-
finement solves this problem. In this case the procedure
is exactly the same that has been explained in the pre-
vious section but when the minimum resolution has been
achieved, a refinement is performed inside the last resolu-
tion rectangle by splitting the x axis into intervals of size
2−J .
The effect of adding refinement in the anisotropic

quadtree with rotations does not change the slope of the
R-D decay, but it allows a better PSNR given a certain



rate, shifting the R-D line to the left (see Fig. 3). Follow-
ing the procedure that has been adopted previously, the
distortion found for the case d+ > 0 and/or d− > 0 is:

D ∼ T̃V · 2−2J + 3 · 2−J−M . (26)

The rate now has to take into account the number of re-
finements performed inside each parallelogram, the num-
ber of parallelograms to refine and the number of bits to
perform the refinement. Including the refinement bits in
(23) and taking M = J , we find:

R = 2
1
2 (J+log2 β) +M · 2J . (27)

From (26) and (27), it is easy to deduce the final R-D
expression:

D(R) ∼ T̃V · log2R
R2

. (28)

The R-D found in the case where both distances are 0 (the
edge is a straight line) is very similar to the one obtained
in the case without refinement:

D(R) = 2−
R
2 . (29)

VI. Simulation results
Some comparisons among the presented methods and

wavelets (JPEG2000 [10]) for a polygonal edge are illus-
trated here (see Fig. 3). This results show that the
anisotropic quadtree with rotation gives better approxi-
mations than the other methods discussed here. The fact
that the slope for the anisotropic quadtree with or with-
out refinement is almost the same in the graph is probably
because at such low bit-rates the log factor has no influ-
ence. Even though JPEG2000 is not adapted to black and
white images, its R-D behaviour shows that the isotropic
quadtree and wavelets have really the same R-D slope.
Fig. 4 represents the rate distortion decay of four dif-

ferent curves with increasing Total Variation. It shows
that the practical results, obtained with the anisotropic
quadtree with rotation, are coherent with the theoretical
behavior found: the lower the TV, the better the R-D.
From left to right, the graph represents the R-D of: a
straight line (TV=0), a parabola with TV=0.51, a cubic
curve with TV=0.75 and a parabola with TV=0.89.
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Fig. 3. Comparison among JPEG2000, isotropic quadtree with
refinement and anisotropic quadtree with rotation for an image of
1024× 1024 pixels.
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VII. Conclusions
The inclusion of anisotropy and rotation in the quadtree

improves the quality. The fact that an approximation of
the TV appears in the R-D expression shows that geo-
metrical complexity affects the capacity of compressing a
given curve. As this anisotropic quadtree with rotation
is a toy model for an adaptive non-linear image represen-
tation technique, it demonstrates that further research in
adaptive image representation, taking into account the ge-
ometry, has to be done. Furthermore, the a/a2 anisotropy
that appears in [4] is also present here, mainly because we
are using the second order Taylor expansion to approxi-
mate the edge. The theoretical results obtained here are
coherent with existing ones, and the experimental data do
not differ from the theoretical model.
An interesting development of this work will be to per-

form refinement inside the boxes introducing basis func-
tions. This can allow us to extend the algorithm to natural
images too. To insert the basis functions, the algorithm
has to be slightly modified in order to have nested parti-
tions.
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