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Abstract

We continue the analysis of the continuous wavelet transform on the 2-sphere, introduced in
a previous paper. After a brief review of the transform, we define and discuss the notion of directional
spherical wavelet, i.e., wavelets on the sphere that are sensitive to directions. Then we present a
calculation method for data given on a regular spherical grid'his technique, which uses the
FFT, is based on the invariance @funder discrete rotations around theaxis preserving the
sampling. Next, a numerical criterion is given for controlling the scale interval where the spherical
wavelet transform makes sense, and examples are given, both academic and realistic. In a second
part, we establish conditions under which the reconstruction formula holds in stfdsgnse, for
1 < p < oo. This opens the door to techniques for approximating functions on the sphere, by use of
an approximate identity, obtained by a suitable dilation of the mother wavelet.

0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction: the spherical continuouswavelet transform

In a previous paper [6], two of us have introduced a continuous wavelet transform
(CWT) on the 2-spher&?, using the general construction of coherent states on manifolds
developed in [1,2]. We will pursue this study here and focus on three aspects left out in [6],
namely the extension to anisotropic wavelets, the practical implementation of the transform
with a (reasonably) fast algorithm and its application to the problem of approximation of
functions ons? (in L? sense).

The key point of the spherical CWT is that it lives entirely on the sphere (signals and
wavelets) and it is derived from invariance considerations, via group-theoretical methods.
First, one identifies the affine transformations $ Motions, which are realized by
rotationsp € SQ(3), and local dilations, which are obtained by lifting $8, by inverse
stereographical projection, the usual dilations in the plane tangent at the North Pole. Then
one shows that these transformations may be embedded (via the lwasawa decomposition)
into the conformal group a$2, which is the Lorentz groufQy(3, 1). The latter possesses
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a natural unitary irreducible representation in the spa®es?) of finite energy signals

on §2, and this representation is square integrable over the paramete/Sp@3ex R} of

the CWT (see [6] for the precise mathematical definitions). As a consequence, a genuine
CWT may be set up according to the general scheme of [1,2].

In order to fix our notations and make the paper reasonably self-contained, we recall
first the essential facts, referring to [6] for the details. The spherical coordinattsane
denoted byw = (0, ¢) and the space of finite energy signals b§(S?) = L2(S?, du),
where ¢i(w) = sind dd dy is the usual (rotation invariant) measure §a The affine
transformations ois? are realized in.2(52) by the following unitary operators:

e Motions:
(ReS)(@) = f (e ') = (Ugr(@) f) (@), ¢ €SAB), (1.1)
w?erze Uqr is the (infinite-dimensional) quasi-regular representationS@t3) in

« Diations:
(Duf) (@) = fa(@) = 1a,0)? f (@), aeR], (1.2)

where w, = (6,,¢) and tand,/2) = atan@/2) (indeed,d — 6, is the dilation
obtained by inverse stereographical projection). Hedeg 0) is the cocycle (Radon—
Nikodym derivative) which expresses the noninvariance of the megsuader
dilation, and it is given by

4(12
[(a2—1)cosh + (a2 + 1)]2°

A(a, 9) =

A spherical waveletis a functiony € L?(5?) that is an admissible vector for the
representation of the Lorentz group mentioned above. The admissibility condition reads
as

o0
872 da , ~ 2
G,EZIJrl > /;m(z,mn <c, (1.3)

ml<Ig

where f(l, m) = (Y/"| f) denotes a Fourier coefficient gf e L2(52) and the constant
¢ > 0 is independent of. This condition is not easy to use. However, a necessary (and
almost sufficient) condition for admissibility is the zero mean condition

v, )
Cy = | du(,9) ——— =0. 14
v f O ) T o (1.4)
s2
Typical admissible wavelets are the difference wavelets
@ 1
U 0.0)=¢0.9) ~ ~Dudp(®.9). a>1, (1.5)

for a given smoothing functions € L?(5%). The most familiar one is the spheri-
cal DOG waveletwé"‘), corresponding to a Gaussian smoothing funclies(d, ¢) =
exp(—tarf(6/2)), 6 € [-m, ], i.e., a Gaussian centered on the North Pole of the sphere.
Then, given an admissible wavelgt the family{v, , = R, D, = Ry¥q, 0 € SQ3),
a > 0} is an overcomplete set of functionsirf(S2) and even a continuous frame, nontight
in general.
Accordingly, the spherical CWT of a signak L?(S?) is defined as

S(0,a) = (Va,ols) =/du(w) [Ro Da¥](@)s(@)

2

= / du (@) Ya (o 1w)s(w). (1.6)
2



J.-P. Antoine et al. / Appl. Comput. Harmon. Anal. 13 (2002) 177-200 179

It is instructive to splito € SQ3) into o = (x, [']) with x € SO2) andw’ € §2. This
is formally done through a projectian+— «’(¢) in the fiber bundles? ~ SQ3)/SQ2)
followed by an arbitrary choice of sectiest — [«'] in SQ3). The splitting corresponds
to decomposing the motioR, of the wavelety, into an initial rotation of angler around
the North Polaw followed by a transport to the poiat’ = ow, on the sphere (these two
operations could have been defined in the reverse order). In other words,

RoVa(®) = Ryva ([0 o),

whereRr, is a rotation around the North Pole. Accordingly, the spherical wavelet transform
will also be denoted by (x, o', a). Of course, the dependence grcan be dropped if the
wavelety is axisymmetric. We will have a closer look at the consequences of anisotropy
for the spherical wavelet transform in Section 2.

The admissibility of the wavelet is sufficient to guarantee the invertibility of the
transform, i.e., one may reconstruct the signftbm its transformsS. More precisely,

dad
s(w)=ff C 2500, a) A Y o (w), (1.7)

a3
R} SQ3)

where @ is the invariant Haar measure on the gré&@3) and A is the frame operator,
whose action is a multiplication in the Fourier space,

Af(,m)=Gf, m)

with G, defined in the admissibility condition (1.3). As usual, the integral in (1.7) is to
be taken in the weak sense. Again, if the wavglds axisymmetric, the transform reads
S(«', a) and the integral oveBQ(3) is replaced by an integral ovs?, with respect to the
measure d

s(w):ff%sw,a)frlww/(w). (1.8)

RS 52

At this point, three questions arise. First, what are the concepts involved and what can
we expect from the additional rotation parametexhen the wavelet is not axisymmetric?
After discussing the definition, we present in Section 2 a constructive procedure for
designing directional wavelets on the sphere. Doing so, we extend the directional analysis
capabilities of the CWT to the sphere. This could be important for applications, since many
directional features (roads, streams, geological faultsabound on the spherical Earth!

Second, does this spherical CWT yield a practical analysis tool for signals on the sphere,
as its flat space counterpart? In particular, can one design a (reasonably) fast algorithm for a
transform that is more general than a convolution on the sphere? Indeed one cannot rely on
what has been done with the fast spherical harmonic transform [13,16,17], because of the
rotation parametey . Preliminary results were given in [6], and we confirm them here. We
present in Section 3 an efficient algorithm, following an approach similar to that of Wind-
heuser [25], that is, using an FFT over the longitude apgt®everal examples are given.

Third, the reconstruction formula (1.7) is valid only in the weak sense. In the flat case,
however, the corresponding formula holds in the straRgense [7,23]. This guarantees
that it can be used for approximating functions on the plane through an approximate
identity. That means, convolution with a smoothing kernel, which tends to the identity
(8 function) as the parameter goes to 0. We show in Section 4 that exactly the same
situation prevails on the sphere [24]. First one switches td hformalism (as already
mentioned in [6]), introducing a modified dilation operafat that preserves the! norm
of functions. It turns out that the operatbf generates an approximate identityZifi (52)
for everyp € [1, oo], and this shows that the reconstruction formula (1.7) actually holds in
strongL? sense. In this way, we recover the approximation scheme developed by Freeden
et al. and applied by them extensively to geophysical data [10,11]. These authors consider
various approximation kernels and introduce a form of discrete wavelet transform, through
a kind of multiresolution ors2. By contrast, our approach has the advantage of giving to
the approximation parameter the clear meaning of a local dilation factor, thus grounding
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the approximation scheme in the general continuous wavelet theory, itself based on group-
theoretical considerations.

2. A closer look at the anisotropic spherical CWT

In this section, we aim at giving a clear meaning to the rotation parametahich
was not considered in [6]. We discuss the notion of direction on the sphere and how this
is related to the ability of performing a directional analysis of data defined on a sphere by
means of the spherical wavelet transform. We also build examples of anisotropic spherical
wavelets in Section 2.2.

2.1. Remarks on the definition

Whenever the wavelety is not axisymmetric, the continuous spherical wavelet
transform depends on the additional paramgterhis is written as

S(x, @' a) = / (@) Ry Ya([0']71)s (@)
S2

In this formula, there is an arbitrariness in the way the rotadghof SQ(3) is associated
to the pointw’ on the sphere. The mdp : $2 — SQ(3), called asectionin group theory,
can be depicted as mapping the sphere to a tangent vector field of unit length defined on
it. Indeed, there are infinitely many ways of choosing the direction of each tangent vector
in the tangent plane. From a practical viewpoint, however, some choices are better than
other ones for a given section. It should preferably be smooth to correspond to the idea of
directiondefined on the sphere. Therefore, we expect the values of the wavelet transform
to correspond to filtering in a given directignand at a given scalelike in the case of the
two-dimensional wavelet transform in the plane [4].

Some caution should be exercised, however, when dealing with directions on the sphere.
It is a classical result in topology that there exists no differentiable vector field of constant
norm on $2, which means there is nglobal way of defining directions. There will
always be some singular point where the definition fails. other words, one cannot
comb a perfectly spherical porcupine! Therefore, testing orientations on the sphere using
directional wavelets is necessarily a small scale operation, thatasabprocedure. This
ability to perform local analysis is definitely one of the most important properties of
wavelet analysis.

From now on, we will make use of the classical parametrizatio®@f3) in terms
of Euler anglesp = (x,0’, ¢'), which corresponds to the choice of secti@, ¢’) —
(0,0, ¢"), which in turn defines a direction on the sphere. The singular points are the
North and South Poles: it makes no sense to define cardinal points at the poles!

For this choice of parametrization, we may write

Ryva([0'170) = Y,y 0 (@) = VY y.00.0 (0. 9), (2.1)
which implies
wu,x,ﬂ’,(p’ o, <P) = %,X,eao(e, (2 QO/)' (22)

Therefore, (1.6) becomes a convolutiorgnvhich, by means of the convolution theorem,
takes the form

T 27
S(X,G’,qo’,a)=/f¢a,x,a/,o(9,qo—w’)s(&@sin@d@dw (2.3)
00
00 T
=21 Z g’ f V0004 KIS (O)[k] SinG db, (2.4)
k=—00

0

2 This is valid for $2, but not in the case of the circi! and the higher dimensional sphezY?SandS7.
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where, for any functio : $2 — R,
2

h(O)[k] = /d<ph(9,<p) g ke (2.5)
0

is the Fourier series df in the longitudinal coordinate.

In the discretization step of Section 3, the relations (2.3)—(2.4) will give us a tool for
reducing the computational time of the spherical CWT. Indeed, they will allow us to use
the fast Fourier transform (FFT), like in [25].

2.2. Directional wavelets

We have not yet addressed the problem of constructing good directional wavelts on
In this section, we will quickly show that this job is naturally handled in our framework.
First of all, we recall that the very definition of a direction 64 forces us to work at
small scales. As we are all familiar with, the geometryséfat small scales, or for large
radii of the sphere, is closer and closer to thafRsf As proved in [5], the spherical
wavelet transform respects one’s intuition by closely approximating the Euclidean wavelet
transform at small scales. This is a property known as the Euclidean Limit, and we may
remark that he notation used in (2.1) is consistent with it: Roughly speaking, as the radius
of the sphere goes to infinity;, , . () goestoy, , 5(x), whereb ¢ R? is the translation
parameter [6].

Moreover, it is a simple application of the Euclidean Limit to show that small scale
Euclidean wavelets can be mapped to the sphere and yield small scale adrajsséiieal
wavelets. These can then be dilated at larger scales using the spherical dilation. This is
neatly summarized by the following result [6].

Proposition 2.1. Lety € L2(R?) be an admissible two-dimensional Euclidean wavelet.
The inverse stereographic projection of a square integrable function is defined, in polar
coordinates, by

_2f(2tan9/2), ¢)

-1
(17 f)(@,(p) = W,

and is inL?($%). Then the functio? ~1y is an admissible spherical wavelet for the trans-
form defined with the dilation preserving tii& norm. The functiod? ~1 /(1 + cosd) is

an admissible spherical wavelet for the transform defined with the dilation preserving the
L norm.

This result tells us that we can construct a spherical wavelet starting from any Euclidean
wavelet. Now what does this tell us about directional wavelets? Since directional sensitivity
is a local or small scale attribute, it should intuitively survive this process. But there is more
than intuition in this result. The stereographic projection and both spherical and Euclidean
dilations are conformal mappings. Thus Proposition 2.1 defines a conformal application
that, by definition, preserves angles. The directional sensitivity of the Euclidean wavelet is
thus transported to the spherical wavelet.

A natural candidate for building a directional spherical wavelet is to start with the
Euclidean Morlet or Gabor wavelet [3]

Y (7) = gFofe 1P, (2.6)
Using Proposition 2.1, we find the following spherical wavelet:

e/kotan(9/2) cos(goo—w)e—(l/Z) tarf 6/2)

Yn (0, 9) = o . 2.7)

This function is represented in Figs. 1 and 2 for various values of the scale and rotation
parameters. Note that this function is not strictly admissible butkfolarge enough
(typically greater than 6), there is no practical difference with a true wavelet (exactly as
in the flat case).
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(a) (b)

Fig. 1. Real part of the spherical Morlet wavelet at scaleu(&)0.03 and (b)a = 0.3.

(a) (b)

Fig. 2. Real part of the spherical Morlet wavelet at seate 0.03 and centered &tr/3, 7/3). (a) x =0 and (b)
X =m/2.

3. Implementation of the spherical CWT

For a practical implementation of the spherical CWT, the first step is that of
discretization. This means finding a suitable grid in the parameter space, so as to allow
a fast calculatiorand a good approximation of the continuous theory. As we shall see,
the key to the algorithm presented below is to use an FFT in the (periodic) longitude
angleg. We also need some sort of criterion on the grid density for controlling aliasing
problems, as indicated already in [3]. More precisely, we have to specify the scale interval
in which the spherical wavelet transform makes sense. A possible answer will be suggested
in Section 3.2. Then several examples will be discussed, both academic and real life. All the
examples are computed with our wavelet toolbox YAWTB/Yet-Another-Wavelet-Toolbox,
to be found on the web sitdst t p: / / www. f yma. ucl . ac. be/ proj ects/yawt b
orhttp://ww. yawtb. be. tf.

3.1. Discretization and algorithm

Following an approach similar to that in [25], the first step is to discretize the integral
(2.3) on aregular spherical grid x N

b JT
g:{(91=Mt,¢p=ﬁp>‘0<t<M—1,0<p<N—1} (3.1)
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by a weighted sumy anda are fixed throughout)

S(X’et”‘l)p’aa):S[X’t/a p/’a] (32)
= Y Varolt,p—pslt, plwg, (3.3)

0<I<M—-1

o<p<N-1

wheres[t, pl =s0;, ¢p); Va vt p —p'1= Va,x.0,,00:, 9p—p); the index ofy is ex-
tended tdZ by angular periodicity with the rulg, . y = ¢,; w;p =w; = (272/(M N)) sin6,
are the weights suggested in [25] for the discretization of the Lebesgue measure on the
particular gridG. Notice that other discretization techniques than a plain Riemann sum, as
used in (3.3), would be beneficial only if one imposes additional regularity conditions on
the signals. Also, other weightsu;, could be chosen to achieve a better approximation
of (3.2). An example of a different choice, both for the weights and for the discretization
technique, is that of a band-limited spherical function, as considered in [13].

Evaluating the sums in Eq. (3.3) requirgsN additions and multiplications for each
(¢, p), that is,M2N? operations altogether.

However, an easy simplification can be obtained for the longitudinal coordinates by the
use of a Fourier series and the Plancherel formula. Indeed, denoting by

. 2
k=Yl p]exp(—ikp—”), (3.4)
N
o<p<N-1
the longitudinal Fourier coefficients of a given discrete functiopmwe obtain
Slx,t, p,al=2n Z w; Flx,t',p',a,t] (3.5)
0<I<M-1
with
/ / M v . /27'[
-7:[le »p »avl]z Z Wa,x,t’[t’k]s[l»k]eXF(lkp _) (36)
N
0<hk<N-1

The quantity7 may be computed with the inverse fast Fourier transform (IFFT), which
leads to a reduction of the computational time franiM2N?) to O(M2N logN). On a
grid G of 256 x 256, the gain is a factor of 46.

In practice, computing the spherical wavelet transform for a fixed scaled a fixed
orientationy proceeds along the following steps.

Initialization

e Compute the matri% = (s[z, k]);; obtained by applying the FFT on each roww
FFT) of the original data= (s[¢, p1)sp;

For#/ =0toM —1do

e Compute the matrid, , . = (V4. 4.[t, k1) deduced from the row FFT of the matrix
lIla,)(,t’ = (Wu,x,t’[tv p])tp;

e Compute the product matrl?a,x,,/ = ([, k]x}a,x,,/[t, kD« and apply the inverse FFT
on each of its rows. This yields a matt, , ,» corresponding to the convolution of
the rows ofs with the rows of the wavele#, , , ;

e Finally, thet'th row of S is given by

Sx.t',plal= Y wiPuyrlt,pl, for0<p <N-1
o<r<M -1

end.
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3.2. Numerical criterion for the scale range

The discretization of the continuous spherical wavelet transform gives rise to a sampling
problem. Since the gri@ is fixed, if we contract or dilate too much our wavelet, we
obtain a function which is very different from the origin@l. In other words, aliasing
occurs and the wavelet is no longer numerically admissible. We may easily understand this
phenomenon by studying a dilated wavelet centered on the North Pole.

We have seen in Section 1 that a functigne L2(S2, du) is admissible only if it
satisfies the zero mean condition (1.4). Approximating the integral by its Riemann sum,
we get the quantity

Y (0, ‘Pp)
Clyl= Z m Wep (3-7)
1<r<M—1
1<psN-1
using the weightsv;, defined in the previous section.

Because of the discretization, evenyifverifies (1.4), it is not necessarily true thit) |
vanishes. However, we may suppose that this quantity is very close to zeroywlegen
sampled sufficiently, that is, if the gridis fine enough.

However, it is difficult to give a quantitative meaning to the valu€pf]. How small
is ‘very close to zero'? Here is a possible solution to this problem. Since the spherical

measure: and the function 3 cos9 are positive, it is clear that

Cly1 <C[ly|] (3.8)
for anyy € L?(52,du). So we can define a normalized numerical admissibility by
5 Cly]
Clyl=——, 3.9
(V] ClIv Il (3.9)

a quantity always contained in the interyall, 1].
We can now give a precise definition of numerical admissibility of a wavgle¢ntered
on the North Pole.

Definition 3.1. A spherical wavelet of.2(S2, du) is numerically admissible og with
thresholdp% (or simply p%-admissible or), if the numerical normalized admissibility
(3.9) is smaller tharil00— p)/100 in absolute value

(3.10)

As an example, we present in Fig. 3 the behavior of the dilated spherical DOG wavelet,
D, wé“)(a =1.25), as a function of > 0, discretized on a 128 128 grid (notice that, in

a=0.072 a=24.71
1 — T T T T T —
08
06

0.4

02

Num. Norm. Admiss.
(=]

. \ . L .
-1 o 1 2 3 4 5
log a

Fig. 3.5[Da w((;“)] as a function of log for « = 1.25.
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Fig. 4. Three typical behaviors dd, z//g") discretized on a 2% 22 grid G. (a) Fora = 0.5, the sampling is
correct. (b) Fou = 0.05, subsampling occurs, negative partmﬁpg") are completely missed. (c) Subsampling
on the negative parts db, xpg‘) for @ = 3.5. Notice the minimum at = 0.

the flat caseq = 1.6 is the value for which the DOG wavelet is almost indistinguishable
from the mexican hat).
According to this plot, the waveIeDagbg") is 99%-admissible on the scale interval

a € [0.072 24.71]. The lower limit is due to the fact that, for smail Dawg‘) is not
sampled enough. The upper limit comes from the subsampling of the area far from the
North Pole which, according to the spherical dilation, gets more and more contracted.
Figure 4 presents three typical behaviorngfwg") discretized on a 22 poirt sampling.

Fora = 0.5, the sampling is correct. Far= 0.05, that is, below the lower admissibility
bound, subsampling occurs, so that negative partﬁ)mg‘) are completely missed.
Clearly, this discretized wavelet is no longer admissible. Exactly the same effect was
observed long ago in the flat case [3]. The third case, with3.5, thus beyond the upper
bound, is less intuitive. Here the subsampling takes placéafge values of6, that is,

close to the South Pole, but the result is the same, the discretized wavelet does not have a
zero mean, it is not admissible. In addition, the curve presentsiamumat 6 = 0. This
somewhat unexpected effect is in fact due to the cocycle, as is the dependence of the height
ona. Indeed, if one performs the same calculatiGthoutthe cocycle, all curves show a
maximum ap = 0, with the same height. Here again we see that curvature, which requires
the presence of the cocycle, has a nontrivial effect.

Two remarks remain to be made about the admissibility and its numerical consequences.
Both follow from the obvious fact that choosing polar coordinates effectively breaks the
spherical symmetry, by introducing a singularity at the North Pole.

First, the simplified admissibility condition (1.4) is only valid for wavelets which vanish
atd = . So, unlike in the flat case, the simplified admissibility of a mother wavelkgbes
notimply that of all thetranslatedwaveletsR,y» with p in SQ(3) (this does not happen,
of course, for the full admissibility condition (1.3)).
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1

oF [a=0072
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log < I(a) >|
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. . i \ . \
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log a

Fig. 5. Mean valug/ (a)) of the spherical wavelet transform of the unit functioas a function of the scale
(log—log representation).

Second, the sampling of a wavelet centered on the North Pole is not the same as if
it would be centered on an equatorial point. Therefore, given a certain percentage of
numerical admissibility foiD, v, the interval of allowed scalesis not necessarily valid
everywhere on the sphere. In other words, we cannot ensurg® fliaty will be sampled
finely enough for all the possibjee SQ(3).

3.3. Numerical analysis of the unit function

It is instructive to consider the functianidentically equal to 1. In the flat case, this
function has a vanishing WT, by the admissibility conditibdx v (x¥) = 0 on the wavelet,
but it is not square integrable and thus cannot be reconstructed. In the present case,
however, the situation is different. The functiois square integrable, since the sphgfe
is compact, but its WT doa®tvanish, because of the presence of the cocycle. Indeed, the
function. is invariant under rotation, buiot under dilation

(Dat) (8, 9) = A(a, 0)Y? £1, (3.11)

and, therefore,

1(0,a) = (RyDar|t) = (| Dat) El(a)=fdu(w) (@i, Y240 (3.12)
S2

Thus, for fixedz, the WT1 (a) of the unit function is constant, and essentially negligible
for a « 1. Significant values appear only far> 2, and these scales are irrelevant for the
analysis of signals such as contours. As a consequence, the spherical CWT does have the
familiar local filtering effect, provided small scales are considered. This will be confirmed
by the examples below. Once again, we see that the CWT is useful onlgea analysis.

To get a quantitative estimation of this effect, we presentin Fig. 5, the mean\Vaiyg
of I(a) on the sphere as a function of the scaldVe have to take this average because,
in practice,/ (a) is not exactly constant due to the gridding artifatiariations around
this mean are however small, close of #0and essentially constant with scales. We see
indeed that, fou < 0.1 (this number may depend on the grid used, of courge),)) is
numerically negligible over the whole sphere, and may be taken as zero to a very good
approximation.

3 The density of points on a spherical regular grid is higher at the poles than on the equator.
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Fig. 6. Spherical wavelet transform of the characteristic function of a spherical triangle with apex at the North
Pole, 0 <0 < 50°, 0° < ¢ < 90°, obtained with the spherical DOG wavelqaé") for @ = 1.25. (a) Original

image. The transform is shown at four successive scales:£).5; (c)a = 0.2; (d)a = 0.1; and (e)z = 0.035.

As expected, it vanishes inside the triangle, and presents a “wall” along the contour, with sharp peaks at each
vertex. Notice that the scales are different in the four cases.

3.4. Examples of spherical wavelet transforms

As a first example, we analyze in Fig. 6 an academic picture, namely, (the characteristic
function of) a spherical sector a$?, with one of the corners sitting at the North Pole.
The sector is given by 0< 6 < 50°, 0° < ¢ < 90° and is discretized on a 128128 grid
in (6, ¢). The wavelet used is again the spherical D@g), for « = 1.25, discretized
on the same grid. According to the admissibility analysis presented above (Fig. 3), the
wavelet is 95%-admissible on the scale intewal [0.033 29.27]. Thus we can evaluate
the continuous spherical wavelet transform of this picture for various scales in the allowed
range, and we have chosen four successive scalesdre.5 to a = 0.035. Figure 6
shows that the spherical WT behaves here exactly as, in the flat case, the WT of the
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(a) (b)

Fig. 7. Squared modulus of the spherical wavelet transform of (the characteristic function of) a spherical triangle

with apex at the North Pole,°0< 6 < 50°, 0° < ¢ < 9C°, obtained with the spherical Morlet wavelegté”‘),
for « = 1.25. (a) Fory = 0°. (b) For x = 90°. The WT selects the features (here the “walls”) oriented along
meridians or parallels, according to the valugyof

characteristic function of a square, as shown in [3]. For largthe WT sees only the
object as a whole, thus allowing to determine its position on the sphere. ¥\ihecreases,
increasingly finer details appear; in this simple case, only the contour remains, and it is
perfectly seen at = 0.035. The transform vanishes in the interior of the triangle, as it
should, only the “walls” remain, with a negative value (black) just outside, a zero-crossing
right on the boundary and a sharp positive maximum (white) just inside. In addition, each
corner gives a neat peak, which is positive, since the corner is convex [3]. Notice that
the three corners are alike, so that indeed the poles play no special role in our spherical
WT, contrary to what occurs often in the classical spherical analysis based on spherical
harmonics [9,10,19,20].

In the second example, Fig. 7, we use the same spherical sector, but defined on
a 256x 256 spherical gri@;. This time, we choose to test the directional sensitivity of the
spherical Morlet wavelet, keeping the scale fixed. In the flat case, the wavelet transform
responds to different directions as a function of the rotation parameter; here the notion of
direction is replaced by that ofrientation with respect to meridians or parallels other
words, directions here can be referred to as cardinal pgints0° corresponds the North—
South direction, i.e., meridians, and= 90° to the East—West direction, i.e., parallels.
These cardinal points could have been defined in another way, if we remember that we
arbitrarily chose to work with the Euler angles in the implementation of our transform.

As a third, real life example, we present in Fig. 8 the wavelet transform of a significant
piece of the terrestrial globe, covering Europe, Greenland, and North Africa. As before, we
use the spherical DOG waveiﬁg“) for « = 1.25. The transforms are shown again at three
successive scales,= 0.032, 0.016, 0.0082 (the grid used here is finer than the one used
in the previous examples, so that smaller valueg afre admissible). As expected, the
resolution improves with diminishing. However, at: = 0.0082, the discretization grid
used for the computation of the transform coincides with that of the original picture, so
that one sees exactly the same artifacts, such as a closed strait of Gibraltar, an unresolved
complex Corsica—Sardinia, ragged coastlines, etc. Of course, we cannot hoyedoee
on the resolution of the original! As for the rapidity, the original is a 512024 point
picture, and each transform takes about one CPU hour on a 400 MHz Digital PC. This
is not bad, given the size of the original file. Note that a similar analysis was performed
by [21] using the lifting scheme.

4. Wavelet approximationson the sphere

The central theme of approximation theory is the representation of a function by
a truncated series expansion into a family of basis functions, for instance, the elements
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Fig. 8. Spherical wavelet transform of the spherical map of the European area, computed with the spherical DOG
wavelet fore = 1.25. (a) The original picture; (b) wavelet transformaat 0.032; (c) the same at = 0.016;
(d) the same ai = 0.0082.

of a frame. Thus, in the flat case, one- or two-dimensional, wavelets are widely
used for approximation in various function spaces [15]. The crucial advantage is their
multiresolution character, which is optimally adapted to local perturbations. A natural
framework is given by the Lebesgue spatésR”), 1 < p < co. One of the reasons is that
approximation is often formulated in terms of convolution withagproximate identity
and many useful convolution identities are availablé t[12,14].

Thus, in order to apply these considerations to the sphi&ré is necessary to have
a good notion of convolution o82. For that purpose, it is useful to represent the sphere
as the quotiensQ(3)/SQO2), since the convolution machinery extends almost verbatim to
locally compact groups, and then partly to homogeneous spaces. For the convenience of
the reader, we have collected in the Appendix the main definitions and essential properties
of convolution on a locally compact group. In what follows, we will need two different
cases. For simplicity, we writt?(SQ(3)) = L2(SQ(3), do), where @ is the Haar measure
onSQO3), andL?(52) = LP (52, dw).

o If £ € L?(SQ3)) andg € L1(5?), thenf x g € L?(5?) with

If*gllz< Il fll2llgl1 (4.1)

where the norms refer to the corresponding spaces.
o If feL?(S?) andg e L1(5?), their spherical convolutions the function onSQ(3)
defined as

(fF9)0) = / (@) f (o 0)g(w). 4.2)
S2
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Thenf % g € L2(SQ3), dp) and
If*gllz< N flz2llglla (4.3)

Here, however, we are only interested in functions on the sp$terthat is, functions
on SQ3) that areSQ(2)-invariant. In particular, we will deal mostly with axisymmetric
functions ons?, that is, functions oé alone (such functions are also caliesha). Thus,
we will focus on elements of. 2([—1, +1], dr), wherer = cosd, for which the Fourier
series reduces to a Legendre expansion

+1
21 —
wm—z%w(lmm w(l>=2nfdr PO (1) = Zle 0.
1=0 e

If f is a zonal function, the spherical convolution (4.2) takes a simpler form [10] by the
following proposition.

Proposition 4.1. Let f and g be two measurable functions &?. If f is zonal, the
spherical convolution of andyg is a function ons2, which can be written

(f *9) (@) = / () £(@ - @)s(w). (4.4)

whered' - @ is theR? scalar product of unit vectors of directionas andw.
Proof. The proof amounts to a straightforward application of harmonic analysis (Fourier

series) ors2. Let us rewrite the argument in the integral (4.2), denoting/bs ¢ € 2 the
left coset ofp € SQI)

fle7e) = [Ug@ f]@) =" > [Uar@) £ m)¥" (@),

1=0 |m|<I

—Z Z Dl o) fU,0}Y" (@) (sincef is zona)

1=0 |m|<I
=210 ) @Y @).
1=0 |m|<I

Then the addition theorem for spherical harmonics yields

20+ 1 4
fleto) =Y. 2 fon@ )= /@ -a).  ©
1=0

A very useful property of zonal convolution is thepherical Young inequalityif
f e LP([—1,+1],dr) and g € L9(S5?), with 1< p,q < oo, then f x g € L"(5?), with
1/p+1/qg =1+ 1/r, and we have [10]

If gl <Uflplgly. withl/p+1/g=1+1/r. (4.5)

Now we may turn to the approximation problem proper. As in the Euclidean case
[14,22], a convenient technique is to perform a convolution with a smoothing kernel, that
acts as an approximate identity. For the sake of simplicity, we will only deal with zonal
kernels, following mainly [10].

Definitionil.z. Let K., T € (0, 0], 70 € R}, be a family of elements atl([—1, 1], dr)
satisfyingK; (0) = 1. The functionalS; [ f] defined by

Se[f1=Kexf. feLP(s%), 1< p<oo,
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is called asingular integral It is called arapproximate identitpf L? (5?) if
lim | f=5S:[£1],=0, VfeLP(s?). (4.6)

7—0, >0

The following theorem characterizes those spherical kernels which are associated with
an approximate identity.

Theorem 4.3. Let {K;} be a uniformly bounded spherical kernel, that is, there exists
a constantV, independent of , such that

+1
/dt |K:()| <M, Vrerl
-1

Then the associated singular integral is an approximate identify”@f?) if and only if
lim O/@(n) =1, Vn>0. (4.7)

70, >

A proof may be found in [10]. A particularly interesting case is given by positive
definite kernels. In this case, singg (7)| < 1, {K;} is uniformly bounded, with bound
M = sUp,¢ (0, K< (0).

The following theorem gives a nice characterization of approximate identities associated
with positive kernels.

Theorem 4.4. Let{K;}, T € (0, 7,], be a positive kernel associated to a singular integral
of L?(§%). Then each of the following conditions is equivalent4d) and (4.7), which
means that/C. } is the kernel of an approximate identity

(i) lim t—0, >0 ’/C\r (O) =1,
(ii) lim ¢, r>0 [°, dr K: (1) =0,8 € (1, +1).

It is important to notice that the second condition is a constraint on the localization
of the kernel. Approximate identities are a very useful tool for harmonic analysis on the
sphere and many applications can be found in [10].

We can now reformulate the results of Section 1 in the language of approximate
identities on the sphere. This is a very interesting way of handling functions on the
sphere, because it allows to represent information by means of localized, and hierarchically
organized, coefficients. With such a representation, a local modification of the function
would only result in a slight local perturbation of the original coefficients, a definite
advantage over Fourier series.

Many examples of approximate identities are given in [10]. In general, they are based
on families of kernels indexed by a parameter which behaves like a dilation. Such are, for
instance, the Abel-Poisson kernel,

]

1 1-1? 21+1
= = —1T' P(1), 0,1,
() 4 (1+ 12 — 271)3/2 Z 4 ¢ 1@, Te@1)

and the Gauss kernel,

o
G.(t) = Z % e p@r), teRf.

1=0
Since dilation is introduced directly as a parameter in those kernels, there is no unique way
of generating approximate identities, afif. But this problem disappears naturally if one
uses the spherical dilation. However, we have to modify the dilation operator and adapt it
to the L1 environment. Using the notation of Section 1, we define, instedd),pfs given
in (1.2), the new dilation operator

(D f)(®) = f* (@) = A(a,0) f(wi/a), (4.8)
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and this operator clearly conserves thé norm. Notice that the situation is more
complicated here than in the flat case. There, indeed, changing the dilation operator from
L? to L1 simply amounts to change the powerfn front of the transform [6]. Here,

one replaces the factara, 6)Y/2 by its square.(a, #), but this modifies the CWT itself in

a nontrivial way. In particular, the admissibility condition (1.3) becomes

82 [ da ~
21L+1 3 ffw(z,mnz«. (4.9)

ImI<t g

The following result, the equivalent of Proposition 3.7 of [6], shows that our new
dilation operator does not change the mean of a function.

Proposition 4.5. If ¥ € L1(5?), then

fmwwwhfmwwm (4.10)
52 §2

The proof reduces to a simple change of variables, followed by using the cocycle
relation

rMa=t0)n(a,0.) = 1(1,6) =1.

Acting with this dilation on a suitable function, one can now construct easily an
approximate identity, as shown in the next proposition.

Proposition 4.6. Let f € C([—1, 4+1]) satisfying f (0) = 1. Then the family{ /* = D* f,
a > 0}, is the kernel of an approximate identity.

Proof. The family{f“}, a € (0, 1], is uniformly bounded because
+1
fdﬂf%n|=nfm.
-1
It thus remains to verify that
lim 0f“(l) =1

a—0, a>

With the following change of variables:

, @+Dr+@®-1)
T @ -Dt+(@2+1)’
and using the cocycle law, for alle (0, 1], we find
+1

im  fi)= lim di’ P,
: Of () a—)(l), a>0 1(

a—0, a>

1+adf +(1—a? ,
(1—a%ﬂ+ml+a%)f“y

The integrand is bounded:
1+adf +(1—a? ,
P
‘ ’((1—a2)z/ Tatad )
and since

’

< max_|[f(r)
te[—1,+1]

im (1+a®t +(1—a?
40,00 \(1—a2)yr' +(1+a2))
we finally have

Jim_ 70 =fo=1

a

which gives the result. O
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— a=07
10+ . w2 =0.5
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Fig. 9. Kernel of an approximate identity obtained by dilating a Gaussian mother function with scaling factor
a = 0.7 (continuous), 0.5 (dashed), and 0.3 (dotted).

This technique is applied in Fig. 9 to a zonal function of Gaussian shape, namely the
mother wavelet of the spherical DOG wavelgt,(6, ¢) = exp(—tarf(6/2)), 6 € [—, 1.
One clearly sees how dilation localizes the kernel better and bettera$.

In the L formalism, we recall from [6] that the necessary condition for admissibility
becomes a genuine zero mean condition, exactly as in the flat case

o~

1
0,0)= —— [ du(®,9) ¥ (6, 9) =0, 4.11
¥(0,0) m[ﬂ( RACHD; (4.11)
N

and, therefore, by Proposition 4.15?(0, 0)=0,Va > 0.
Correspondingly, the difference Waveuef) givenin (1.5) is replaced by

U5 0,9)=90,9) = D“¢(0,9), a>1

Now, combining the modified dilation operatbf with the usual rotation operatat,,
we define a new set of spherical wavelets, starting from an admisgibtk@amely,y =
Ry, DY = Ryr“. Accordingly, we redefine as follows the spherical wavelet transform of
a signals € L2(52):

Sy(e.a)= f du() Y2 (@) s(w). (4.12)
§2

In particular, if the wavelet is zonal, we get

Sy(w,a)= f du () ¥4 (@ - @) s(@). (4.13)
S2

We can now state our main result, namely that the spherical CWT admits a recon-
struction formula, valid in the strong? topology, exactly as the usual CWT iR".
Actually, the formula holds in any stronf?” topology, for 1< p < oo. As in the flat
case [8,18,23], we may distinguish between a bilinear and a linear formalism (the latter
being a limiting case of the former). But there is a crucial difference. In the flat case, it is
advantageous, but not compulsory, to treat the large scales or low frequencies separately,
in terms of a scaling function (in the context of the so-callddhitesimal multiresolution
analysig. Here, however, we arrcedto do it. The reason is that, geometrically, only
small scales are relevant and lead to the expected filtering behavior, as discussed in
Section 3.3. We arbitrarily chooge= a,, as reference scale and define the scalesa,
as large (we could, for instance, ptyt=1).
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Let us begin with the bilinear analysis. Given a wavelet L(5?), we define the
correspondingcaling function® = @ @) by its Fourier coefficients

o0

|$(z,m)|2=/(l_“|w I>1, (4.14)
|® (0 O)|2=i' (4.15)
’ 812’ '

the integral in (4.14) converges in virtue of the admissibility condition (4.9) satisfied by
Of course, (4.14) does not define the funct@miniquely. We can, for instance, assume in
addition that® (I, m) > 0, VI, m, as in [10].
Corresponding to (4.12), we define flagge scale parbf a signals as
So (0. a0) = f du(@) 5" (@) s(), (4.16)
52
where we have pub\™ (v) = ¢@) (o~ 1w).

Theorem 4.7 (Bilinear analysis)Let € L1(5?) be a wavelet and lep = ®@), g, > 0,
denote the associated scaling function. Assume the following two conditions are satisfied

o forall/i=1,2,...,

d
21+1 Zf S R (4.17)

m|<lp

e forall e € (0, a,), there is a constan > 0, independent of, such that

Ao

d
o ot

€

Then, for alls € L2(5?), we have the equality

do
da ~ ]
0 SQ(3) SQ(3)

wheregw is the spherical CWT of with respect to the wavelet, £ is the large scale
part of s and the integral is understood in the strong sensefiis?), 1< p < oo.

Proof. We consider the first term in (4.19). Singee L1(5?) ands € L?(5?), Young's
convolution inequality (4.2) shows théj, e L2(SQ3)). As in the flat case [23], we define
the infinitesimal detail at scale

d'(w) = f do Sy (0. )¢ (w).
SQ3)

This is a convolution 08Q(3) and Young’s inequality (4.1) shows th&t? e L?(5?).
Explicitly, we have

d(w) = f du (@) s(@) f do v (0 1e') ¥ (0 o). (4.20)
52 SQB)
As in the proof of Proposition 4.1, we use the relation
o) Z Y D @u U mY (@), (4.21)

1=0 |m|<I |n|<!
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to find

d'(w) = f du(@) s(@) D ¥ @) V) (@) §m) g, n')

1
S2 l/l::l/}:l/
X f D, () D,W ().
SQ3)

Using the orthogonality of Wigner functions and the addition theorem for spherical
harmonics, this gives

d(w) = ZH/dM(w)S(w)Z > P@-@) g m).

1=0 |m|<I

Now consider the foIIowmg expression:

séao)(a))—/ d(“)(w)—Zn/dM(w )S(w)/ Z Z Pi(@- @) |9, m)|

€ =0 |m|<I

In virtue of condition (4.18), the double summation on the right-hand side of this equation
is absolutely and uniformly convergent, since it is majorized by

[4% Siwamt- [t

=0 |m|<I

Now let us introduce the quantity

00 a"d e
/CE“”)(Z) zzﬂz Z </ f |1p“(l,m)|2> P (1),

1=0 |m|<I
so that

sé“") = lCé“") xS,

By (4.18), we see tha€“’ e L1([—1, +1]), forall 0 < € < a,, and||K“ |1 < 27 M.
Next, we show in the same way that the second term in (4.19) e#i4is« s, where

He =223 S |@Am)[ ).

1=0 |m|<I

Again, 1@ e L1([—1, +1]). Finally, we define the kernél, = K% + 1@ which also
belongs taL1([—1, 4+1]. Condition (4.18) shows th&t, is a uniformly bounded kernel. In
addition, from (4.17) and the definition (4.14)—(4.15)55)@1, m), we deduce the following
constraint on its Legendre coefficients:

A 82 aoda —~ 9 i~ )
Jim Ke®) = 20+ 1 > <f;|¢ ,m)|"+ |, m)| )

m|<I \

d
) L

Im|<I g
872|®(0,0)° =1, 1=0.

Then Theorem 4.3 shows thit is the kernel of an approximate identity, which proves
the existence of the strong limit ib2(52)

lim (ICe x 5) = 5. O
e—0
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As a check of the reconstruction formula (4.19), let us consider the unit function
Contrary to the case of the? formalism, thel.1-normalized CWT of vanishes identically,
as a consequence of Proposition 4.5

Iy(0,a) = / du(w) ¥ (@) = / du(w) ¥ (w) = 0.
52 52

Hence only the second term, the large scale part, subsists in (4.19). Using again the
expansion (4.21), we find successively
T (0.0 = [ @) 2(g70) = 80,0

52
and, for (4.19),

o) =D (0,0) / do @ (0~ tw) =873 (0,0)|* = 1.
sQB)
This result shows that the large scale part of a signal must be treated separately, because
constant functions on the sphere are square integrable, and hence must be reconstructible,
although their CWT vanishes identically. In practice, of course, large scales should be
irrelevant, since wavelet analysis is local, and we expect the second term in (4.19) to be
numerically negligible (that is, one must choegdarge enough for this to be true).

Theorem 4.7 applies, in particular, to a zonal wavelet. The only change is the parameter
space of the spherical CWT which takes the form of the prostistR;", with the measure
a~Ydadu(w). A further simplification yet is to consider a singular reconstruction wavelet
and build a framework similar to the Morlet linear analysis. As in the bilinear case, we
begin by defining, through its Legendre coefficients, a scaling fungtiens o) that takes
care of the large scales

o
S = / “Fa, i>1 (4.22)
a
$(0) =1 (4.23)
The corresponding large part of a signas then
Gy (w,a,) = f du () ¢($ . ZB’) s(0). (4.24)
2

In these notations, the linear reconstruction formula is given by the following theorem.

Theorem 4.8 (Linear analysis)Letys € L1(5?) be a zonal wavelet satisfying the following
two conditions

o forallli=12,...,
rd
/—a@(l)zl, (4.25)
a
0

o forall e €(0,a,),

00 do
yatl 4 51y < oo, (4.26)
= 47 a

€

Then, for alls € L2(5?), we have the equality
do
da ~ .
s(w) =/7 Sy (w,a) + 6w, ao),
0
the integral being again understood in the strong sensefinl < p < oo.
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Proof. The same arguments as in the proof of Theorem 4.7 show that the partial sum
o

da ~
sgao)(w)=/—s¢(w,a)
a

€

belongs taL.2(52). Expanding this expression and adding the large scale term, we find

Se(w) = /dM(w)/ W @) s (@) + Gy (w, ao)

Ao

=fd,u(a)’)s(a)/)<f Ya(@-@) +o(@- w))

S2 €

241( fda~— — N\ .
fdu(w)S(w)Z +< ;“wa<l>+¢<l>)Pl(w~w)

§2
= (ke * 5)(w),

where we have used (4.26) and set

20+1
Kem—Z * (f w<l>+¢(z)>P1<r>

=0

The Legendre coefficients of this kernel are

aod _ L
() = ;“ a0y + o).

As in the proof of Theorem 4.7, we deduce from condition (4.25) that ligk. (/) = 1,
VI =0,1,.... Thus we have again an approximate identity, which allows us to conclude
that

lim |ls — ke x 5], = 0. O
e—0

The conclusion of this analysis is that our spherical CWT, with the modified dilation op-
eratorD“, leads to the same approximation scheme as that developed by Freeden [10,11].
Moreover, the present approach has the additional advantage of giving a clear geometric
meaning to the approximation parameteBy the same token, it intuitively explains the
validity of the Euclidean limit established in [6]. Indeed, taking> 0 means going to the
pointwise limit where curvature becomes unimportant, that is, going to the tangent plane
and recovering the flat CWT.
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Appendix A. Convolution on a locally compact group

Convolution of functions on a locally compact group is a well-defined operation that
shares many properties with its well-known Euclidean counterpart. It is defined as follows
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Definition A.1 (Group convolution). LetG be a locally compact group with left Haar
measure d, normalized to 1, and lef, ¢: G — C be two measurable functions. The
convolution product off andg is defined a.e. by the integral:

(f*g)(X)E/f(xy)g(y_l) dy=/f(y)g(y_1X)dy~ (A1)
G G

When G is a commutative group, one hgéx g = g = f. In general, however,
convolution is a noncommutative operation and we have the following relations:

(f*g)(x) = f Fly Hema(y=r)dy,
G

whereA(x) is the modular function o.

One of the most interesting properties of the convolution integral is its regularizing
effect onL” elements. This is embodied in a number of inequalities, which we shall use
often in the sequel. Actually, they all stem from the following general statement, analog to
[14, Theorem 4.2], itself a generalization of [12, Proposition V.4.6].

Proposition A.2 (Young's inequality) Let G be a locally compact group with left Haar
measurdx. Letp,q,r >1andl/p+1/qg+1/r =2.Letf € LP(G,dx), g € LY(G, dx),
andh € L™ (G, dx). Then

/ (f * £)(0)h(x) di| = / / Fg(ytx)h(x) drdy
G G G
<IF gl el (A2)
Equivalently,

1

L1 1
If*egllr <Iflplgly Wlth;+5=1+;. (A3)

Proof. We follow closely the proof of [14, Theorem 4.2], assuming tlfiag, 4 are real
and nonnegative. Rewrite the left-hand side of (A.2) as

1=//a(x,y)ﬂu,y)y(x,y)dxdy,
G G

with
alx,y) = F)P g (v Lx)?",
B, y)=g(y )Ry Y, (A/p+1/p =1, etc)

y(x,y) = fP T h(x)7.

Noting that ¥/ p’+1/q’+1/r' = 1, we get from Holder’s inequality for three functions [14]
< el 1Bl Iy llgr- Then

el = / / FO)Pg(y ) dedy = / / FO) g dedy = [ F12 18],
G G G G

where we have replacedby yx and used the left invariance of the Haar measurélde
integrals may be interchanged by Fubini’'s theorem). The same change of variables yields
||/3||§, = llglZ Ay and trivia||y||y||3, = || fIILIIk|;. Putting the three results together then
yields the right-hand side of (A.2). As for (A.3), it is a mere restatement of (A.2).

The result of Proposition A.2 extends to homogeneous spaces, as mentioned already in
[12, Section V.4] for the particular cage=1,r = p'.
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Proposition A.3 (Young’s inequality on homogeneous spacksjG be a locally compact
group with left Haar measurelx, H a closed subgroup such that the quotient space
G/H has the left invariant measum@o. Let p,q,r >1and1/p +1/q + 1/r = 2. Let

f eLP(G,dx), g€ LY(G/H,dw), andh € L' (G/H, dw). Then

/(f*g)(w)h(w)dw

G/H

/ / fMg(y o)h(w) dwdy

G/H G
<Wflpliglg il (A.4)

Equivalently, f € LP(G,dx), g € L1(G/H,dw) implies f % g € L"(G/H, dw) with
1/p+1/g=1+1/r and

ILfgllr < HFNplgllg- (A.5)

Similarly, g € LY(G/H, dw), h € L"(G/H,dw) impliesg % h € LP(G, dx), with 1/g +
1/r=1+41/p,and

lig*hllp <liglglhllr (A.6)

where we have defined the spherical convolution as

(¥ h)(y) = / g(y lw)h(w) do. (A7)
G/H

Proof. The proof is essentially the same, replacinge G by w € G/H, up to the
inequality[7] < [l I Bll /Il ll4 - For the first factor, we get

lecllys = f ff(y)”g(y_lw)qdwdy= f ff(y)”g(w)qdwdy=||f||§||gIIZ,

G/H G G/H G

where we have replacedby yw and used the left invariance of the Haar measurerbr
the second factor, we have to proceed differently. We have

1811, = f fg(y_la))qe(y)h(a))’da)dy,
G/H G

wheree(y) = 1,Vy € G. Obviously,e € L1(G, dx) andg? € L1(G/H, dw), henceg? e €
LY (G/H, dw), with ||g? % e|l1 < |lell1llg?]lL = ||g||Z. From this, we get, by the Schwarz
inequality,

||ﬁ||§i = / (87 * e)(@)h(w) dw < | g7 xe| [A"]|, =G Al
G/H

The rest is unchanged.o
Note that sharper constants, smaller than 1, may be putin the upper bounds on the right-
hand side of all the inequalities, as shown in detailR6rin [14]. In the text, we use these
inequalities forG = SQ3), G/H = SQ3)/SQ2) = $2, under the following continuous
inclusions:
L?(SQ3), do) * L*(8?, du) < L?(S2, dy), (A.8)
L?(8?,du) ¥ L1($%, du) — L?(SQ3), do). (A.9)
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