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Abstract

We continue the analysis of the continuous wavelet transform on the 2-sphere, introduced in
a previous paper. After a brief review of the transform, we define and discuss the notion of directional
spherical wavelet, i.e., wavelets on the sphere that are sensitive to directions. Then we present a
calculation method for data given on a regular spherical gridG. This technique, which uses the
FFT, is based on the invariance ofG under discrete rotations around thez axis preserving theϕ
sampling. Next, a numerical criterion is given for controlling the scale interval where the spherical
wavelet transform makes sense, and examples are given, both academic and realistic. In a second
part, we establish conditions under which the reconstruction formula holds in strongLp sense, for
1 � p < ∞. This opens the door to techniques for approximating functions on the sphere, by use of
an approximate identity, obtained by a suitable dilation of the mother wavelet.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction: the spherical continuous wavelet transform

In a previous paper [6], two of us have introduced a continuous wavelet transform
(CWT) on the 2-sphereS2, using the general construction of coherent states on manifolds
developed in [1,2]. We will pursue this study here and focus on three aspects left out in [6],
namely the extension to anisotropic wavelets, the practical implementation of the transform
with a (reasonably) fast algorithm and its application to the problem of approximation of
functions onS2 (in Lp sense).

The key point of the spherical CWT is that it lives entirely on the sphere (signals and
wavelets) and it is derived from invariance considerations, via group-theoretical methods.
First, one identifies the affine transformations ofS2: Motions, which are realized by
rotations� ∈ SO(3), and local dilations, which are obtained by lifting toS2, by inverse
stereographical projection, the usual dilations in the plane tangent at the North Pole. Then
one shows that these transformations may be embedded (via the Iwasawa decomposition)
into the conformal group ofS2, which is the Lorentz groupSO0(3,1). The latter possesses

* Corresponding author.
E-mail addresses:antoine@fyma.ucl.ac.be (J.-P. Antoine), demanet@acm.caltech.edu (L. Demanet),

ljacques@fyma.ucl.ac.be (L. Jacques), Pierre.Vandergheynst@epfl.ch (P. Vandergheynst).
1 Present address: ACM, CalTech, Pasadena, California 91125, USA.

1063-5203/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S1063-5203(02)00507-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


178 J.-P. Antoine et al. / Appl. Comput. Harmon. Anal. 13 (2002) 177–200

a natural unitary irreducible representation in the spaceL2(S2) of finite energy signals
onS2, and this representation is square integrable over the parameter spaceSO(3)×R

+∗ of
the CWT (see [6] for the precise mathematical definitions). As a consequence, a genuine
CWT may be set up according to the general scheme of [1,2].

In order to fix our notations and make the paper reasonably self-contained, we recall
first the essential facts, referring to [6] for the details. The spherical coordinates onS2 are
denoted byω = (θ,ϕ) and the space of finite energy signals byL2(S2) ≡ L2(S2,dµ),
where dµ(ω) = sinθ dθ dϕ is the usual (rotation invariant) measure onS2. The affine
transformations onS2 are realized inL2(S2) by the following unitary operators:

• Motions:

(R�f )(ω) = f
(
�−1ω

)= (
Uqr(�)f

)
(ω), � ∈ SO(3), (1.1)

where Uqr is the (infinite-dimensional) quasi-regular representation ofSO(3) in
L2(S2).

• Dilations:

(Daf )(ω) ≡ fa(ω) = λ(a, θ)1/2f (ω1/a), a ∈ R
+∗ , (1.2)

where ωa ≡ (θa, ϕ) and tan(θa/2) = a tan(θ/2) (indeed,θ 
→ θa is the dilation
obtained by inverse stereographical projection). Hereλ(a, θ) is the cocycle (Radon–
Nikodym derivative) which expresses the noninvariance of the measureµ under
dilation, and it is given by

λ(a, θ) = 4a2

[(a2 − 1)cosθ + (a2 + 1)]2 .

A spherical waveletis a function ψ ∈ L2(S2) that is an admissible vector for the
representation of the Lorentz group mentioned above. The admissibility condition reads
as

Gl ≡ 8π2

2l + 1

∑
|m|�l

∞∫
0

da

a3

∣∣ψ̂a(l,m)
∣∣2 < c, (1.3)

where f̂ (l,m) ≡ 〈Ym
l |f 〉 denotes a Fourier coefficient off ∈ L2(S2) and the constant

c > 0 is independent ofl. This condition is not easy to use. However, a necessary (and
almost sufficient) condition for admissibility is the zero mean condition

Cψ ≡
∫
S2

dµ(θ,ϕ)
ψ(θ,ϕ)

1+ cosθ
= 0. (1.4)

Typical admissible wavelets are the difference wavelets

ψ
(α)
φ (θ,ϕ) = φ(θ,ϕ) − 1

α
Dαφ(θ,ϕ), α > 1, (1.5)

for a given smoothing functionφ ∈ L2(S2). The most familiar one is the spheri-
cal DOG waveletψ(α)

G , corresponding to a Gaussian smoothing functionφG(θ,φ) =
exp(− tan2(θ/2)), θ ∈ [−π,π], i.e., a Gaussian centered on the North Pole of the sphere.

Then, given an admissible waveletψ , the family{ψa,� ≡ R�Daψ = R�ψa , � ∈ SO(3),
a > 0} is an overcomplete set of functions inL2(S2) and even a continuous frame, nontight
in general.

Accordingly, the spherical CWT of a signals ∈ L2(S2) is defined as

S(�, a) = 〈ψa,�|s〉 =
∫
S2

dµ(ω) [R� Daψ](ω)s(ω)

=
∫
S2

dµ(ω)ψa(�−1ω)s(ω). (1.6)
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It is instructive to split� ∈ SO(3) into � = (χ, [ω′]) with χ ∈ SO(2) andω′ ∈ S2. This
is formally done through a projection� 
→ ω′(�) in the fiber bundleS2 � SO(3)/SO(2)
followed by an arbitrary choice of sectionω′ 
→ [ω′] in SO(3). The splitting corresponds
to decomposing the motionR� of the waveletψa into an initial rotation of angleχ around
the North Poleω0 followed by a transport to the pointω′ = �ωo on the sphere (these two
operations could have been defined in the reverse order). In other words,

R�ψa(ω) = Rχψa

([ω′]−1ω
)
,

whereRχ is a rotation around the North Pole. Accordingly, the spherical wavelet transform
will also be denoted byS(χ,ω′, a). Of course, the dependence onχ can be dropped if the
waveletψ is axisymmetric. We will have a closer look at the consequences of anisotropy
for the spherical wavelet transform in Section 2.

The admissibility of the waveletψ is sufficient to guarantee the invertibility of the
transform, i.e., one may reconstruct the signals from its transformS. More precisely,

s(ω) =
∫

R
+∗

∫
SO(3)

da d�

a3 S(�, a)A−1ψa,�(ω), (1.7)

where d� is the invariant Haar measure on the groupSO(3) andA is the frame operator,
whose action is a multiplication in the Fourier space,

Âf (l,m) = Glf̂ (l,m)

with Gl defined in the admissibility condition (1.3). As usual, the integral in (1.7) is to
be taken in the weak sense. Again, if the waveletψ is axisymmetric, the transform reads
S(ω′, a) and the integral overSO(3) is replaced by an integral overS2, with respect to the
measure dµ

s(ω) =
∫

R
+∗

∫
S2

da dµ(ω′)
a3 S(ω′, a)A−1ψa,ω′(ω). (1.8)

At this point, three questions arise. First, what are the concepts involved and what can
we expect from the additional rotation parameterχ when the wavelet is not axisymmetric?
After discussing the definition, we present in Section 2 a constructive procedure for
designing directional wavelets on the sphere. Doing so, we extend the directional analysis
capabilities of the CWT to the sphere. This could be important for applications, since many
directional features (roads, streams, geological faults,. . .) abound on the spherical Earth!

Second, does this spherical CWT yield a practical analysis tool for signals on the sphere,
as its flat space counterpart? In particular, can one design a (reasonably) fast algorithm for a
transform that is more general than a convolution on the sphere? Indeed one cannot rely on
what has been done with the fast spherical harmonic transform [13,16,17], because of the
rotation parameterχ . Preliminary results were given in [6], and we confirm them here. We
present in Section 3 an efficient algorithm, following an approach similar to that of Wind-
heuser [25], that is, using an FFT over the longitude angleϕ. Several examples are given.

Third, the reconstruction formula (1.7) is valid only in the weak sense. In the flat case,
however, the corresponding formula holds in the strongL2 sense [7,23]. This guarantees
that it can be used for approximating functions on the plane through an approximate
identity. That means, convolution with a smoothing kernel, which tends to the identity
(δ function) as the parameter goes to 0. We show in Section 4 that exactly the same
situation prevails on the sphere [24]. First one switches to anL1 formalism (as already
mentioned in [6]), introducing a modified dilation operatorDa that preserves theL1 norm
of functions. It turns out that the operatorDa generates an approximate identity inLp(S2)

for everyp ∈ [1,∞], and this shows that the reconstruction formula (1.7) actually holds in
strongLp sense. In this way, we recover the approximation scheme developed by Freeden
et al. and applied by them extensively to geophysical data [10,11]. These authors consider
various approximation kernels and introduce a form of discrete wavelet transform, through
a kind of multiresolution onS2. By contrast, our approach has the advantage of giving to
the approximation parameter the clear meaning of a local dilation factor, thus grounding
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the approximation scheme in the general continuous wavelet theory, itself based on group-
theoretical considerations.

2. A closer look at the anisotropic spherical CWT

In this section, we aim at giving a clear meaning to the rotation parameterχ , which
was not considered in [6]. We discuss the notion of direction on the sphere and how this
is related to the ability of performing a directional analysis of data defined on a sphere by
means of the spherical wavelet transform. We also build examples of anisotropic spherical
wavelets in Section 2.2.

2.1. Remarks on the definition

Whenever the waveletψ is not axisymmetric, the continuous spherical wavelet
transform depends on the additional parameterχ . This is written as

S(χ,ω′, a) =
∫
S2

dµ(ω)Rχψa

([ω′]−1ω
)
s(ω).

In this formula, there is an arbitrariness in the way the rotation[ω′] of SO(3) is associated
to the pointω′ on the sphere. The map[·] :S2 → SO(3), called asectionin group theory,
can be depicted as mapping the sphere to a tangent vector field of unit length defined on
it. Indeed, there are infinitely many ways of choosing the direction of each tangent vector
in the tangent plane. From a practical viewpoint, however, some choices are better than
other ones for a given section. It should preferably be smooth to correspond to the idea of
directiondefined on the sphere. Therefore, we expect the values of the wavelet transform
to correspond to filtering in a given directionχ and at a given scalea like in the case of the
two-dimensional wavelet transform in the plane [4].

Some caution should be exercised, however, when dealing with directions on the sphere.
It is a classical result in topology that there exists no differentiable vector field of constant
norm on S2, which means there is noglobal way of defining directions. There will
always be some singular point where the definition fails.2 In other words, one cannot
comb a perfectly spherical porcupine! Therefore, testing orientations on the sphere using
directional wavelets is necessarily a small scale operation, that is, alocal procedure. This
ability to perform local analysis is definitely one of the most important properties of
wavelet analysis.

From now on, we will make use of the classical parametrization ofSO(3) in terms
of Euler angles,� ≡ (χ, θ ′, ϕ′), which corresponds to the choice of section(θ ′, ϕ′) 
→
(0, θ ′, ϕ′), which in turn defines a direction on the sphere. The singular points are the
North and South Poles: it makes no sense to define cardinal points at the poles!

For this choice of parametrization, we may write

Rχψa

([ω′]−1ω
)= ψa,χ,ω′(ω) ≡ ψa,χ,θ ′,ϕ′ (θ,ϕ), (2.1)

which implies

ψa,χ,θ ′,ϕ′(θ,ϕ) = ψa,χ,θ ′,0(θ,ϕ − ϕ′). (2.2)

Therefore, (1.6) becomes a convolution inϕ which, by means of the convolution theorem,
takes the form

S(χ, θ ′, ϕ′, a) =
π∫

0

2π∫
0

ψa,χ,θ ′,0(θ,ϕ − ϕ′)s(θ,ϕ)sinθ dθ dϕ (2.3)

= 2π
∞∑

k=−∞
ei kϕ′

π∫
0

ψ̌χ,θ ′,0,a(θ)[k]š(θ)[k]sinθ dθ, (2.4)

2 This is valid forS2, but not in the case of the circleS1 and the higher dimensional spheresS3 andS7.
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where, for any functionh :S2 → R,

ȟ(θ)[k] =
2π∫
0

dϕ h(θ,ϕ)e−i kϕ (2.5)

is the Fourier series ofh in the longitudinal coordinateϕ.
In the discretization step of Section 3, the relations (2.3)–(2.4) will give us a tool for

reducing the computational time of the spherical CWT. Indeed, they will allow us to use
the fast Fourier transform (FFT), like in [25].

2.2. Directional wavelets

We have not yet addressed the problem of constructing good directional wavelets onS2.
In this section, we will quickly show that this job is naturally handled in our framework.
First of all, we recall that the very definition of a direction onS2 forces us to work at
small scales. As we are all familiar with, the geometry ofS2 at small scales, or for large
radii of the sphere, is closer and closer to that ofR

2. As proved in [5], the spherical
wavelet transform respects one’s intuition by closely approximating the Euclidean wavelet
transform at small scales. This is a property known as the Euclidean Limit, and we may
remark that he notation used in (2.1) is consistent with it: Roughly speaking, as the radius
of the sphere goes to infinity,ψa,χ,ω′(ω) goes toψa,χ,b(x), whereb ∈ R2 is the translation
parameter [6].

Moreover, it is a simple application of the Euclidean Limit to show that small scale
Euclidean wavelets can be mapped to the sphere and yield small scale admissiblespherical
wavelets. These can then be dilated at larger scales using the spherical dilation. This is
neatly summarized by the following result [6].

Proposition 2.1. Let ψ ∈ L2(R2) be an admissible two-dimensional Euclidean wavelet.
The inverse stereographic projection of a square integrable function is defined, in polar
coordinates, by(

Π−1f
)
(θ,ϕ) = 2f (2 tan(θ/2), ϕ)

1+ cosθ
,

and is inL2(S2). Then the functionΠ−1ψ is an admissible spherical wavelet for the trans-
form defined with the dilation preserving theL2 norm. The functionΠ−1ψ/(1+ cosθ) is
an admissible spherical wavelet for the transform defined with the dilation preserving the
L1 norm.

This result tells us that we can construct a spherical wavelet starting from any Euclidean
wavelet. Now what does this tell us about directional wavelets? Since directional sensitivity
is a local or small scale attribute, it should intuitively survive this process. But there is more
than intuition in this result. The stereographic projection and both spherical and Euclidean
dilations are conformal mappings. Thus Proposition 2.1 defines a conformal application
that, by definition, preserves angles. The directional sensitivity of the Euclidean wavelet is
thus transported to the spherical wavelet.

A natural candidate for building a directional spherical wavelet is to start with the
Euclidean Morlet or Gabor wavelet [3]

ψM(�x) = ei�k0·�xe−‖�x‖2
. (2.6)

Using Proposition 2.1, we find the following spherical wavelet:

ψM(θ,ϕ) = eik0 tan(θ/2)cos(ϕ0−ϕ)e−(1/2) tan2 (θ/2)

1+ cosθ
. (2.7)

This function is represented in Figs. 1 and 2 for various values of the scale and rotation
parameters. Note that this function is not strictly admissible but, fork0 large enough
(typically greater than 6), there is no practical difference with a true wavelet (exactly as
in the flat case).
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Fig. 1. Real part of the spherical Morlet wavelet at scale: (a)a = 0.03 and (b)a = 0.3.

Fig. 2. Real part of the spherical Morlet wavelet at scalea = 0.03 and centered at(π/3,π/3). (a)χ = 0 and (b)
χ = π/2.

3. Implementation of the spherical CWT

For a practical implementation of the spherical CWT, the first step is that of
discretization. This means finding a suitable grid in the parameter space, so as to allow
a fast calculationand a good approximation of the continuous theory. As we shall see,
the key to the algorithm presented below is to use an FFT in the (periodic) longitude
angleϕ. We also need some sort of criterion on the grid density for controlling aliasing
problems, as indicated already in [3]. More precisely, we have to specify the scale interval
in which the spherical wavelet transform makes sense. A possible answer will be suggested
in Section 3.2. Then several examples will be discussed, both academic and real life. All the
examples are computed with our wavelet toolbox YAWTB/Yet-Another-Wavelet-Toolbox,
to be found on the web siteshttp://www.fyma.ucl.ac.be/projects/yawtb
or http://www.yawtb.be.tf.

3.1. Discretization and algorithm

Following an approach similar to that in [25], the first step is to discretize the integral
(2.3) on a regular spherical gridM × N

G =
{(

θt = π

M
t,ϕp = 2π

N
p

)∣∣∣∣0 � t � M − 1, 0 � p � N − 1

}
(3.1)
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by a weighted sum (χ anda are fixed throughout)

S(χ, θt ′, ϕp′ , a)� S[χ, t ′,p′, a] (3.2)

=
∑

0�t�M−1
0�p�N−1

ψa,χ,t ′ [t, p − p′]s[t, p]wtp, (3.3)

wheres[t, p] ≡ s(θt , ϕp); ψa,χ,t ′ [t, p − p′] ≡ ψa,χ,θt ′ ,0(θt , ϕp−p′); the index ofϕ is ex-
tended toZ by angular periodicity with the ruleϕr+N = ϕr ; wtp =wt = (2π2/(MN))sinθt
are the weights suggested in [25] for the discretization of the Lebesgue measure on the
particular gridG. Notice that other discretization techniques than a plain Riemann sum, as
used in (3.3), would be beneficial only if one imposes additional regularity conditions on
the signals. Also, other weightswtp could be chosen to achieve a better approximation
of (3.2). An example of a different choice, both for the weights and for the discretization
technique, is that of a band-limited spherical function, as considered in [13].

Evaluating the sums in Eq. (3.3) requiresMN additions and multiplications for each
(t ′,p′), that is,M2N2 operations altogether.

However, an easy simplification can be obtained for the longitudinal coordinates by the
use of a Fourier series and the Plancherel formula. Indeed, denoting by

ȟ[t, k] =
∑

0�p�N−1

h[t, p]exp

(
−i kp

2π

N

)
, (3.4)

the longitudinal Fourier coefficients of a given discrete functionh, we obtain

S[χ, t ′,p′, a] = 2π
∑

0�t�M−1

wtF [χ, t ′,p′, a, t] (3.5)

with

F [χ, t ′,p′, a, t] =
∑

0�k�N−1

ψ̌a,χ,t ′ [t, k] š[t, k]exp

(
i kp′ 2π

N

)
. (3.6)

The quantityF may be computed with the inverse fast Fourier transform (IFFT), which
leads to a reduction of the computational time fromO(M2N2) to O(M2N logN). On a
grid G of 256× 256, the gain is a factor of 46.

In practice, computing the spherical wavelet transform for a fixed scalea and a fixed
orientationχ proceeds along the following steps.

Initialization

• Compute the matrix̌s = (š[t, k])tk obtained by applying the FFT on each row (row
FFT) of the original datas = (s[t, p])tp;

For t ′ = 0 to M − 1 do

• Compute the matrix̌Ψa,χ,t ′ = (ψ̌a,χ,t ′ [t, k])tk deduced from the row FFT of the matrix
Ψa,χ,t ′ = (ψa,χ,t ′ [t, p])tp;

• Compute the product matrix̌Pa,χ,t ′ = (š[t, k]ψ̌a,χ,t ′ [t, k])tk and apply the inverse FFT
on each of its rows. This yields a matrixPa,χ,t ′ corresponding to the convolution of
the rows ofs with the rows of the waveletΨa,t ′,χ ;

• Finally, thet ′th row ofS is given by

S[χ, t ′,p′, a] =
∑

0�t�M−1

wtPa,χ,t ′ [t, p′], for 0 � p′ � N − 1.

end.
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3.2. Numerical criterion for the scale range

The discretization of the continuous spherical wavelet transform gives rise to a sampling
problem. Since the gridG is fixed, if we contract or dilate too much our wavelet, we
obtain a function which is very different from the originalψ . In other words, aliasing
occurs and the wavelet is no longer numerically admissible. We may easily understand this
phenomenon by studying a dilated wavelet centered on the North Pole.

We have seen in Section 1 that a functionψ ∈ L2(S2,dµ) is admissible only if it
satisfies the zero mean condition (1.4). Approximating the integral by its Riemann sum,
we get the quantity

C[ψ] =
∑

1�t�M−1
1�p�N−1

ψ(θt , ϕp)

1+ cosθt
wtp (3.7)

using the weightswtp defined in the previous section.
Because of the discretization, even ifψ verifies (1.4), it is not necessarily true thatC[ψ]

vanishes. However, we may suppose that this quantity is very close to zero whenψ is
sampled sufficiently, that is, if the gridG is fine enough.

However, it is difficult to give a quantitative meaning to the value ofC[ψ]. How small
is ‘very close to zero’? Here is a possible solution to this problem. Since the spherical
measureµ and the function 1+ cosθ are positive, it is clear that

C[ψ] � C
[|ψ|] (3.8)

for anyψ ∈ L2(S2,dµ). So we can define a normalized numerical admissibility by

C̃[ψ] = C[ψ]
C[|ψ|] , (3.9)

a quantity always contained in the interval[−1,1].
We can now give a precise definition of numerical admissibility of a waveletψ centered

on the North Pole.

Definition 3.1. A spherical wavelet ofL2(S2,dµ) is numerically admissible onG with
thresholdp% (or simplyp%-admissible onG), if the numerical normalized admissibility
(3.9) is smaller than(100− p)/100 in absolute value∣∣C̃[ψ]∣∣� 100− p

100
. (3.10)

As an example, we present in Fig. 3 the behavior of the dilated spherical DOG wavelet,
Daψ

(α)
G (α = 1.25), as a function ofa > 0, discretized on a 128× 128 grid (notice that, in

Fig. 3. C̃[Daψ
(α)
G ] as a function of loga for α = 1.25.
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Fig. 4. Three typical behaviors ofDaψ
(α)
G discretized on a 22× 22 grid G. (a) Fora = 0.5, the sampling is

correct. (b) Fora = 0.05, subsampling occurs, negative parts ofDaψ
(α)
G are completely missed. (c) Subsampling

on the negative parts ofDaψ
(α)
G for a = 3.5. Notice the minimum atθ = 0.

the flat case,α = 1.6 is the value for which the DOG wavelet is almost indistinguishable
from the mexican hat).

According to this plot, the waveletDaψ
(α)
G is 99%-admissible on the scale interval

a ∈ [0.072,24.71]. The lower limit is due to the fact that, for smalla, Daψ
(α)
G is not

sampled enough. The upper limit comes from the subsampling of the area far from the
North Pole which, according to the spherical dilation, gets more and more contracted.
Figure 4 presents three typical behaviors ofDaψ

(α)
G discretized on a 22 pointθ sampling.

For a = 0.5, the sampling is correct. Fora = 0.05, that is, below the lower admissibility
bound, subsampling occurs, so that negative parts ofDaψ

(α)
G are completely missed.

Clearly, this discretized wavelet is no longer admissible. Exactly the same effect was
observed long ago in the flat case [3]. The third case, witha = 3.5, thus beyond the upper
bound, is less intuitive. Here the subsampling takes place forlarge values ofθ , that is,
close to the South Pole, but the result is the same, the discretized wavelet does not have a
zero mean, it is not admissible. In addition, the curve presents aminimumat θ = 0. This
somewhat unexpected effect is in fact due to the cocycle, as is the dependence of the height
on a. Indeed, if one performs the same calculationwithout the cocycle, all curves show a
maximum atθ = 0, with the same height. Here again we see that curvature, which requires
the presence of the cocycle, has a nontrivial effect.

Two remarks remain to be made about the admissibility and its numerical consequences.
Both follow from the obvious fact that choosing polar coordinates effectively breaks the
spherical symmetry, by introducing a singularity at the North Pole.

First, the simplified admissibility condition (1.4) is only valid for wavelets which vanish
atθ = π . So, unlike in the flat case, the simplified admissibility of a mother waveletψ does
not imply that of all thetranslatedwaveletsRρψ with ρ in SO(3) (this does not happen,
of course, for the full admissibility condition (1.3)).
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Fig. 5. Mean value〈I (a)〉 of the spherical wavelet transform of the unit functionι as a function of the scalea
(log–log representation).

Second, the sampling of a wavelet centered on the North Pole is not the same as if
it would be centered on an equatorial point. Therefore, given a certain percentage of
numerical admissibility forDaψ , the interval of allowed scalesa is not necessarily valid
everywhere on the sphere. In other words, we cannot ensure thatRρDaψ will be sampled
finely enough for all the possibleρ ∈ SO(3).

3.3. Numerical analysis of the unit function

It is instructive to consider the functionι identically equal to 1. In the flat case, this
function has a vanishing WT, by the admissibility condition

∫
d�x ψ(�x) = 0 on the wavelet,

but it is not square integrable and thus cannot be reconstructed. In the present case,
however, the situation is different. The functionι is square integrable, since the sphereS2

is compact, but its WT doesnotvanish, because of the presence of the cocycle. Indeed, the
functionι is invariant under rotation, butnotunder dilation

(Daι)(θ,ϕ) = λ(a, θ)1/2 �≡ 1, (3.11)

and, therefore,

I (�, a) = 〈R�Daψ|ι〉 = 〈ψ|Daι〉 ≡ I (a) =
∫
S2

dµ(ω)ψ(ω)λ(a, θ)1/2 �= 0. (3.12)

Thus, for fixeda, the WTI (a) of the unit function is constant, and essentially negligible
for a � 1. Significant values appear only fora > 2, and these scales are irrelevant for the
analysis of signals such as contours. As a consequence, the spherical CWT does have the
familiar local filtering effect, provided small scales are considered. This will be confirmed
by the examples below. Once again, we see that the CWT is useful only as alocal analysis.

To get a quantitative estimation of this effect, we present in Fig. 5, the mean value〈I (a)〉
of I (a) on the sphere as a function of the scalea. We have to take this average because,
in practice,I (a) is not exactly constant due to the gridding artifacts.3 Variations around
this mean are however small, close of 10−3, and essentially constant with scales. We see
indeed that, fora < 0.1 (this number may depend on the grid used, of course),〈I (a)〉 is
numerically negligible over the whole sphere, and may be taken as zero to a very good
approximation.

3 The density of points on a spherical regular grid is higher at the poles than on the equator.
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Fig. 6. Spherical wavelet transform of the characteristic function of a spherical triangle with apex at the North

Pole, 0◦ � θ � 50◦, 0◦ � ϕ � 90◦, obtained with the spherical DOG waveletψ
(α)
G for α = 1.25. (a) Original

image. The transform is shown at four successive scales: (b)a = 0.5; (c) a = 0.2; (d)a = 0.1; and (e)a = 0.035.
As expected, it vanishes inside the triangle, and presents a “wall” along the contour, with sharp peaks at each
vertex. Notice that the scales are different in the four cases.

3.4. Examples of spherical wavelet transforms

As a first example, we analyze in Fig. 6 an academic picture, namely, (the characteristic
function of) a spherical sector onS2, with one of the corners sitting at the North Pole.
The sector is given by 0◦ � θ � 50◦, 0◦ � ϕ � 90◦ and is discretized on a 128× 128 grid
in (θ,ϕ). The wavelet used is again the spherical DOGψ

(α)
G , for α = 1.25, discretized

on the same grid. According to the admissibility analysis presented above (Fig. 3), the
wavelet is 95%-admissible on the scale intervala ∈ [0.033,29.27]. Thus we can evaluate
the continuous spherical wavelet transform of this picture for various scales in the allowed
range, and we have chosen four successive scales froma = 0.5 to a = 0.035. Figure 6
shows that the spherical WT behaves here exactly as, in the flat case, the WT of the
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Fig. 7. Squared modulus of the spherical wavelet transform of (the characteristic function of) a spherical triangle

with apex at the North Pole, 0◦ � θ � 50◦ , 0◦ � ϕ � 90◦ , obtained with the spherical Morlet wavelet.ψ
(α)
G ,

for α = 1.25. (a) Forχ = 0◦. (b) Forχ = 90◦ . The WT selects the features (here the “walls”) oriented along
meridians or parallels, according to the value ofχ .

characteristic function of a square, as shown in [3]. For largea, the WT sees only the
object as a whole, thus allowing to determine its position on the sphere. Whena decreases,
increasingly finer details appear; in this simple case, only the contour remains, and it is
perfectly seen ata = 0.035. The transform vanishes in the interior of the triangle, as it
should, only the “walls” remain, with a negative value (black) just outside, a zero-crossing
right on the boundary and a sharp positive maximum (white) just inside. In addition, each
corner gives a neat peak, which is positive, since the corner is convex [3]. Notice that
the three corners are alike, so that indeed the poles play no special role in our spherical
WT, contrary to what occurs often in the classical spherical analysis based on spherical
harmonics [9,10,19,20].

In the second example, Fig. 7, we use the same spherical sector, but defined on
a 256× 256 spherical gridG. This time, we choose to test the directional sensitivity of the
spherical Morlet wavelet, keeping the scale fixed. In the flat case, the wavelet transform
responds to different directions as a function of the rotation parameter; here the notion of
direction is replaced by that oforientation with respect to meridians or parallels. In other
words, directions here can be referred to as cardinal points:χ = 0◦ corresponds the North–
South direction, i.e., meridians, andχ = 90◦ to the East–West direction, i.e., parallels.
These cardinal points could have been defined in another way, if we remember that we
arbitrarily chose to work with the Euler angles in the implementation of our transform.

As a third, real life example, we present in Fig. 8 the wavelet transform of a significant
piece of the terrestrial globe, covering Europe, Greenland, and North Africa. As before, we
use the spherical DOG waveletψ

(α)
G for α = 1.25. The transforms are shown again at three

successive scales,a = 0.032, 0.016, 0.0082 (the grid used here is finer than the one used
in the previous examples, so that smaller values ofa are admissible). As expected, the
resolution improves with diminishinga. However, ata = 0.0082, the discretization grid
used for the computation of the transform coincides with that of the original picture, so
that one sees exactly the same artifacts, such as a closed strait of Gibraltar, an unresolved
complex Corsica–Sardinia, ragged coastlines, etc. Of course, we cannot hope toimprove
on the resolution of the original! As for the rapidity, the original is a 512× 1024 point
picture, and each transform takes about one CPU hour on a 400 MHz Digital PC. This
is not bad, given the size of the original file. Note that a similar analysis was performed
by [21] using the lifting scheme.

4. Wavelet approximations on the sphere

The central theme of approximation theory is the representation of a function by
a truncated series expansion into a family of basis functions, for instance, the elements
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Fig. 8. Spherical wavelet transform of the spherical map of the European area, computed with the spherical DOG
wavelet forα = 1.25. (a) The original picture; (b) wavelet transform ata = 0.032; (c) the same ata = 0.016;
(d) the same ata = 0.0082.

of a frame. Thus, in the flat case, one- or two-dimensional, wavelets are widely
used for approximation in various function spaces [15]. The crucial advantage is their
multiresolution character, which is optimally adapted to local perturbations. A natural
framework is given by the Lebesgue spacesLp(Rn), 1� p < ∞. One of the reasons is that
approximation is often formulated in terms of convolution with anapproximate identity,
and many useful convolution identities are available inLp [12,14].

Thus, in order to apply these considerations to the sphereS2, it is necessary to have
a good notion of convolution onS2. For that purpose, it is useful to represent the sphere
as the quotientSO(3)/SO(2), since the convolution machinery extends almost verbatim to
locally compact groups, and then partly to homogeneous spaces. For the convenience of
the reader, we have collected in the Appendix the main definitions and essential properties
of convolution on a locally compact group. In what follows, we will need two different
cases. For simplicity, we writeL2(SO(3)) ≡ L2(SO(3),d�), where d� is the Haar measure
on SO(3), andLp(S2) ≡ Lp(S2,dµ).

• If f ∈ L2(SO(3)) andg ∈ L1(S2), thenf ∗ g ∈ L2(S2) with

‖f ∗ g‖2 � ‖f ‖2‖g‖1, (4.1)

where the norms refer to the corresponding spaces.
• If f ∈ L2(S2) andg ∈ L1(S2), their spherical convolutionis the function onSO(3)

defined as

(f ∗̃ g)(�) =
∫
S2

dµ(ω)f
(
�−1ω

)
g(ω). (4.2)
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Thenf ∗̃ g ∈ L2(SO(3),d�) and

‖f ∗̃ g‖2 � ‖f ‖2‖g‖1. (4.3)

Here, however, we are only interested in functions on the sphereS2, that is, functions
on SO(3) that areSO(2)-invariant. In particular, we will deal mostly with axisymmetric
functions onS2, that is, functions ofθ alone (such functions are also calledzonal). Thus,
we will focus on elements ofL2([−1,+1],dt), wheret = cosθ , for which the Fourier
series reduces to a Legendre expansion

ψ(t) =
∞∑
l=0

2l + 1

4π
ψ̂(l)Pl(t), ψ̂(l) = 2π

+1∫
−1

dt Pl(t)ψ(t) =
√

4π

2l + 1
ψ̂(l,0).

If f is a zonal function, the spherical convolution (4.2) takes a simpler form [10] by the
following proposition.

Proposition 4.1. Let f and g be two measurable functions onS2. If f is zonal, the
spherical convolution off andg is a function onS2, which can be written

(f ∗ g)(ω′) =
∫
S2

dµ(ω)f
(
ω̂′ · ω̂)g(ω), (4.4)

whereω̂′ · ω̂ is theR3 scalar product of unit vectors of directionsω′ andω.

Proof. The proof amounts to a straightforward application of harmonic analysis (Fourier
series) onS2. Let us rewrite the argument in the integral (4.2), denoting byω′ ≡ �̇ ∈ S2 the
left coset of� ∈ SO(3)

f
(
�−1ω′)= [

Uqr(�)f
]
(ω′) =

∞∑
l=0

∑
|m|�l

[
Uqr(�)f

]
(l,m)Ym

l (ω′),

=
∞∑
l=0

∑
|m|�l

{
Dl

m0(ω)f̂ (l,0)
}
Ym
l (ω′) (sincef is zonal)

=
∞∑
l=0

f̂ (l)
∑
|m|�l

Ym
l (ω)Ym

l (ω′).

Then the addition theorem for spherical harmonics yields

f
(
�−1ω′)= ∞∑

l=0

2l + 1

4π
f̂ (l)Pl

(
ω̂′ · ω̂)= f

(
ω̂′ · ω̂). ✷

A very useful property of zonal convolution is thespherical Young inequality: if
f ∈ Lp([−1,+1],dt) andg ∈ Lq(S2), with 1 � p,q < ∞, thenf ∗ g ∈ Lr(S2), with
1/p + 1/q = 1+ 1/r, and we have [10]

‖f ∗ g‖r � ‖f ‖p‖g‖q , with 1/p + 1/q = 1+ 1/r. (4.5)

Now we may turn to the approximation problem proper. As in the Euclidean case
[14,22], a convenient technique is to perform a convolution with a smoothing kernel, that
acts as an approximate identity. For the sake of simplicity, we will only deal with zonal
kernels, following mainly [10].

Definition 4.2. Let Kτ , τ ∈ (0, τ0], τ0 ∈ R+∗ , be a family of elements ofL1([−1,+1],dt)
satisfyingK̂τ (0) = 1. The functionalSτ [f ] defined by

Sτ [f ] =Kτ ∗ f, f ∈ Lp
(
S2), 1 � p < ∞,
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is called asingular integral. It is called anapproximate identityof Lp(S2) if

lim
τ→0, τ>0

∥∥f − Sτ [f ]∥∥
p

= 0, ∀f ∈ Lp
(
S2). (4.6)

The following theorem characterizes those spherical kernels which are associated with
an approximate identity.

Theorem 4.3. Let {Kτ } be a uniformly bounded spherical kernel, that is, there exists
a constantM, independent ofτ , such that

+1∫
−1

dt
∣∣Kτ (t)

∣∣� M, ∀τ ∈ (0, τo].

Then the associated singular integral is an approximate identity ofLp(S2) if and only if

lim
τ→0, τ>0

K̂τ (n) = 1, ∀n � 0. (4.7)

A proof may be found in [10]. A particularly interesting case is given by positive
definite kernels. In this case, since|Pl(t)| � 1, {Kτ } is uniformly bounded, with bound
M = supτ∈(0,τ0] K̂τ (0).

The following theorem gives a nice characterization of approximate identities associated
with positive kernels.

Theorem 4.4. Let {Kτ }, τ ∈ (0, τo], be a positive kernel associated to a singular integral
of Lp(S2). Then each of the following conditions is equivalent to(4.6) and (4.7), which
means that{Kτ } is the kernel of an approximate identity:

(i) lim τ→0, τ>0 K̂τ (0) = 1,
(ii) lim τ→0, τ>0

∫ δ

−1 dtKτ (t) = 0, δ ∈ (−1,+1).

It is important to notice that the second condition is a constraint on the localization
of the kernel. Approximate identities are a very useful tool for harmonic analysis on the
sphere and many applications can be found in [10].

We can now reformulate the results of Section 1 in the language of approximate
identities on the sphere. This is a very interesting way of handling functions on the
sphere, because it allows to represent information by means of localized, and hierarchically
organized, coefficients. With such a representation, a local modification of the function
would only result in a slight local perturbation of the original coefficients, a definite
advantage over Fourier series.

Many examples of approximate identities are given in [10]. In general, they are based
on families of kernels indexed by a parameter which behaves like a dilation. Such are, for
instance, the Abel–Poisson kernel,

Qτ (t) = 1

4π

1− τ2

(1+ τ2 − 2τ t)3/2 =
∞∑
l=0

2l + 1

4π
τ lPl(t), τ ∈ (0,1),

and the Gauss kernel,

Gτ (t) =
∞∑
l=0

2l + 1

4π
e−l(l+1)τPl(t), τ ∈ R

+∗ .

Since dilation is introduced directly as a parameter in those kernels, there is no unique way
of generating approximate identities, as inRn. But this problem disappears naturally if one
uses the spherical dilation. However, we have to modify the dilation operator and adapt it
to theL1 environment. Using the notation of Section 1, we define, instead ofDa , as given
in (1.2), the new dilation operator(

Daf
)
(ω) ≡ f a(ω) = λ(a, θ)f (ω1/a), (4.8)
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and this operator clearly conserves theL1 norm. Notice that the situation is more
complicated here than in the flat case. There, indeed, changing the dilation operator from
L2 to L1 simply amounts to change the power ofa in front of the transform [6]. Here,
one replaces the factorλ(a, θ)1/2 by its squareλ(a, θ), but this modifies the CWT itself in
a nontrivial way. In particular, the admissibility condition (1.3) becomes

8π2

2l + 1

∑
|m|�l

∞∫
0

da

a

∣∣ψ̂ a(l,m)
∣∣2 < c. (4.9)

The following result, the equivalent of Proposition 3.7 of [6], shows that our new
dilation operator does not change the mean of a function.

Proposition 4.5. If ψ ∈ L1(S2), then∫
S2

dµ(ω)ψa(ω) =
∫
S2

dµ(ω)ψ(ω). (4.10)

The proof reduces to a simple change of variables, followed by using the cocycle
relation

λ
(
a−1, θ

)
λ(a, θa) = λ(1, θ) = 1.

Acting with this dilation on a suitable function, one can now construct easily an
approximate identity, as shown in the next proposition.

Proposition 4.6. Let f ∈ C([−1,+1]) satisfyingf̂ (0) = 1. Then the family{f a ≡ Daf ,
a > 0}, is the kernel of an approximate identity.

Proof. The family{f a}, a ∈ (0,1], is uniformly bounded because

+1∫
−1

dt
∣∣f a(t)

∣∣= ‖f ‖1.

It thus remains to verify that

lim
a→0, a>0

f̂ a(l) = 1.

With the following change of variables:

t ′ = (a2 + 1)t + (a2 − 1)

(a2 − 1)t + (a2 + 1)
,

and using the cocycle law, for alla ∈ (0,1], we find

lim
a→0, a>0

f̂ a(l) = lim
a→0, a>0

+1∫
−1

dt ′ Pl

(
(1+ a2)t ′ + (1− a2)

(1− a2)t ′ + (1+ a2)

)
f (t ′).

The integrand is bounded:∣∣∣∣Pl

(
(1+ a2)t ′ + (1− a2)

(1− a2)t ′ + (1+ a2)

)
f (t ′)

∣∣∣∣� max
t∈[−1,+1]

∣∣f (t)
∣∣,

and since

lim
a→0, a>0

Pl

(
(1+ a2)t ′ + (1− a2)

(1− a2)t ′ + (1+ a2)

)
= 1,

we finally have

lim
a→0, a>0

f̂ a(l) = f̂ (0) = 1,

which gives the result. ✷
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Fig. 9. Kernel of an approximate identity obtained by dilating a Gaussian mother function with scaling factor
a = 0.7 (continuous), 0.5 (dashed), and 0.3 (dotted).

This technique is applied in Fig. 9 to a zonal function of Gaussian shape, namely the
mother wavelet of the spherical DOG wavelet,φG(θ,ϕ) = exp(− tan2(θ/2)), θ ∈ [−π,π].
One clearly sees how dilation localizes the kernel better and better asa → 0.

In theL1 formalism, we recall from [6] that the necessary condition for admissibility
becomes a genuine zero mean condition, exactly as in the flat case

ψ̂(0,0) = 1√
4π

∫
S2

dµ(θ,ϕ)ψ(θ,ϕ) = 0, (4.11)

and, therefore, by Proposition 4.5,̂ψa(0,0) = 0, ∀a > 0.
Correspondingly, the difference waveletψ

(α)
φ given in (1.5) is replaced by

ψ̃
(α)
φ (θ,ϕ) = φ(θ,ϕ) − Dαφ(θ,ϕ), α > 1.

Now, combining the modified dilation operatorDa with the usual rotation operatorR�,
we define a new set of spherical wavelets, starting from an admissibleψ , namely,ψa

� ≡
R�D

aψ = R�ψ
a . Accordingly, we redefine as follows the spherical wavelet transform of

a signals ∈ L2(S2):

S̃ψ (�, a) =
∫
S2

dµ(ω)ψa
� (ω) s(ω). (4.12)

In particular, if the waveletψ is zonal, we get

S̃ψ (ω,a) =
∫
S2

dµ(ω′)ψa
(
ω̂ · ω̂′) s(ω′). (4.13)

We can now state our main result, namely that the spherical CWT admits a recon-
struction formula, valid in the strongL2 topology, exactly as the usual CWT inRn.
Actually, the formula holds in any strongLp topology, for 1� p < ∞. As in the flat
case [8,18,23], we may distinguish between a bilinear and a linear formalism (the latter
being a limiting case of the former). But there is a crucial difference. In the flat case, it is
advantageous, but not compulsory, to treat the large scales or low frequencies separately,
in terms of a scaling function (in the context of the so-calledinfinitesimal multiresolution
analysis). Here, however, we areforced to do it. The reason is that, geometrically, only
small scales are relevant and lead to the expected filtering behavior, as discussed in
Section 3.3. We arbitrarily choosea = ao as reference scale and define the scalesa > ao

as large (we could, for instance, putao = 1).
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Let us begin with the bilinear analysis. Given a waveletψ ∈ L1(S2), we define the
correspondingscaling functionΦ ≡ Φ(ao) by its Fourier coefficients

∣∣Φ̂(l,m)
∣∣2 =

∞∫
ao

da

a

∣∣ψ̂a(l,m)
∣∣2, l � 1, (4.14)

∣∣Φ̂(0,0)
∣∣2 = 1

8π2 ; (4.15)

the integral in (4.14) converges in virtue of the admissibility condition (4.9) satisfied byψ .
Of course, (4.14) does not define the functionΦ uniquely. We can, for instance, assume in
addition thatΦ̂(l,m) � 0, ∀l,m, as in [10].

Corresponding to (4.12), we define thelarge scale partof a signals as

Σ̃Φ(�, ao) =
∫
S2

dµ(ω)Φ
(ao)
� (ω) s(ω), (4.16)

where we have putΦ(ao)
� (ω) ≡ Φ(ao)(�−1ω).

Theorem 4.7 (Bilinear analysis).Letψ ∈ L1(S2) be a wavelet and letΦ ≡ Φ(ao), ao > 0,
denote the associated scaling function. Assume the following two conditions are satisfied:

• for all l = 1,2, . . . ,

8π2

2l + 1

∑
|m|�l

∞∫
0

da

a

∣∣ψ̂a(l,m)
∣∣2 = 1, (4.17)

• for all ε ∈ (0, ao), there is a constantM > 0, independent ofε, such that

ao∫
ε

da

a

∥∥ψa
∥∥2 � M. (4.18)

Then, for alls ∈ L2(S2), we have the equality

s =
ao∫

0

da

a

∫
SO(3)

d� S̃ψ (�, a)ψa
� +

∫
SO(3)

d� Σ̃Φ(�, ao)Φ
(ao)
� , (4.19)

whereS̃ψ is the spherical CWT ofs with respect to the waveletψ , Σ̃Φ is the large scale
part of s and the integral is understood in the strong sense inLp(S2), 1� p < ∞.

Proof. We consider the first term in (4.19). Sinceψ ∈ L1(S2) ands ∈ L2(S2), Young’s
convolution inequality (4.2) shows that̃Sψ ∈ L2(SO(3)). As in the flat case [23], we define
the infinitesimal detail at scalea

d(a)(ω) =
∫

SO(3)

d� S̃ψ (�, a)ψa
� (ω).

This is a convolution onSO(3) and Young’s inequality (4.1) shows thatd(a) ∈ L2(S2).
Explicitly, we have

d(a)(ω) =
∫
S2

dµ(ω′) s(ω′)
∫

SO(3)

d�ψa
(
�−1ω′)ψa

(
�−1ω

)
. (4.20)

As in the proof of Proposition 4.1, we use the relation

ψa
(
�−1ω′)= ∞∑

l=0

∑
|m|�l

∑
|n|�l

Dl
mn(�)ψ̂

a(l, n)Ym
l (ω′), (4.21)
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to find

d(a)(ω) =
∫
S2

dµ(ω′) s(ω′)
∑
lmn

l′m′n′

Ym
l (ω′)Ym′

l′ (ω) ψ̂a(l, n) ψ̂a(l′, n′)

×
∫

SO(3)

d�Dl
mn(�)Dl′

m′n′(�).

Using the orthogonality of Wigner functions and the addition theorem for spherical
harmonics, this gives

d(a)(ω) = 2π
∫
S2

dµ(ω′) s(ω′)
∞∑
l=0

∑
|m|�l

Pl

(
ω̂ · ω̂′)∣∣ψ̂a(l,m)

∣∣2.
Now consider the following expression:

s(ao)
ε (ω)=

ao∫
ε

da

a
d(a)(ω)=2π

∫
S2

dµ(ω′)s(ω′)
ao∫
ε

da

a

∞∑
l=0

∑
|m|�l

Pl

(
ω̂ · ω̂′)∣∣ψ̂a(l,m)

∣∣2.
In virtue of condition (4.18), the double summation on the right-hand side of this equation
is absolutely and uniformly convergent, since it is majorized by

ao∫
ε

da

a

∞∑
l=0

∑
|m|�l

∣∣ψ̂a(l,m)
∣∣2 =

ao∫
ε

da

a

∥∥ψa
∥∥2

.

Now let us introduce the quantity

K(ao)
ε (t) = 2π

∞∑
l=0

∑
|m|�l

( ao∫
ε

da

a

∣∣ψ̂a(l,m)
∣∣2)Pl(t),

so that

s(ao)
ε =K(ao)

ε ∗ s.

By (4.18), we see thatK(ao)
ε ∈ L1([−1,+1]), for all 0< ε � ao, and‖K(ao)

ε ‖1 � 2πM.
Next, we show in the same way that the second term in (4.19) equalsH(ao) ∗ s, where

H(ao)(t) = 2π
∞∑
l=0

∑
|m|�l

∣∣Φ̂(l,m)
∣∣2Pl(t).

Again,H(ao) ∈ L1([−1,+1]). Finally, we define the kernelKε = K(ao)
ε +H(ao), which also

belongs toL1([−1,+1]. Condition (4.18) shows thatKε is a uniformly bounded kernel. In
addition, from (4.17) and the definition (4.14)–(4.15) ofΦ̂(l,m), we deduce the following
constraint on its Legendre coefficients:

lim
ε→0

K̂ε(l) = 8π2

2l + 1

∑
|m|�l

( ao∫
0

da

a

∣∣ψ̂a(l,m)
∣∣2 + ∣∣Φ̂(l,m)

∣∣2)

=


8π2

2l + 1

∑
|m|�l

∞∫
0

da

a

∣∣ψ̂a(l,m)
∣∣2 = 1, l � 1,

8π2
∣∣Φ̂(0,0)

∣∣2 = 1, l = 0.

Then Theorem 4.3 shows thatKε is the kernel of an approximate identity, which proves
the existence of the strong limit inL2(S2)

lim
ε→0

(Kε ∗ s) = s. ✷
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As a check of the reconstruction formula (4.19), let us consider the unit functionι.
Contrary to the case of theL2 formalism, theL1-normalized CWT ofι vanishes identically,
as a consequence of Proposition 4.5

Ĩψ (�, a) =
∫
S2

dµ(ω)ψa(ω) =
∫
S2

dµ(ω)ψ(ω) = 0.

Hence only the second term, the large scale part, subsists in (4.19). Using again the
expansion (4.21), we find successively

ĨΦ (�, ao) =
∫
S2

dµ(ω)Φ
(
�−1ω

)= Φ̂(0,0),

and, for (4.19),

ι(ω) = Φ̂(0,0)
∫

SO(3)

d�Φ
(
�−1ω

)= 8π2
∣∣Φ̂(0,0)

∣∣2 = 1.

This result shows that the large scale part of a signal must be treated separately, because
constant functions on the sphere are square integrable, and hence must be reconstructible,
although their CWT vanishes identically. In practice, of course, large scales should be
irrelevant, since wavelet analysis is local, and we expect the second term in (4.19) to be
numerically negligible (that is, one must chooseao large enough for this to be true).

Theorem 4.7 applies, in particular, to a zonal wavelet. The only change is the parameter
space of the spherical CWT which takes the form of the productS2×R+∗ , with the measure
a−1 da dµ(ω). A further simplification yet is to consider a singular reconstruction wavelet
and build a framework similar to the Morlet linear analysis. As in the bilinear case, we
begin by defining, through its Legendre coefficients, a scaling functionφ ≡ φ(ao) that takes
care of the large scales

φ̂(l) =
∞∫

ao

da

a
ψ̂a(l), l � 1, (4.22)

φ̂(0) = 1. (4.23)

The corresponding large part of a signals is then

σ̃φ(ω, ao) =
∫
S2

dµ(ω′) φ
(
ω̂ · ω̂′) s(ω′). (4.24)

In these notations, the linear reconstruction formula is given by the following theorem.

Theorem 4.8 (Linear analysis).Letψ ∈ L1(S2) be a zonal wavelet satisfying the following
two conditions:

• for all l = 1,2, . . . ,
∞∫

0

da

a
ψ̂a(l) = 1, (4.25)

• for all ε ∈ (0, ao),

∞∑
l=0

2l + 1

4π

ao∫
ε

da

a
ψ̂a(l) < ∞. (4.26)

Then, for alls ∈ L2(S2), we have the equality

s(ω) =
ao∫

0

da

a
S̃ψ(ω,a) + σ̃φ(ω, ao),

the integral being again understood in the strong sense inLp , 1 � p < ∞.
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Proof. The same arguments as in the proof of Theorem 4.7 show that the partial sum

s(ao)
ε (ω) =

ao∫
ε

da

a
S̃ψ (ω,a)

belongs toL2(S2). Expanding this expression and adding the large scale term, we find

sε(ω) =
∫
S2

dµ(ω′)
ao∫
ε

da

a
ψa
(
ω̂ · ω̂′) s(ω′) + σ̃φ(ω, ao)

=
∫
S2

dµ(ω′) s(ω′)
( ao∫

ε

da

a
ψa
(
ω̂ · ω̂′)+ φ

(
ω̂ · ω̂′))

=
∫
S2

dµ(ω′) s(ω′)
∞∑
l=0

2l + 1

4π

( ao∫
ε

da

a
ψ̂a(l) + φ(l)

)
Pl

(
ω̂ · ω̂′)

= (κε ∗ s)(ω),

where we have used (4.26) and set

κε(t) =
∞∑
l=0

2l + 1

4π

( ao∫
ε

da

a
ψ̂a(l) + φ(l)

)
Pl(t).

The Legendre coefficients of this kernel are

κ̂ε(l) =
ao∫
ε

da

a
ψ̂a(l) + φ(l).

As in the proof of Theorem 4.7, we deduce from condition (4.25) that limε→0 κ̂ε(l) = 1,
∀l = 0,1, . . . . Thus we have again an approximate identity, which allows us to conclude
that

lim
ε→0

‖s − κε ∗ s‖p = 0. ✷
The conclusion of this analysis is that our spherical CWT, with the modified dilation op-
eratorDa , leads to the same approximation scheme as that developed by Freeden [10,11].
Moreover, the present approach has the additional advantage of giving a clear geometric
meaning to the approximation parametera. By the same token, it intuitively explains the
validity of the Euclidean limit established in [6]. Indeed, takinga → 0 means going to the
pointwise limit where curvature becomes unimportant, that is, going to the tangent plane
and recovering the flat CWT.
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Appendix A. Convolution on a locally compact group

Convolution of functions on a locally compact group is a well-defined operation that
shares many properties with its well-known Euclidean counterpart. It is defined as follows
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Definition A.1 (Group convolution). LetG be a locally compact group with left Haar
measure dx, normalized to 1, and letf , g :G → C be two measurable functions. The
convolution product off andg is defined a.e. by the integral:

(f ∗ g)(x) ≡
∫
G

f (xy)g
(
y−1)dy =

∫
G

f (y)g
(
y−1x

)
dy. (A.1)

When G is a commutative group, one hasf ∗ g = g ∗ f . In general, however,
convolution is a noncommutative operation and we have the following relations:

(f ∗ g)(x) =
∫
G

f
(
xy−1)g(y)∆(y−1)dy,

where∆(x) is the modular function onG.
One of the most interesting properties of the convolution integral is its regularizing

effect onLp elements. This is embodied in a number of inequalities, which we shall use
often in the sequel. Actually, they all stem from the following general statement, analog to
[14, Theorem 4.2], itself a generalization of [12, Proposition V.4.6].

Proposition A.2 (Young’s inequality).Let G be a locally compact group with left Haar
measuredx. Letp,q, r � 1 and1/p+1/q +1/r = 2. Letf ∈ Lp(G,dx), g ∈ Lq(G,dx),
andh ∈ Lr(G,dx). Then∣∣∣∣∣

∫
G

(f ∗ g)(x)h(x)dx

∣∣∣∣∣=
∣∣∣∣∣
∫
G

∫
G

f (y)g
(
y−1x

)
h(x)dx dy

∣∣∣∣∣
� ‖f ‖p‖g‖q‖h‖r . (A.2)

Equivalently,

‖f ∗ g‖r � ‖f ‖p‖g‖q , with
1

p
+ 1

q
= 1+ 1

r
. (A.3)

Proof. We follow closely the proof of [14, Theorem 4.2], assuming thatf,g,h are real
and nonnegative. Rewrite the left-hand side of (A.2) as

I =
∫
G

∫
G

α(x, y)β(x, y)γ (x, y)dxdy,

with

α(x, y) = f (y)p/r ′
g
(
y−1x

)q/r ′
,

β(x, y)= g
(
y−1x

)q/p′
h(x)r/p

′
, (1/p + 1/p′ = 1, etc.)

γ (x, y) = f (y)p/q ′
h(x)r/q

′
.

Noting that 1/p′+1/q ′+1/r ′ = 1, we get from Hölder’s inequality for three functions [14]
|I | � ‖α‖r ′ ‖β‖p′ ‖γ ‖q ′ . Then

‖α‖r ′
r ′ =

∫
G

∫
G

f (y)pg
(
y−1x

)q dx dy =
∫
G

∫
G

f (y)pg(x)q dx dy = ‖f ‖p
p‖g‖q

q ,

where we have replacedx by yx and used the left invariance of the Haar measure dx (the
integrals may be interchanged by Fubini’s theorem). The same change of variables yields

‖β‖p′
p′ = ‖g‖q

q‖h‖r
r and trivially‖γ ‖q ′

q ′ = ‖f ‖p
p‖h‖r

r . Putting the three results together then
yields the right-hand side of (A.2). As for (A.3), it is a mere restatement of (A.2).✷

The result of Proposition A.2 extends to homogeneous spaces, as mentioned already in
[12, Section V.4] for the particular casep = 1, r = p′.
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Proposition A.3 (Young’s inequality on homogeneous spaces).LetG be a locally compact
group with left Haar measuredx, H a closed subgroup such that the quotient space
G/H has the left invariant measuredω. Let p,q, r � 1 and 1/p + 1/q + 1/r = 2. Let
f ∈ Lp(G,dx), g ∈ Lq(G/H,dω), andh ∈ Lr(G/H,dω). Then∣∣∣∣∣

∫
G/H

(f ∗ g)(ω)h(ω)dω

∣∣∣∣∣=
∣∣∣∣∣
∫

G/H

∫
G

f (y)g
(
y−1ω

)
h(ω)dωdy

∣∣∣∣∣
� ‖f ‖p‖g‖q‖h‖r . (A.4)

Equivalently,f ∈ Lp(G,dx), g ∈ Lq(G/H,dω) implies f ∗ g ∈ Lr(G/H,dω) with
1/p + 1/q = 1+ 1/r and

‖f ∗ g‖r � ‖f ‖p‖g‖q . (A.5)

Similarly, g ∈ Lq(G/H,dω), h ∈ Lr(G/H,dω) impliesg ∗̃ h ∈ Lp(G,dx), with 1/q +
1/r = 1+ 1/p, and

‖g ∗̃ h‖p � ‖g‖q‖h‖r , (A.6)

where we have defined the spherical convolution as

(g ∗̃ h)(y) =
∫

G/H

g
(
y−1ω

)
h(ω)dω. (A.7)

Proof. The proof is essentially the same, replacingx ∈ G by ω ∈ G/H , up to the
inequality|I | � ‖α‖r ′ ‖β‖p′‖γ ‖q ′ . For the first factor, we get

‖α‖r ′
r ′ =

∫
G/H

∫
G

f (y)pg
(
y−1ω

)q dωdy =
∫

G/H

∫
G

f (y)pg(ω)q dωdy = ‖f ‖p
p‖g‖q

q ,

where we have replacedω by yω and used the left invariance of the Haar measure dω. For
the second factor, we have to proceed differently. We have

‖β‖p′
p′ =

∫
G/H

∫
G

g
(
y−1ω

)q
e(y)h(ω)r dωdy,

wheree(y) = 1,∀y ∈ G. Obviously,e ∈ L1(G,dx) andgq ∈ L1(G/H,dω), hencegq ∗e ∈
L1(G/H,dω), with ‖gq ∗ e‖1 � ‖e‖1‖gq‖1 = ‖g‖q

q . From this, we get, by the Schwarz
inequality,

‖β‖p′
p′ =

∫
G/H

(
gq ∗ e

)
(ω)h(ω)r dω �

∥∥gq ∗ e
∥∥

1

∥∥hr
∥∥

1 = ‖g‖q
q‖h‖r

r .

The rest is unchanged.✷
Note that sharper constants, smaller than 1, may be put in the upper bounds on the right-

hand side of all the inequalities, as shown in detail forRn in [14]. In the text, we use these
inequalities forG = SO(3), G/H = SO(3)/SO(2) = S2, under the following continuous
inclusions:

L2(SO(3),d�
) ∗ L1(S2,dµ

)
↪→ L2(S2,dµ

)
, (A.8)

L2(S2,dµ
) ∗̃ L1(S2,dµ

)
↪→ L2(SO(3),d�

)
. (A.9)
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