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ABSTRACT
The widespread use of the Internet and the maturing of
digital video technology have led to an increase in various
streaming media applications. As broadband to the home
becomes more prevalent, the bottleneck of delivering qual-
ity streaming media is shifting upstream to the backbone,
peering links, and the best-e�ort Internet. In this paper, we
address the problem of eÆciently streaming video assets to
the end clients over a distributed infrastructure consisting
of origin servers and proxy caches. We build on earlier work
and propose a uni�ed mathematical framework under which
various server scheduling and proxy cache management al-
gorithms for video streaming can be analyzed. More pre-
cisely, we incorporate known server scheduling algorithms
(batching/patching/batch-patching) and proxy caching al-
gorithms (full/partial/no caching with or without caching
patch bytes) in our framework and analyze the minimum
backbone bandwidth consumption under the optimal joint
scheduling and caching strategies. We start by studying the
optimal policy for streaming a single video object and derive
a simple gradient-descent-based cache allocation algorithm
to enable management of multiple heterogeneous videos eÆ-
ciently. We then show that the performance of our heuristic
is close to that of the optimal scheme, under a wide range
of parameters.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks|Distributed Systems

General Terms
Algorithms Management Design

Keywords
Multimedia streaming, Video Server Scheduling, Proxy Cache,
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1. INTRODUCTION
The widespread use of the Internet and the maturing

digital video technology have led to an increase in various
streaming media applications such as webcasts, distance-
learning and corporate communications. Until the advent
of broadband, the constrained last-mile bandwidth was the
primary bottleneck in delivering quality streaming media
over the Internet. As access providers roll out faster last-
mile connections, the bottleneck is shifting upstream to the
provider's backbone, peering links, and the best-e�ort Inter-
net. This problem can be partially addressed by \edge deliv-
ery" of streaming objects from a nearby proxy or via content
distribution networks. While the edge delivery of streaming
media objects will increase scale and reach of streaming me-
dia, handling streaming objects brings additional complex-
ities at the proxies due to the large object size, long-lived
nature of the objects, and isochronous delivery requirements
from the users.
A variety of techniques have been proposed in the litera-

ture to eÆciently utilize the backbone network bandwidth
for streaming. Some of them use multicast as a means to
reduce the backbone bandwidth usage: periodic broadcast-
ing [4, 1, 5, 13], simple batching, batching with patching
[6, 12, 14] and optimized patching with classes of service
[9]. While these multicast-based schemes a�ord very low
backbone bandwidth usage, they are not in widespread use
due to their dependency on network-level multicast, which
is not widely available over the Internet except for limited
instances such as on local area networks. Additional draw-
backs of the above approaches include the batching delays,
and the need for clients to be able to receive multiple simul-
taneous streams.
With the recent proliferation of caching proxies, some of

these drawbacks can be masked by storing portions of the
media object in the proxy to hide the startup latency, and
by using application-level multicast when network-level mul-
ticast is not available. Related work in this area [7], [8],
[11], [10], [15] combined scalable video delivery with proxy
caching, where the focus was mostly on transmitting a sin-
gle video. In [3], the authors studied batching and patching
with pre�x-caching at the proxy for multiple heterogeneous
videos, but analyzed each scheme independently to deter-
mine the optimal caching unit. This restricts all assets in
the system to be managed using a single scheme irrespec-
tive of the di�erence in their access patterns. In [7], we
have investigated the video streaming problem in the con-
text of joint server scheduling and caching strategy at proxy
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to minimize the aggregate backbone bandwidth usage. How-
ever, this work studied three di�erent schemes in a disjoint
framework, for a single asset only.
In this paper, we build on earlier work and propose a

uni�ed mathematical framework under which various server
scheduling and proxy cache management algorithms for video
streaming can be analyzed. More precisely, we incorpo-
rate known server scheduling algorithms (batching, patching,
and batch patching), and proxy management algorithms (full
caching, partial caching, and no caching, with an option to
cache patch bytes or not) in our framework and analyze the
minimum backbone bandwidth consumption under the op-
timal joint scheduling/caching strategy.
To this end, we �rst study the case of streaming a single

video object and analyze the minimum backbone bandwidth
consumption to meet the user requests under the optimal
scheduling/caching algorithm. In particular, we evaluate the
impact of the following parameters: (i) user request rate,
(ii) proxy-to-client bandwidth constraints, and (iii) patch
caching at the proxy. We then study the case of stream-
ing multiple, heterogeneous video objects under the optimal
scheduling/caching algorithm. Finally, we derive a simple
gradient-descent-based cache allocation algorithm that can
be implemented at the proxy in practice. Using simulations,
we validate our algorithm performs closely to the optimal al-
gorithm under various resource constraints.
The following section presents the problem formulation

and builds the mathematical framework under which vari-
ous schemes are analyzed. Section 3 analyzes the e�ect of
various parameters on the backbone rate for a single video.
In Section 4, we present a simple one-dimensional gradient-
descent based algorithm to perform cache allocation for mul-
tiple, heterogeneous videos. Experimental results are pre-
sented in Section 5 and �nally, Section 6 presents the con-
clusions and future directions for the work.

2. PROBLEM FORMULATION
We consider a video streaming architecture composed of

an origin server, a proxy cache, and a �nite set of media
assets. We assume reliable transmissions with bounded de-
lay over the backbone network, and assume that the access
network (i.e., proxy-to-client cloud) is lossless and multicast-
enabled. We also assume that the origin server is a batch-
patching server while the proxy serves clients with a batch-
ing interval not exceeding the acceptable playback delay.
Finally, every stream from the origin server is constrained
to go through the proxy for various reasons such as con-
tent adaptation purposes (e.g., adaptive FEC, rate control),
unavailability of multicast on the backbone and accounting
and billing in a CDN infrastructure.

2.1 Preliminaries
Let 
 denote the �nite set of media assets. An asset

! 2 
 is characterized by its CBR streaming rate r!, its
duration T!, its average request rate (or popularity) �!,
and its admissible playback delay d! speci�ed in the Service
Level Agreement (SLA).
We consider the following problem: Given the set 
, �nd

the per-asset joint scheduling and caching strategy thatmin-
imizes the aggregate backbone rate R under the constraints
imposed by the network service provider infrastructure. These

Parameters related to video object ! 2 

r! streaming rate
T! playback duration
�! average request rate (# of requests per second)
d! admissible playback delay

Parameters for scheduling and caching for object !
�! maximum network jitter (�! = �)
P! pre�x duration
b! virtual batching interval (b! = P! + d! ��)
W! patching window (W! = N! � b!)
�! binary indicator (�! = 1 if proxy caches patch)
I! interval between two regular channels

Table 1: Parameters used in this paper to describe
the uni�ed mathematical framework.

constraints encompass the limited capacity of the proxy in
terms of storage S and bottleneck bandwidth B which may
be the disk or the network bandwidth.
We now propose a uni�ed framework under which various

joint scheduling and caching strategies may be analyzed.

2.2 Unified Framework
We consider the following scenario illustrated in Figure 1.

The proxy cache views its time axis divided into intervals
[tk�1; tk] of duration d! units of time which is the maximum
admissible playback delay at the clients. All requests arriv-
ing in [tk�1; tk) are batched together and a single stream is
sent by the proxy to the clients in this interval. The proxy
also batches these requests over a possibly larger interval we
call the virtual batching interval denoted by b!, and indi-
cated in Figure 1 by [~ti�1; ~ti]. At the end of virtual batching
intervals, the proxy requests the origin server for the patch
streams or the regular channel. The duration of b! depends
on the cached pre�x. If the proxy does not have any pre-
�x cached (P! = 0), it must make a request to the origin
server every interval of d! and forward the patch as well as
the regular channel to the client. In this case, b! = d!. If
the proxy has a pre�x of duration P! cached, then it can
start streaming the pre�x to the clients and ideally continue
batching requests until the client has played the pre�x and
is ready for the suÆx. Hence, in general, b! = P! +d!. For
simplicity, we assume b! holds an integral number of d!,
when d! > 0.
As an example, consider a case when the proxy has a pre�x

of P! > 0 cached and is already serving some requests for
the video. A new request arrives at time t1 in [tk�1; tk),
as shown in Figure 1. At time t = tk, the proxy starts
streaming the pre�x to the client. It continues to batch this
client in the current virtual batching interval b!, until ~ti, to
either join the regular channel and request the origin server
for the patch stream, which it then forwards to all the clients
in the interval [~ti�1; ~ti].
Clearly, ensuring continuous playback (or lossless deliv-

ery over non-ideal backbone network) at the client requires
sending requests to the origin server in advance to mask the
e�ect of the network jitter. Let �! denote this network jit-
ter for asset !. For the simplicity of exposition, we set �!

to the maximum network jitter � estimated from long-term
measurements. Thus, the proxy must make the requests to
the origin server � units of time ahead to mask the network
jitter. That is, b! = P! + d! ��.

148



Origin Server

Proxy requests
to server

Proxy  streams
to Client

Client

ts

Recv and play Prefix

Send request

Request Patch
Receive Patch  

Forward Patch+RC to client

Recv and buffer Patch+RC

Regular C
hannel

Required Patch

b

d

ω

ω

Wω

t kk-1 t

t1

Regular C
hannel

i

i

ti-1 i
i

t

= P + dωω

Time

Figure 1: Uni�ed framework for joint scheduling and caching strategies. The timing diagrams indicate the
origin server, proxy and client request/transmission schedules (with � = 0, for clarity). A client requests an
asset at time t1 2 [tk�1; tk). The proxy sends the pre�x at time tk. At the end of the current b! interval, it
requests a patch (of 2b! in this example). It forwards the patch and the regular channel started at ~ts to all
the clients in the current b! interval.

Now, assume the most recent regular channel (RC) for
asset ! started at time ~ts (where ~ts < t1). Let W! denote
a patching window of the server, whose duration also is an
integral of b!, i.e., W! = N!�b! for some integer N!. Then
we have two cases:

� Case 1: When P!+ tk < ~ts+W! (i.e., patching can be
applied), then the proxy cache starts forwarding the
RC to the client at time ~ti, which bu�ers the stream
while playing back the pre�x. Also at time ~ti, the
proxy requests a patch of interval [~ts; ~ti], forwards it
to the client and optionally caches it for future re-
quests within the same patching window. This case is
illustrated in Figure 1.

� Case 2: When P! + tk � ~ts +W! (i.e., when patching
cannot be applied), then the proxy requests the origin
for a new regular channel (RC) of duration T! � P!
(i.e., the suÆx, since the pre�x of duration P! is stored
in the proxy), at time ~ti, and forwards it to the clients.

Note that this framework encompasses various existing
server scheduling algorithms and proxy cache management
algorithms developed for streaming media applications. More
precisely, it can model the following caching strategies: (i)
Full caching (P! = T!). (ii) Partial caching (0 < P! < T!).
(iii) No pre�x caching (P! = 0). At the same time, it mod-
els the following server scheduling schemes: (i) Batching

(b! > 0 and N! = 0). (ii) Patching (b! = 0 and N! > 0).
(iii) Batch-patching (b! > 0 and N! > 0). In addition,
we can model the case when the proxy either temporarily
caches the patch bytes (�! = 1) or not (�! = 0).
We now develop a set of equations for the aggregate back-

bone rate R!, the proxy storage S! and network bandwidth
B! requirements for a media asset ! 2 
, averaged over the
interval I!. In the following we assume a Poisson request
arrival distribution such that q = e��!b! is the probability
to have an empty batch of duration b! units of time.
The aggregate backbone rate at stationary state, R!, in-

cludes the transmission of patches (�!) during b! and the
suÆx of duration (T! � P!) from the origin server, and is
given by:

R! =
�!b!r! + (T! � P!)r!

I!
; (1)

where �! denotes the average number of transmitted patches
of asset !:

�! = �!
q(N!+1) � (N! + 1)q +N!

1� q

+(1� �!)(1� q)
N!(N! + 1)

2
; (2)

and I! represents the interval duration between two regular
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channels:

I! = (N! + 1)b! + �!
�1 : (3)

The derivation of �! is as follows: When the proxy caches
the patch bytes (�! = 1), if there is a request in batch i and
none in the later batches in I!, the proxy fetches exactly
ib!r! patch bytes from the server, for this interval. When
the proxy does not cache the patch bytes (�! = 0), then
the proxy fetches up to

P
ib!r! patch bytes from the origin

server.

�! = �!

 X
i=1;N

(1� q)iq(N�i)
!
+(1��!)

 
(1� q)

X
i=1;N

i

!

(4)
This equation can be simpli�ed to Equation 2.
The proxy cache occupancy S!, averaged over I!, is given

by:

S! = P!r! +� r!
(T! � P!)

I!

+
�!b!r! [�!N!b! + (1� �!) �]

I!
: (5)

The �rst term indicates the storage for the pre�x that stays
for the entire duration, the second term represents the stor-
age expended for the jitter-bu�er associated with the suÆx
stream and the third term represents the storage for the
patch bytes | if the patches are cached, then a storage of
�!b!r! is used for a duration of N!b! and if the patches
are not cached, then a storage of �r! is used for the period
of �!b!. It can be noted that when the patches are not
cached, the storage utilization simpli�es to the pre�x plus
additional (�r!) bu�ers for all the streams received from
the origin and forwarded by the proxy, which is R! :

S! = P!r! +�R! when �! = 0

The proxy batches client requests in intervals of d! which
is the maximum playback delay. The proxy streams the
pre�x for every batch of d!, and forwards the patch bytes
(every b!), and the regular channel (every I!) received from
the origin server, to the client. Thus the proxy network
bandwidth, assuming a multicast-enabled network from the
proxy server to the clients, B!, averaged over I!, is expressed
as:

B! =

8><
>:

(1�e��!d! )(N!+1)b!P!r!
I!d!

+R! if d! > 0

�!(N!+1)b!P!r!
I!

+R! if d! = 0

(6)
When the playback delay is non-zero, the �rst term rep-

resents the total bytes of pre�x (which is sent separately to
each batch of clients in the interval d!), the second term rep-
resents the total bytes of the suÆx (a single stream is sent
to all the clients in the interval I!) including the patch bytes
forwarded to the clients in the interval I!. When d! = 0,
then one pre�x stream is sent to each client, besides the
patches and the regular channel.

3. ANALYSIS
In this section we analyze the e�ect of various parameters

on the backbone bandwidth usage in order to determine the
optimal server scheduling and proxy caching strategies that
will jointly minimize the backbone usage.

3.1 Backbone usage with cached prefix
Equation 1 shows that the backbone rate is determined

by various parameters { the size of the cached pre�x P!,
the playback duration T!, the streaming rate r! and the
popularity �!. Intuitively, we expect the size of the cached
pre�x must a�ect the backbone rate the most. To simplify
the analysis and understand this e�ect, we set the value of
�, the network jitter, to zero and also set �!, the indicator
to cache the patch bytes, to false.
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Figure 2: Normalized bandwidth usage vs. cached
pre�x size.

In Figure 2, we plot the value of the minimum backbone
rate R! normalized over the streaming rate, against the size
of the pre�x cached at the proxy, for various values of �! in
the range of 10�4 and 10 requests per second.
Two signi�cant observations can be made from this �gure:

� The normalized backbone rate R! decreases with the
pre�x size (P!). Here, N! is chosen such that it min-
imizes R! for a chosen pre�x size and is denoted by
N?
!
1. This decrease in R! can be intuitively explained

as follows. Setting N! = N?
! implies that the back-

bone rate is minimized for a given asset (i.e., T!, r!,
�!) and a pre�x size P!. In other words, it equiva-
lently minimizes the streaming rate of a virtual asset
~! of duration T! � P!, the other parameters staying
unchanged. Increasing P! to P! + Æ (with Æ � 0) is
then equivalent to decreasing the size of the virtual
asset ~! to a duration of T! � P! � Æ. Since the mini-
mal streaming rate of an asset of duration T!�P!� Æ
cannot be larger than the streaming rate of an asset
of duration T! � P!, the backbone bandwidth R! is
always decreasing with the pre�x size P!. This can
also be formally proved by verifying that the deriva-
tive @R!

@P!
jN!=N?

!
is indeed negative 8P! 2 [0; T!].

� The popularity �! has a signi�cant e�ect on R. We
observe that the plots are distinct for smaller values of
�!, but have near-complete overlap beyond �! = 0:21

1N?
! minimizes R! and is obtained by setting @R!

@P!
= 0 and

solving for N!.
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requests per second. At this value, the probability of
seeing at least one request per batching interval b!
becomes close to 1. Beyond this, requests get clumped
into batches at the proxy and this does not a�ect the
backbone rate any more. This threshold value depends
on the batching interval b! of a video.

3.2 Proxy bandwidth constraint
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Figure 3: Normalized backbone rate vs. cached pre-
�x size (when the bandwidth out of the proxy is
constrained).

In the above analysis, the bandwidth out of the proxy
was unconstrained, leading to the minimal backbone band-
width usage. In Figure 3, we study the e�ect of constraining
the network bandwidth out of the proxy. Once the proxy
bandwidth is saturated the video cannot be streamed to the
clients. The �gure plots the region where the pre�x is larger
than 10% of the video. It shows that once the proxy band-
width limit is reached, R! cannot be reduced further by
increasing the pre�x size. In Section 4, we analyze the e�ect
of constrained bandwidth in the case of multiple, heteroge-
neous videos.

3.3 Caching patch bytes at the proxy
Next, we examine the e�ect of temporarily caching the

patch bytes in the proxy. In Equation 1, this choice is indi-
cated by the parameter �!. Figure 4 plots R! with respect
to the pre�x size for the following two cases: (i) patches
are not cached (�! = 0) and (ii) patches are always cached
(�! = 1), for all ! 2 
. The �gure clearly indicates that
there is no savings in R by caching the patch bytes at the
proxy. In other words, this implies that whenever space is
available, it is more bene�cial to use it to cache the pre�x
of the video rather than use it to cache patch bytes. This is
because increasing the pre�x increases the batching period
and also reduces the suÆx stream, both of which contribute
to savings in R.
However, the need to cache patch bytes may arise when

the client, such as a mobile client, has limited bandwidth
capacity. As described in [7], if only the pre�x is cached
at the proxy, the client could end up receiving up to three
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Figure 4: Normalized backbone rate R vs. cached
pre�x size with: �! = 0 and �! = 1.

simultaneous streams { pre�x from the proxy, patch and
regular channel from the origin server. In such cases, the
proxy might be forced to cache the patch when the client
cannot receive more than two simultaneous streams. In the
remainder, we assume that the proxy does not cache the
patch bytes (i.e., � = 0).
Thus far, we have studied the e�ects of various scheduling

and caching schemes on the usage of the backbone, in the
context of a single asset. We found that the ideal schedul-
ing policy at the origin server is batch-patching, with pre�x
caching performed at the proxy. The proxy can determine
the patching window N! � b! based on the pre�x size and
request new regular channels from the origin server when
this window is crossed.

4. MULTIPLE HETEROGENEOUS VIDEOS
In this section, we �rst formulate and solve an optimiza-

tion problem to determine the joint server-scheduling and
proxy caching strategy that minimizes the backbone band-
width usage for a given set of assets. We then use the
�ndings in the previous section such as the non-increasing
property of R, to design a near-optimal gradient-descent-
based cache allocation algorithm for multiple, heterogeneous
videos.

4.1 Preliminaries
We aim to solve the following non-linear optimization

problem (P1):
Problem P1 Given a set of media assets ! 2 
 character-
ized by their streaming rates r!, durations T!, access rates
�! and admissible playback delays d!. Given also a proxy
cache of storage capacity S and proxy network bandwidth
B, and a backbone network with bounded jitter �. Find the
tuples (P!; N!; �!) that minimize the aggregate backbone
rate R such that (i)

P
!2
 S! � S (ii)

P
!2
 B! � B and

(iii) max(0;� � d! � P! � T!) (iv) 0 � N! � T!�P!
b!

(v)

�! 2 f0; 1g.
Let A = j
j denote the cardinality of the set 
. We are

facing a non-linear optimization problem with 3A unknowns
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([N! ; P!; �!] for each asset !) and 2 + 6A inequality con-
straints (proxy space and bandwidth constraints + upper
and lower bounds on the values of [N! ; P!; �!] for each as-
set !). Note that the value of A may be as high as several
thousands. Clearly, blindly applying a non-linear optimiza-
tion technique to Problem P1may not lead to a solution (i.e.,
no convergence), or at least not in a reasonable amount of
time (i.e., slow convergence). Choosing a tool which exploits
some property or structure of the problem usually yields a
solution more eÆciently. We chose the LANCELOT opti-
mization tool [2] to solve our problem, since it is designed
for non-linear problems with a structure very similar to ours.
Note that Problem P1 may not have a solution. Recall

that we made the assumption of a system where all streams
to a client (i.e., pre�x, patch and regular stream) are to pass
through the proxy for various reasons such as the unavail-
ability of multicast from the origin server to the clients, ac-
counting/billing in a CDN infrastructure and content adap-
tation purposes (e.g., transcoding, �ngerprinting). That is,
setting all P! and N! to zero leads to

P
!2
 B! > 0, which

may exceed the proxy bandwidth constraint. Clearly, the
solvability of P1 depends on the constraint bounds. The
selection of the most appropriate set 
 such that P1 has a
solution, is beyond the scope of this work.
In the following, experiments are performed with A = 50

media assets whose �! values follow the Zipf-distribution
with � = 0:8, and uniformly distributed r! and T! in the dis-
crete sets r! 2 [800; 1600; 2400] kbps and T! 2 [60; 90; 120]
minutes. Using the earlier �nding that caching the patch
bytes is not bene�cial in terms of backbone usage, we set
� = 0 in P1. Thus, Problem P1 reduces to 2A unknows and
2 + 4A inequality constraints.
The remainder of this section is organized as follows: First,

we propose a discrete 1-D gradient-descent technique prov-
ably optimal under the assumptions of null network jitter
(i.e., � = 0) and in�nite proxy bandwidth (i.e., B = 1).
We then progressively relax these assumptions and demon-
strate the appropriateness of the proposed algorithm. Each
analytic step is veri�ed by comparing the results with the
optimal solution given by LANCELOT.

4.2 Gradient-descent based proxy allocation
Most of the research work in this area neglects the ef-

fect of the backbone jitter (i.e., � = 0 is assumed). Also,
proxy bandwidth is usually not limited (i.e., B = 1). We
show that, under these assumptions, one can �nd the opti-
mal solution very eÆciently with a gradient-descent based
algorithm.
In this special case, the proxy cache size (Equation 5) re-

duces to S! = P!r!. That is, the pre�x size is the only
parameter that may inuence the required size of the cache.
Moreover the proxy bandwidth is not a constraint here.
Our objective is to minimize the aggregate backbone rate
R, which depends on both P! and N!. Therefore, among
all possible values of N!, N

?
! such that @R!

@N!
= 0 clearly

leads to the minimum backbone rate for any given P! under
the storage constraint. We thus replace the unknown N!

in Equation 1 by its optimal value N?
! , which is a function

of P!. The resulting problem consists of �nding the pre�x
sizes P! that minimize the backbone rate R, a function of
P! only, such that

P
!2
 P!r! � S.

We propose a simple optimal discrete gradient descent-
based algorithm. The pseudocode of Algorithm A1 is pre-

PrefixAlloc(lambda)
f
Rgain[i][j] = getR(lambda[i],j*c) -

getR(lambda[i],(j-1)*c);
// walk through the lists, determine prefix size
// block[i]: index of the block to pick next
// for asset i.
for i=1 to NumVideos

block[i] = 1; // initialize block[i]
// while cache is not full.
while (allocSpace <= cacheSize)f
// find the block with maximum benefit
for i=1 to NumVideos
for j=2 to numBlocks
video = find max(Rgain[i][block[i]])

RgainTotal += Rgain[video][block[video]];
block[video]++;
Prefix[video] += c;
allocSpace += blockSize;

g
g

Figure 5: Algorithm A1: Proxy Pre�x Allocation.

sented in Figure 5. Let us assume c to be the smallest unit
of cache allocation and all allocations are in multiples of this
unit. The algorithm �rst computes the value R! for each
increment of the pre�x size in units of c. It then determines
the incremental savings in R! on growing the pre�x by incre-
ments of c. Once this is determined, the algorithm greedily
�lls up the cache by growing pre�xes such that the gain in
R! is maximized. Since R! decreases monotonically as the
pre�x size increases as shown in Figure 2, the above greedy
algorithm results in the asymptotically-optimal allocation
where the accuracy depends on the caching granularity c.

5. EXPERIMENTAL RESULTS
In this section, we examine the impact of � and B on

the quality of the solution provided by Algorithm A1. We
compare the experimental results from Algorithm A1 with
the optimal solution obtained using LANCELOT.

5.1 Bounded Jitter and
Unconstrained Proxy Bandwidth

We �rst consider the case where � = 0 and B = 1.
Figure 6 �rst shows the solution from Algorithm A1 with
the optimal for a set of A = 50 media assets with various
�!, r! and T! as described earlier. The �gure shows the
evolution of the aggregate backbone rate R with the ratio
between proxy storage capacity S and

P
!2
 T!r!. It shows

that Algorithm A1 o�ers the same performance as the opti-
mal obtained using LANCELOT. As expected, the gradient-
descent based method is near-optimal under the previous
assumptions. We can also see that a fully optimized proxy
management o�ers a signi�cant backbone bandwidth gain
compared to a simple pre�x caching scheme (with batching
over the pre�x). The pre�x caching scheme parameters have
been optimized under a problem formulation similar to P1,
by imposing N! = 0; 8! 2 
. This implies that the server
does not perform batch-patching.
Moving from a null-jitter network to a real network (i.e.,

�! > 0) implies that the required cache space (Equation 5)
now depends on N! since space needs to be expended for
the jitter bu�ers. Recall that Equation 5 may be written
as S! = P!r! + �R!. The dependence of S! on N! is
reected by R!. Note that the value N�

! de�ned earlier
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Figure 6: Aggregate backbone rate vs. proxy stor-
age capacity for a heterogeneous set of A = 50 media
assets, � = 0 and d = 3 seconds, using Algorithm
A1 and the optimal. The simpler algorithm where
N! = 0 for all ! 2 
 (pure pre�x batching) is also
shown.

minimizes the backbone rate for asset !, and thus minimizes
the corresponding required storage as well (for any value
of P!). The summation over all assets in 
 preserves the
property such that Algorithm A1 is again asymptotically
optimal with respect to the cache allocation unit c when a
real network is considered.
Figure 7 compares the solution from Algorithm A1 with

the optimal when � = 2 and d = 3 seconds. As expected,
� > 0 does not impact the quality of the solution given by
A1. We observe that optimal batch patching again greatly
reduces the backbone rate as compared to the pre�x caching
scheme with plain batching; especially when the proxy can
store much less than the entire set 
. It is also interest-
ing to note that the pre�x caching scheme has no solution
for small storage constraints (below 5%) because the jitter
bu�er needs to be accommodated.

5.2 Bounded Jitter and
Constrained Proxy Bandwidth

Finally we add the constraint on the proxy bandwidth
(i.e., B! < 1). The proxy bandwidth B! depends on N!

in a more complicated way. Equation 6 shows that N! plays
a role both in the �rst and the second term. In a �rst ap-
proximation, let 1=�! � b!(N! + 1). If this approximation
holds, then I! (denominator) cancels out the b!(N! + 1)
factor (numerator) in Equation 6. Thus, the dependence on
N! is reected by the second term only (that is, R!). Again,
the value N�

! minimizes the proxy bandwidth for any value
of P!. Given the summation over all assets in 
, Algorithm
A1 stays close to optimal.
From Equation 6, the approximation holds if either �! �

1 or P! is relatively small (which is the main multiplying
factor of the error). In this case, it can be shown that opti-
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Figure 7: Aggregate backbone rate vs. proxy stor-
age capacity for a heterogeneous set of A = 50 media
assets, � = 2 seconds and d = 3 seconds, using Al-
gorithm A1 and the optimal. The simpler method
where N! = 0 for all ! 2 
 (pure pre�x batching) is
also shown.

mal values of N with respect to both R and B are close 2. In
our experiments, we do not assume �� 1. Instead we show
that the results from Algorithm A1 slightly diverge from
the optimal solution when increasing the size of the proxy
cache (i.e., increasing P!, in average). Figures 8 and 9 com-
pare the results from Algorithm A1 with the optimal for
a highly and moderately constrained proxy bandwidth B.
The �gures show the evolution of the aggregate backbone
rate R with the ratio between proxy storage capacity S andP

!2
 T!r!, for B = 2:67 Gbps and B = 1:335 Gbps, re-
spectively. The gradient-descent based algorithm stays close
to optimal for low storage or bandwidth constraints. How-
ever, it then slightly diverges from the optimal. Neverthe-
less, the sub-optimal gradient-descent method stays a viable,
and very simple solution to the proxy management problem.

6. CONCLUSIONS
In this paper, we address the problem of eÆciently stream-

ing heterogeneous videos to clients over a distributed infras-
tructure consisting of origin servers and proxy caches. We
build on earlier work and propose a uni�ed mathematical
framework under which various server scheduling and proxy
cache management algorithms such as batching, patching,
batch-patching with partial caching at the proxy, can be an-
alyzed. We formulate an optimization problem to determine
the optimal scheduling and caching strategies such that the
proxy space and bandwidth constraints are respected. We
also propose a simple one-dimensional gradient-descent algo-
rithm to solve the problem and show that the results closely
match the optimal solution obtained using the well-known

2The assumption is true if the following condition is veri�ed :

�2 b2 r P (1� e�� d)

d
� (1�e�� b) (� b+1)+2 b �2 (T�P ) :

(7)
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Figure 8: Aggregate backbone rate vs. proxy stor-
age capacity for a heterogeneous set of A = 50 media
assets, � = 2 seconds, d = 3 seconds and B = 2:67
Gbps using Algorithm A1 and the optimal. The
simpler method where N! = 0 for all ! 2 
 (pure
pre�x batching) is also shown.

LANCELOT optimization tool. From our experiments, we
also determine that pre�x caching at the proxy with batch-
patching enabled at the origin server, is the most e�ective
strategy.
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